SlideShare a Scribd company logo
1 of 62
HiEff ModTM Combined Cycle
Power Generation System
General Atomics
September 27, 2016
Donald R. Wilson
Professor and Associate Chair
Department of Mechanical and Aerospace Engineering
University of Texas at Arlington
Arlington, TX 76017
2
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
3
4
5
6
7
8
9
10
11
12
High efficiency power generation
system and system upgrades
US 8826639 B2
ABSTRACT
A thermal/electrical power converter
includes a gas turbine with an input
couplable to an output of an inert gas
thermal power source, a compressor
including an output couplable to an input of
the inert gas thermal power source, and a
generator coupled to the gas turbine. The
thermal/electrical power converter also
includes a heat exchanger with an input
coupled to an output of the gas turbine and
an output coupled to an input of the
compressor. The heat exchanger includes a
series-coupled super-heater heat
exchanger, a boiler heat exchanger and a
water preheater heat exchanger. The
thermal/electrical power converter also
includes a reservoir tank and reservoir tank
control valves configured to regulate a
power output of the thermal/electrical power
converter.
Publication number US8826639 B2
Publication type Grant
Application number US 13/971,273
Publication date Sep 9, 2014
Filing date Aug 20, 2013
Priority date Aug 22, 2012
Also published as
CN104662262A, 7 More »
Inventors William Edward Simpkin
Original Assignee Hi Eff Rescue LLC
Currently applying for patents in
China and European Union
13
HiEff ModTM Power Generation System
(Cycle Schematic ~ W. E. Simpkin)
14
HiEff ModTM Power Generation System
(Preliminary Performance Estimate)
Preliminary Results
1100 MWTH Heat input
Electrical power output:
300 MW (Steam turbine)
164 MW (Gas turbine)
Plant efficiency: 42 %
15
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
16
NPSS Simulation Model
(Introduction)
NPSS - Numerical Propulsion System Simulation
• NPSS is an object-oriented computer code written in C++,
originally developed for simulation of gas turbine engines, but
capable of simulating any thermal cycle
• Developed by consortium of NASA GRC, Air Force AFRL and
AEDC, and major aerospace engine and airframe companies
• Robust solver - provides flexibility in performing cycle design and
off-design performance analysis of complex systems
• The NPSS architecture allows the complexity of individual
component elements to range from simple 0-D models to full 3-D
CFD models
• Allows the simulation of engine transients as well as steady state
operation.
17
NPSS Simulation Model
(NPSS Legacy)
Cycle analysis
• Air Force SMOTE (Simulation of Turbofan Engine, AFAPL-TR-67-
125, 1967)
• NASA GENENG (NASA TND-6552, 1972) and GENENG -II
(NASA TND-6553, 1972)
• Navy NEPCOMP (Navy Engine Performance Code, ASME Paper
74-GT-83, 1974)
• NNEP (Navy/NASA Engine Code, NASA TMX-71857, 1975)
• NEPP (NASA Engine Performance Code, NASA TM 106575,
1994)
Transient simulation
• Analog simulation (NASA TND-6610, 1972)
• "HYDES (NASA TMX-3014, 1974)
• DYNGEN (NASA TND-7901, 1975)
18
NPSS Simulation Model
(NPSS Consortium)
19
NPSS Simulation Model
(NPSS Simulation Capabilities)
20
HiEff ModTM Power Generation System
(NPSS Simulation Capabilities)
GE – Adaptive Cycle Engine
20000
22000
24000
26000
28000
30000
32000
34000
36000
0.5 0.7 0.9 1.1 1.3 1.5
Thrust[lbf]
SFC [(lbm/hr)/lbf]
Inner bypass ratio = 0.1
Fan PR
Outer bypass ratio
21
NPSS Simulation Model
(NPSS “Zooming” Feature)
Zooming from 0D Compressor Map to 3D CFD Compressor Model
22
NPSS Simulation Model
(NPSS “Zooming” Feature)
CFD simulation of inlet
isolator (FLUENT)
23
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
24
HiEff/Rankine Combined Cycle
(NPSS Simulation)
25
HiEff/Rankine Combined Cycle
(Design & Performance Analysis)
0.05
0.1
0.15
0.2
0.25
0.3
1000
1060
1120
1180
1240
1300
750 800 850 900 950 1000
Efficiency
ReactorPower(MWt)
Reactor Outlet Temperature (ᵒC)
Reactor Power
Brayton Cycle
Efficiency
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
750 800 850 900 950 1000
PressureRatio
Reactor Outlet Temperature (ᵒC)
Compressor
Turbine
0.35
0.39
0.43
0.47
0.51
0.55
1000
1060
1120
1180
1240
1300
750 800 850 900 950 1000
Efficiency
ReactorPower(MWt)
Reactor Outlet Temperature (ᵒC)
Reactor Power
Combined
Cycle Efficiency
Reactor outlet temperature
26
HiEff/Rankine Combined Cycle
(Design & Performance Analysis)
Heat exchanger inlet (turbine exhaust) temperature
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
580 630 680 730 780
PressureRatio
Heat Exchanger Inlet Temperature (ᵒC)
Compressor
Turbine
200
250
300
350
400
800
1000
1200
1400
1600
580 630 680 730 780
HeliumMassFlowRate(kg/s)
ReactorPower(MWt)
Heat Exchanger Inlet Temperature (ᵒC)
Reactor Power
Helium Mass Flow
Rate
27
HiEff/Rankine Combined Cycle
(Design Point Performance)
• Reactor: Helium-cooled VHTR
900 C/6.89 MPa/1188 MWt
• Heat exchanger pinch temperature = 14 K
• Steam turbine: 300 MWe
• Rankine cycle efficiency = 37%
• Gas turbine: 229 MWe
• Brayton cycle efficiency = 19%
• Combined cycle efficiency = 45%
28
HiEff/Rankine Combined Cycle
(Part Load Performance)
0
100
200
300
400
500
600
150 170 190 210 230 250 270 290 310
Power(MWe)
Helium Mass Flow Rate(kg/s)
Brayton
Rankine
Combined
Reactor outlet temp
= 900 C (Constant)
29
HiEff/Rankine Combined Cycle
(Part Load Performance)
Reactor outlet temp
= 900 C (Constant)
30
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
31
HiEff/Rankine Combined Cycle
(Helium Compressor Model)
Figure 2. Combined velocity triangle
2-D Blade Element Model with semi-empirical
corrections* for
• Design angle of attack
• Design incidence angle
• Design deviation angle
• Profile loss coefficient
• Leakage loss coefficient
• Incidence angle correction factor
*SAND2007-6218
32
HiEff/Rankine Combined Cycle
(Helium Compressor Model)
Model validation - JAEA 4-Stage Prototype He Compressor
33
HiEff/Rankine Combined Cycle
(Helium Compressor Model)
Model validation - JAEA 20-Stage He Compressor
34
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
35
HiEff/Rankine Combined Cycle
(Indirect Helium/Argon Cycle)
Longitudinal Cross-Section of the JAEA GTHTR300
Turbomachine[11]
Helium compressor; 20 stages, pressure ratio = 2.0, polytropic efficiency = 0.905
Helium turbine; 6 stages, pressure ratio = 1.87, polytropic efficiency = 0.93
36
HiEff/Rankine Combined Cycle
(Indirect Helium/Argon Cycle)
1
1
(Number
2
1
5193.2 J/kg K, 1.67, 0.905,
20 Stages CPR 2.0
Euler Compressor Equation;
( )
Stage pressure ratio 1
Compressor pressure ratio
JAEA GHTR300 He Compressor
c
p C
e
p t
t
t
c e
U v
c T
p
p





   
 
 
  
  
 
 
 
;
 
of stages)
2 2
2 2
1
2
1 1
(20)
Assume ( ) (300*80) 24,000
( )
Stage pressure ratio 1 1.035
Compressor pressure ratio 1.035 1.99
c c
c
e
t
t p t
m m
U v
s s
p U v
p c T





  
 
    
  
;
Gas cp Uv SPR
J/(kgK) m
2
/s
2
He 5193.2 24000 1.035
He/Argon
75/25 4025.0 24000 1.045
50/50 2856.8 24000 1.064
25/75 1688.5 24000 1.110
Argon 520.3 24000 1.381
Air 1004.2 24000 1.189
Stages SPR Stages Stages
~2.0 ~3.0
He 1.035 20 32
He/Argon
75/25 1.045 16 25
50/50 1.064 11 18
25/75 1.110 7 10.6
Argon 1.381 2 3.5
Air 1.189 4 6.5
37
HiEff/Rankine Combined Cycle
(Indirect Helium/Argon Cycle)
38
HiEff/Rankine Combined Cycle
(Indirect Helium/Argon Cycle)
Result: He/Ar (50/50) Indirect Cycle
• 10% reduction in power
• 6% reduction in overall efficiency
• 44% reduction in number of compressor
stages
13.5% efficiency & 59% power
increase over Rankine cycle for a
41% increase in thermal power input
Rankine Cycle Direct Brayton Cycle Indirect He/Ar Brayton Cycle
ṁ 260 kg/s ṁ 306.4 kg/s He ṁ 305 kg/s
Trb PR 2111 CPR 2.25 He-Ar ṁ 563 kg/s
Trb η 0.9 Cmp η 0.89 CPR 2.01
Trb Power 306 MW Cmp Power 208 MW Cmp η 0.89
Gen η 0.98 Gen η 0.985 Cmp Power 174 MW
Burner Power 811 MW TPR 2.05 Gen η 0.985
Rankine Power 300 MW Trb η 0.93 TPR 1.84
Rankine η 0.368 T Power 441 MW Trb η 0.938
Reactor Power 1188 MW T Power 367 MW
Brayton Power 229 MW He Pump 13.8 MW
Cycle η 0.445 Reactor Power 1140 MW
Brayton Power 177 MW
Cycle η 0.418
39
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
40
HiEff/Rankine Combined Cycle
(Concept Validation Options)
• Build small-scale prototype facility to test concept
feasibility and validate NPSS simulation model
– ARC DC power supply Reactor simulation
– Turbine Technology Gas turbine components
– ARC Helium tank, Rankine cycle simulation, heat
exchangers, DAS/Control system
• Modify Tsinghua HTR-10GT facility
– Operational helium-cooled VHTR/gas turbine prototype
facility
– 10 MWt reactor/He gas turbine/2.5 MWe generator
– Permission ?, Feasibility ?, Cost ?/Funding support ?
41
HiEff/Rankine Combined Cycle
(Small-scale Prototype Option)
ARC Arcjet facility
• 1.6 MW DC power supply  Reactor simulation
• 800 kW cooling water system Rankine cycle
• 1.6 MW (2000v, 800 amp) DC power supply
• 350 psi, 400 gpm deionized cooling water system
• Total enthalpy, ht  4000 to 6000 kJ/kg
• Arc heater donation from AEDC (USAF)
42
HiEff/Rankine Combined Cycle
(Small-scale Prototype Option)
Turbine Technologies  Brayton Cycle
TurboGen Gas Turbine
Power Generation System
• Gas turbine;
• Thrust = 178 N(40 lbf)
• Flow rate = 0.5 kg/s
• RPM = 87,000
• CPR = 3.4
• Generator;
• Voltage = 13.1V
• Current = 194A
• Power = 2.54 kW
43
HiEff/Rankine Combined Cycle
(Small-scale Prototype Option)
44
45
“The TSINGHUHTR-10GT will be the first test of a HTGR coupled with direct gas turbine
Generator in the world and will offer the key technologies for the advanced development
of commercial demonstrated HTGR-GT power plants”
HTR-10 Main Milestones
[Fu Li, “HTR Progress in China,” April 2014]
• March 14, 1992: Project approval by Government
• Dec 1992-Dec 1994: PSAR
• Dec 15, 1998-Nov.17, 2000: FSAR
• July 16, 1995-Dec. 2000: Construction
• Dec.1, 2000: Physical critical
• Jan 7, 2003: Electricity output to grid
• Jan 29, 2003: Full power operation
• Oct.15, 2003: safety demonstration experiments and
long-term operation
– CR withdrawal without Control Rod Drop, helium blower
trip without Control Rod Drop, flap close failure without
Control Rod Drop
– Many experiments followed, more will be planned
46
47
Physical Characteristics
• Pebble bed
• Helium cooled, graphite
moderated
• Modular High-Temperature
Gas-Cooled reactor
• 750 C Exit Temperature
• Inherent safety
• Free from melt-down
Performance
• Reactor: 10 MWth
• Generator: 2.5 Mwe
• Efficiency: 25%
48
Modified HTR-10GT Flow Chart
Tsinghua HTR-10GT Option
49
Critical issues
• Obtaining permission to modify facility
• Technical feasibility of modifying PCU
• Cost
• Funding source
50
HiEff/Rankine Combined Cycle
(INL Program – Status Report)
 INL Visit (July 28) – followed by a draft white paper submitted to
Mike McKellar for distribution to potential funding sources
• Laboratory Directed Research and Development (LDRD)
• Nuclear Energy University Program (NEUP)
• National University Consortium (NUC)
 Proposed steps
• NPSS Code upgrades
• Update compressor & turbine routines
• Reactor simulation - INL Moose computer code
• Heat exchanger – Sandia model
• Design optimization (direct & indirect cycles)
• Part-load performance
• Simulation of transient scenarios
• Experimental validation
• Small-scale experimental program
• Tsinghua experimental program ?
• NPSS code refinement/Large-scale performance predictions
51
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Numerical Simulation
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
52
HiEff /sCO2 Combined Cycle
(Cycle Schematic)
Schematic of the HiEff/sCO2 combined cycle
Sandia National Labs, August 15, 2016
• Meeting with SNL sCO2 Group; Gary Rochau, Sal Rodriguez, Blake Lance, Jim
Pasch, and others
• Demonstration of SNL CFD capabilities, Tour of sCO2 test facilities, Seminar,
Informal discussions on potential areas of collaboration
53
HiEff /sCO2 Combined Cycle
(Numerical Simulation)
NEUP Pre-Application Proposal (Sept. 14, 2016)
HiEff/sCO2 Brayton Combined Cycle Power Generation System
Modeling and Development
UTA: Don Wilson & Frank Lu, SNL: Sal Rodriguez
Task 1: NPSS Simulation Upgrades
• Turbomachinery – replace maps with mean-line blade element models
• Reactor - link SNL MELCOR code for reactor simulation into NPSS
• sCO2 – link SNL Fuego code for sCO2 loop simulation
Task 2: Code Validation
• NPSS – experimental data from Air Brayton Cycle test lop
• MELCOR – experimental data from 1 MW sCO2 Integral Loop
• Fuego – experimental data from sCO2 Tall Loop [7]
Task 3: Code upgrades and application to
• Cycle design optimization & off design performance analysis
• Scaling for SMR and full-scale power generation systems
54
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
55
HiEff /sCO2 Combined Cycle
(Experimental Validation)
NEUP Pre-Application Proposal (Sept. 14, 2016)
HiEff/sCO2 Brayton Combined Cycle Proof of Concept
UTA: Don Wilson & Frank Lu, SNL: Blake Lance
Task 1: Experimental Proof-of-Concept Test Program
• 30 kWe Capstone C-30 gas turbine generator was converted by SNL to a
Closed Brayton Cycle (CBC) Loop (available test bed)
• CBC 100 kWt electric heater nuclear reactor heat source
• CBC chiller heat rejection to sCO2 loop
• 2200 psig gas storage bottles HiEff variable density helium tank
Task 2: Code Validation
• NPSS simulation of Task 1 validation test used to guide code refinement
Task 3: Cycle Optimization
• Upgraded NPSS code will be used to optimize cycle for maximum
efficiency
56
HiEff /sCO2 Combined Cycle
(Experimental Validation)
Sandia Air Brayton Cycle Test Facility
57
HiEff /sCO2 Combined Cycle
(Experimental Validation)
He Tank
Simulation
58
HiEff ModTM Combined Cycle
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
59
HiEff/ SC-FGR Cycle
(SC-FGR Cycle, SAND2011-2525)
60
HiEff/ SC-FGR Cycle
(SC-FGR Cycle, SAND2011-2525)
Conversion to
combined Cycle by
replacing recuperators
with heat exchange to
bottom cycle ??
CO2
61
HiEff ModTM Gas Turbine/VHTR/Steam
Power Generation System
Outline
» Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue
Concept
» NPSS Simulation Model
» HiEff/Rankine Combined Cycle
» Cycle Design & Performance Analysis
» Helium Compressor Model
» Indirect Helium/Argon Cycle
» Experimental Validation
» HiEff/sCO2 Combined Cycle
» Cycle Design & Performance Analysis
» Experimental Validation
» HiEff/SC-FGR Cycle
» Path to Commercialization
» Appendix - NPSS Code
62
HiEff ModTM Power Generation System
(Path to Commercialization)
Technical issues
• Direct (helium) vs indirect (helium, helium/argon mixtures) cycle
• Lower capital investment (indirect - fewer turbomachinery stages) vs.
lower operational cost (direct - higher efficiency)
• Further numerical studies
• Development of helium and helium/argon turbomachinery maps
• Reactor simulation (INL Moose, SNL MELCOR)
• sCO2 simulation (SNL Fuego)
• Additional cycle design optimization
• Part-load performance
• Transients; load following, start-up, emergency shutdown, ?
• Experimental validation (concept validation, code refinement)
• Small-scale prototype experiment
• SNL Air Brayton CBC test loop
• Tsinghua (proof of concept) ?
Path to commercialization
• ??

More Related Content

What's hot

Introduction to Small Scale LNG Opportunities
Introduction to Small Scale LNG OpportunitiesIntroduction to Small Scale LNG Opportunities
Introduction to Small Scale LNG OpportunitiesEPCM Holdings
 
Energy Conversion Analysis Webinar
Energy Conversion Analysis WebinarEnergy Conversion Analysis Webinar
Energy Conversion Analysis WebinarEngineering Software
 
Diesel Adaptation for the Toyota Prius Hybrid System
Diesel Adaptation for the Toyota Prius Hybrid SystemDiesel Adaptation for the Toyota Prius Hybrid System
Diesel Adaptation for the Toyota Prius Hybrid SystemV-Motech
 
Internal combustion engines3
Internal combustion engines3Internal combustion engines3
Internal combustion engines3Haardik Garg
 
Internal combustion engine power plant
Internal combustion engine power plantInternal combustion engine power plant
Internal combustion engine power plantYuri Melliza
 
Robust control of speed and temperature in a power plant gas turbine
Robust control of speed and temperature in a power plant gas turbineRobust control of speed and temperature in a power plant gas turbine
Robust control of speed and temperature in a power plant gas turbineISA Interchange
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Centro Studi Galileo
 
Semester_Thesis_Presentation
Semester_Thesis_PresentationSemester_Thesis_Presentation
Semester_Thesis_PresentationGeorgi Atanasov
 
Aerodynamics of wind turbines
Aerodynamics of wind turbinesAerodynamics of wind turbines
Aerodynamics of wind turbinesH Janardan Prabhu
 
CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...
CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...
CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...Abdul Basit Bashir
 
500kva Cummins gas generator specification sheet
500kva  Cummins gas generator specification sheet500kva  Cummins gas generator specification sheet
500kva Cummins gas generator specification sheetSUNSHINE MACHINERY
 

What's hot (15)

Introduction to Small Scale LNG Opportunities
Introduction to Small Scale LNG OpportunitiesIntroduction to Small Scale LNG Opportunities
Introduction to Small Scale LNG Opportunities
 
Energy Conversion Analysis Webinar
Energy Conversion Analysis WebinarEnergy Conversion Analysis Webinar
Energy Conversion Analysis Webinar
 
India study i g c c
India study i g c cIndia study i g c c
India study i g c c
 
Diesel Adaptation for the Toyota Prius Hybrid System
Diesel Adaptation for the Toyota Prius Hybrid SystemDiesel Adaptation for the Toyota Prius Hybrid System
Diesel Adaptation for the Toyota Prius Hybrid System
 
234 pradip
234 pradip234 pradip
234 pradip
 
Internal combustion engines3
Internal combustion engines3Internal combustion engines3
Internal combustion engines3
 
Tank 700 kl
Tank 700 klTank 700 kl
Tank 700 kl
 
TVC main report
TVC main reportTVC main report
TVC main report
 
Internal combustion engine power plant
Internal combustion engine power plantInternal combustion engine power plant
Internal combustion engine power plant
 
Robust control of speed and temperature in a power plant gas turbine
Robust control of speed and temperature in a power plant gas turbineRobust control of speed and temperature in a power plant gas turbine
Robust control of speed and temperature in a power plant gas turbine
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
Semester_Thesis_Presentation
Semester_Thesis_PresentationSemester_Thesis_Presentation
Semester_Thesis_Presentation
 
Aerodynamics of wind turbines
Aerodynamics of wind turbinesAerodynamics of wind turbines
Aerodynamics of wind turbines
 
CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...
CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...
CASE STUDY: Health analysis of reciprocating engines, compressors and gas pip...
 
500kva Cummins gas generator specification sheet
500kva  Cummins gas generator specification sheet500kva  Cummins gas generator specification sheet
500kva Cummins gas generator specification sheet
 

Similar to Simpkin hi eff presentation

353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
353685130-CCGT-Combined-Cycle-Gas-Turbine.pptJiji118054
 
Blending of ethanol with gasoline and Diesel and exhaust gas analysis
Blending of ethanol with gasoline and Diesel and exhaust gas analysisBlending of ethanol with gasoline and Diesel and exhaust gas analysis
Blending of ethanol with gasoline and Diesel and exhaust gas analysisvarungoyal98
 
3 e analysis of thermal power plants
3 e analysis of thermal power plants3 e analysis of thermal power plants
3 e analysis of thermal power plantsGovind Kumar Mishra
 
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemensSirris
 
Dimethyl Ether Production
Dimethyl Ether ProductionDimethyl Ether Production
Dimethyl Ether ProductionAziz Albattah
 
Googol gas generator introduction
Googol gas generator introductionGoogol gas generator introduction
Googol gas generator introductionMark Wang
 
Thermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantThermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantMuhammad Surahman
 
CENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdfCENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdfeldoctol
 
CENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdfCENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdfeldoctol
 
Proposal Wide Blower No.1 & 2 with inverter
Proposal Wide Blower No.1 & 2  with inverterProposal Wide Blower No.1 & 2  with inverter
Proposal Wide Blower No.1 & 2 with inverterRidhoIrawan12
 
Overview of powertrain
Overview of powertrainOverview of powertrain
Overview of powertrainbharibabu
 
OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...
OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...
OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...exergyorc
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015マルツエレック株式会社 marutsuelec
 
الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان...
 الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان... الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان...
الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان...Egyptian Engineers Association
 
Handbook of mechanical engineering calculations
Handbook of mechanical engineering calculationsHandbook of mechanical engineering calculations
Handbook of mechanical engineering calculationsRoddy Castro
 
Voith Offshore Solutions
Voith Offshore SolutionsVoith Offshore Solutions
Voith Offshore SolutionsAndrea Venora
 
Asiasim2004 final
Asiasim2004 finalAsiasim2004 final
Asiasim2004 finalvrsim
 
One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW pupin_proces_automation
 

Similar to Simpkin hi eff presentation (20)

353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
353685130-CCGT-Combined-Cycle-Gas-Turbine.ppt
 
Blending of ethanol with gasoline and Diesel and exhaust gas analysis
Blending of ethanol with gasoline and Diesel and exhaust gas analysisBlending of ethanol with gasoline and Diesel and exhaust gas analysis
Blending of ethanol with gasoline and Diesel and exhaust gas analysis
 
3 e analysis of thermal power plants
3 e analysis of thermal power plants3 e analysis of thermal power plants
3 e analysis of thermal power plants
 
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
2015 12-02-optiwind-offshore-wind-turbine-modelling-lms-samsef-siemens
 
Dimethyl Ether Production
Dimethyl Ether ProductionDimethyl Ether Production
Dimethyl Ether Production
 
Introduction of CO2 Reduction Technologies in Steelworks
Introduction of  CO2 Reduction Technologies in SteelworksIntroduction of  CO2 Reduction Technologies in Steelworks
Introduction of CO2 Reduction Technologies in Steelworks
 
Googol gas generator introduction
Googol gas generator introductionGoogol gas generator introduction
Googol gas generator introduction
 
Thermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power PlantThermodynamic Chapter 6 Thermal Power Plant
Thermodynamic Chapter 6 Thermal Power Plant
 
Bombas Centrifugas
Bombas Centrifugas Bombas Centrifugas
Bombas Centrifugas
 
CENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdfCENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdf
 
CENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdfCENTRIFUGAL PUMPS.pdf
CENTRIFUGAL PUMPS.pdf
 
Proposal Wide Blower No.1 & 2 with inverter
Proposal Wide Blower No.1 & 2  with inverterProposal Wide Blower No.1 & 2  with inverter
Proposal Wide Blower No.1 & 2 with inverter
 
Overview of powertrain
Overview of powertrainOverview of powertrain
Overview of powertrain
 
OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...
OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...
OPTIMIZED CYCLE AND TURBOMACHINERY CONFIGURATION FOR AN INTERCOOLED, RECOMPRE...
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان...
 الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان... الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان...
الدكتور / علي المراكبي استشاري الهندسة الميكانيكية وخبير ترشيد الطاقة بعنوان...
 
Handbook of mechanical engineering calculations
Handbook of mechanical engineering calculationsHandbook of mechanical engineering calculations
Handbook of mechanical engineering calculations
 
Voith Offshore Solutions
Voith Offshore SolutionsVoith Offshore Solutions
Voith Offshore Solutions
 
Asiasim2004 final
Asiasim2004 finalAsiasim2004 final
Asiasim2004 final
 
One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW
 

Recently uploaded

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 

Recently uploaded (20)

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 

Simpkin hi eff presentation

  • 1. HiEff ModTM Combined Cycle Power Generation System General Atomics September 27, 2016 Donald R. Wilson Professor and Associate Chair Department of Mechanical and Aerospace Engineering University of Texas at Arlington Arlington, TX 76017
  • 2. 2 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 3. 3
  • 4. 4
  • 5. 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 12 High efficiency power generation system and system upgrades US 8826639 B2 ABSTRACT A thermal/electrical power converter includes a gas turbine with an input couplable to an output of an inert gas thermal power source, a compressor including an output couplable to an input of the inert gas thermal power source, and a generator coupled to the gas turbine. The thermal/electrical power converter also includes a heat exchanger with an input coupled to an output of the gas turbine and an output coupled to an input of the compressor. The heat exchanger includes a series-coupled super-heater heat exchanger, a boiler heat exchanger and a water preheater heat exchanger. The thermal/electrical power converter also includes a reservoir tank and reservoir tank control valves configured to regulate a power output of the thermal/electrical power converter. Publication number US8826639 B2 Publication type Grant Application number US 13/971,273 Publication date Sep 9, 2014 Filing date Aug 20, 2013 Priority date Aug 22, 2012 Also published as CN104662262A, 7 More » Inventors William Edward Simpkin Original Assignee Hi Eff Rescue LLC Currently applying for patents in China and European Union
  • 13. 13 HiEff ModTM Power Generation System (Cycle Schematic ~ W. E. Simpkin)
  • 14. 14 HiEff ModTM Power Generation System (Preliminary Performance Estimate) Preliminary Results 1100 MWTH Heat input Electrical power output: 300 MW (Steam turbine) 164 MW (Gas turbine) Plant efficiency: 42 %
  • 15. 15 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 16. 16 NPSS Simulation Model (Introduction) NPSS - Numerical Propulsion System Simulation • NPSS is an object-oriented computer code written in C++, originally developed for simulation of gas turbine engines, but capable of simulating any thermal cycle • Developed by consortium of NASA GRC, Air Force AFRL and AEDC, and major aerospace engine and airframe companies • Robust solver - provides flexibility in performing cycle design and off-design performance analysis of complex systems • The NPSS architecture allows the complexity of individual component elements to range from simple 0-D models to full 3-D CFD models • Allows the simulation of engine transients as well as steady state operation.
  • 17. 17 NPSS Simulation Model (NPSS Legacy) Cycle analysis • Air Force SMOTE (Simulation of Turbofan Engine, AFAPL-TR-67- 125, 1967) • NASA GENENG (NASA TND-6552, 1972) and GENENG -II (NASA TND-6553, 1972) • Navy NEPCOMP (Navy Engine Performance Code, ASME Paper 74-GT-83, 1974) • NNEP (Navy/NASA Engine Code, NASA TMX-71857, 1975) • NEPP (NASA Engine Performance Code, NASA TM 106575, 1994) Transient simulation • Analog simulation (NASA TND-6610, 1972) • "HYDES (NASA TMX-3014, 1974) • DYNGEN (NASA TND-7901, 1975)
  • 19. 19 NPSS Simulation Model (NPSS Simulation Capabilities)
  • 20. 20 HiEff ModTM Power Generation System (NPSS Simulation Capabilities) GE – Adaptive Cycle Engine 20000 22000 24000 26000 28000 30000 32000 34000 36000 0.5 0.7 0.9 1.1 1.3 1.5 Thrust[lbf] SFC [(lbm/hr)/lbf] Inner bypass ratio = 0.1 Fan PR Outer bypass ratio
  • 21. 21 NPSS Simulation Model (NPSS “Zooming” Feature) Zooming from 0D Compressor Map to 3D CFD Compressor Model
  • 22. 22 NPSS Simulation Model (NPSS “Zooming” Feature) CFD simulation of inlet isolator (FLUENT)
  • 23. 23 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 25. 25 HiEff/Rankine Combined Cycle (Design & Performance Analysis) 0.05 0.1 0.15 0.2 0.25 0.3 1000 1060 1120 1180 1240 1300 750 800 850 900 950 1000 Efficiency ReactorPower(MWt) Reactor Outlet Temperature (ᵒC) Reactor Power Brayton Cycle Efficiency 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 750 800 850 900 950 1000 PressureRatio Reactor Outlet Temperature (ᵒC) Compressor Turbine 0.35 0.39 0.43 0.47 0.51 0.55 1000 1060 1120 1180 1240 1300 750 800 850 900 950 1000 Efficiency ReactorPower(MWt) Reactor Outlet Temperature (ᵒC) Reactor Power Combined Cycle Efficiency Reactor outlet temperature
  • 26. 26 HiEff/Rankine Combined Cycle (Design & Performance Analysis) Heat exchanger inlet (turbine exhaust) temperature 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 580 630 680 730 780 PressureRatio Heat Exchanger Inlet Temperature (ᵒC) Compressor Turbine 200 250 300 350 400 800 1000 1200 1400 1600 580 630 680 730 780 HeliumMassFlowRate(kg/s) ReactorPower(MWt) Heat Exchanger Inlet Temperature (ᵒC) Reactor Power Helium Mass Flow Rate
  • 27. 27 HiEff/Rankine Combined Cycle (Design Point Performance) • Reactor: Helium-cooled VHTR 900 C/6.89 MPa/1188 MWt • Heat exchanger pinch temperature = 14 K • Steam turbine: 300 MWe • Rankine cycle efficiency = 37% • Gas turbine: 229 MWe • Brayton cycle efficiency = 19% • Combined cycle efficiency = 45%
  • 28. 28 HiEff/Rankine Combined Cycle (Part Load Performance) 0 100 200 300 400 500 600 150 170 190 210 230 250 270 290 310 Power(MWe) Helium Mass Flow Rate(kg/s) Brayton Rankine Combined Reactor outlet temp = 900 C (Constant)
  • 29. 29 HiEff/Rankine Combined Cycle (Part Load Performance) Reactor outlet temp = 900 C (Constant)
  • 30. 30 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 31. 31 HiEff/Rankine Combined Cycle (Helium Compressor Model) Figure 2. Combined velocity triangle 2-D Blade Element Model with semi-empirical corrections* for • Design angle of attack • Design incidence angle • Design deviation angle • Profile loss coefficient • Leakage loss coefficient • Incidence angle correction factor *SAND2007-6218
  • 32. 32 HiEff/Rankine Combined Cycle (Helium Compressor Model) Model validation - JAEA 4-Stage Prototype He Compressor
  • 33. 33 HiEff/Rankine Combined Cycle (Helium Compressor Model) Model validation - JAEA 20-Stage He Compressor
  • 34. 34 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 35. 35 HiEff/Rankine Combined Cycle (Indirect Helium/Argon Cycle) Longitudinal Cross-Section of the JAEA GTHTR300 Turbomachine[11] Helium compressor; 20 stages, pressure ratio = 2.0, polytropic efficiency = 0.905 Helium turbine; 6 stages, pressure ratio = 1.87, polytropic efficiency = 0.93
  • 36. 36 HiEff/Rankine Combined Cycle (Indirect Helium/Argon Cycle) 1 1 (Number 2 1 5193.2 J/kg K, 1.67, 0.905, 20 Stages CPR 2.0 Euler Compressor Equation; ( ) Stage pressure ratio 1 Compressor pressure ratio JAEA GHTR300 He Compressor c p C e p t t t c e U v c T p p                          ;   of stages) 2 2 2 2 1 2 1 1 (20) Assume ( ) (300*80) 24,000 ( ) Stage pressure ratio 1 1.035 Compressor pressure ratio 1.035 1.99 c c c e t t p t m m U v s s p U v p c T                   ; Gas cp Uv SPR J/(kgK) m 2 /s 2 He 5193.2 24000 1.035 He/Argon 75/25 4025.0 24000 1.045 50/50 2856.8 24000 1.064 25/75 1688.5 24000 1.110 Argon 520.3 24000 1.381 Air 1004.2 24000 1.189 Stages SPR Stages Stages ~2.0 ~3.0 He 1.035 20 32 He/Argon 75/25 1.045 16 25 50/50 1.064 11 18 25/75 1.110 7 10.6 Argon 1.381 2 3.5 Air 1.189 4 6.5
  • 38. 38 HiEff/Rankine Combined Cycle (Indirect Helium/Argon Cycle) Result: He/Ar (50/50) Indirect Cycle • 10% reduction in power • 6% reduction in overall efficiency • 44% reduction in number of compressor stages 13.5% efficiency & 59% power increase over Rankine cycle for a 41% increase in thermal power input Rankine Cycle Direct Brayton Cycle Indirect He/Ar Brayton Cycle ṁ 260 kg/s ṁ 306.4 kg/s He ṁ 305 kg/s Trb PR 2111 CPR 2.25 He-Ar ṁ 563 kg/s Trb η 0.9 Cmp η 0.89 CPR 2.01 Trb Power 306 MW Cmp Power 208 MW Cmp η 0.89 Gen η 0.98 Gen η 0.985 Cmp Power 174 MW Burner Power 811 MW TPR 2.05 Gen η 0.985 Rankine Power 300 MW Trb η 0.93 TPR 1.84 Rankine η 0.368 T Power 441 MW Trb η 0.938 Reactor Power 1188 MW T Power 367 MW Brayton Power 229 MW He Pump 13.8 MW Cycle η 0.445 Reactor Power 1140 MW Brayton Power 177 MW Cycle η 0.418
  • 39. 39 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 40. 40 HiEff/Rankine Combined Cycle (Concept Validation Options) • Build small-scale prototype facility to test concept feasibility and validate NPSS simulation model – ARC DC power supply Reactor simulation – Turbine Technology Gas turbine components – ARC Helium tank, Rankine cycle simulation, heat exchangers, DAS/Control system • Modify Tsinghua HTR-10GT facility – Operational helium-cooled VHTR/gas turbine prototype facility – 10 MWt reactor/He gas turbine/2.5 MWe generator – Permission ?, Feasibility ?, Cost ?/Funding support ?
  • 41. 41 HiEff/Rankine Combined Cycle (Small-scale Prototype Option) ARC Arcjet facility • 1.6 MW DC power supply  Reactor simulation • 800 kW cooling water system Rankine cycle • 1.6 MW (2000v, 800 amp) DC power supply • 350 psi, 400 gpm deionized cooling water system • Total enthalpy, ht  4000 to 6000 kJ/kg • Arc heater donation from AEDC (USAF)
  • 42. 42 HiEff/Rankine Combined Cycle (Small-scale Prototype Option) Turbine Technologies  Brayton Cycle TurboGen Gas Turbine Power Generation System • Gas turbine; • Thrust = 178 N(40 lbf) • Flow rate = 0.5 kg/s • RPM = 87,000 • CPR = 3.4 • Generator; • Voltage = 13.1V • Current = 194A • Power = 2.54 kW
  • 44. 44
  • 45. 45 “The TSINGHUHTR-10GT will be the first test of a HTGR coupled with direct gas turbine Generator in the world and will offer the key technologies for the advanced development of commercial demonstrated HTGR-GT power plants”
  • 46. HTR-10 Main Milestones [Fu Li, “HTR Progress in China,” April 2014] • March 14, 1992: Project approval by Government • Dec 1992-Dec 1994: PSAR • Dec 15, 1998-Nov.17, 2000: FSAR • July 16, 1995-Dec. 2000: Construction • Dec.1, 2000: Physical critical • Jan 7, 2003: Electricity output to grid • Jan 29, 2003: Full power operation • Oct.15, 2003: safety demonstration experiments and long-term operation – CR withdrawal without Control Rod Drop, helium blower trip without Control Rod Drop, flap close failure without Control Rod Drop – Many experiments followed, more will be planned 46
  • 47. 47 Physical Characteristics • Pebble bed • Helium cooled, graphite moderated • Modular High-Temperature Gas-Cooled reactor • 750 C Exit Temperature • Inherent safety • Free from melt-down Performance • Reactor: 10 MWth • Generator: 2.5 Mwe • Efficiency: 25%
  • 49. Tsinghua HTR-10GT Option 49 Critical issues • Obtaining permission to modify facility • Technical feasibility of modifying PCU • Cost • Funding source
  • 50. 50 HiEff/Rankine Combined Cycle (INL Program – Status Report)  INL Visit (July 28) – followed by a draft white paper submitted to Mike McKellar for distribution to potential funding sources • Laboratory Directed Research and Development (LDRD) • Nuclear Energy University Program (NEUP) • National University Consortium (NUC)  Proposed steps • NPSS Code upgrades • Update compressor & turbine routines • Reactor simulation - INL Moose computer code • Heat exchanger – Sandia model • Design optimization (direct & indirect cycles) • Part-load performance • Simulation of transient scenarios • Experimental validation • Small-scale experimental program • Tsinghua experimental program ? • NPSS code refinement/Large-scale performance predictions
  • 51. 51 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Numerical Simulation » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 52. 52 HiEff /sCO2 Combined Cycle (Cycle Schematic) Schematic of the HiEff/sCO2 combined cycle Sandia National Labs, August 15, 2016 • Meeting with SNL sCO2 Group; Gary Rochau, Sal Rodriguez, Blake Lance, Jim Pasch, and others • Demonstration of SNL CFD capabilities, Tour of sCO2 test facilities, Seminar, Informal discussions on potential areas of collaboration
  • 53. 53 HiEff /sCO2 Combined Cycle (Numerical Simulation) NEUP Pre-Application Proposal (Sept. 14, 2016) HiEff/sCO2 Brayton Combined Cycle Power Generation System Modeling and Development UTA: Don Wilson & Frank Lu, SNL: Sal Rodriguez Task 1: NPSS Simulation Upgrades • Turbomachinery – replace maps with mean-line blade element models • Reactor - link SNL MELCOR code for reactor simulation into NPSS • sCO2 – link SNL Fuego code for sCO2 loop simulation Task 2: Code Validation • NPSS – experimental data from Air Brayton Cycle test lop • MELCOR – experimental data from 1 MW sCO2 Integral Loop • Fuego – experimental data from sCO2 Tall Loop [7] Task 3: Code upgrades and application to • Cycle design optimization & off design performance analysis • Scaling for SMR and full-scale power generation systems
  • 54. 54 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 55. 55 HiEff /sCO2 Combined Cycle (Experimental Validation) NEUP Pre-Application Proposal (Sept. 14, 2016) HiEff/sCO2 Brayton Combined Cycle Proof of Concept UTA: Don Wilson & Frank Lu, SNL: Blake Lance Task 1: Experimental Proof-of-Concept Test Program • 30 kWe Capstone C-30 gas turbine generator was converted by SNL to a Closed Brayton Cycle (CBC) Loop (available test bed) • CBC 100 kWt electric heater nuclear reactor heat source • CBC chiller heat rejection to sCO2 loop • 2200 psig gas storage bottles HiEff variable density helium tank Task 2: Code Validation • NPSS simulation of Task 1 validation test used to guide code refinement Task 3: Cycle Optimization • Upgraded NPSS code will be used to optimize cycle for maximum efficiency
  • 56. 56 HiEff /sCO2 Combined Cycle (Experimental Validation) Sandia Air Brayton Cycle Test Facility
  • 57. 57 HiEff /sCO2 Combined Cycle (Experimental Validation) He Tank Simulation
  • 58. 58 HiEff ModTM Combined Cycle Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 59. 59 HiEff/ SC-FGR Cycle (SC-FGR Cycle, SAND2011-2525)
  • 60. 60 HiEff/ SC-FGR Cycle (SC-FGR Cycle, SAND2011-2525) Conversion to combined Cycle by replacing recuperators with heat exchange to bottom cycle ?? CO2
  • 61. 61 HiEff ModTM Gas Turbine/VHTR/Steam Power Generation System Outline » Introduction - Simpkin HiEff ModTM Hi Efficiency Utility Rescue Concept » NPSS Simulation Model » HiEff/Rankine Combined Cycle » Cycle Design & Performance Analysis » Helium Compressor Model » Indirect Helium/Argon Cycle » Experimental Validation » HiEff/sCO2 Combined Cycle » Cycle Design & Performance Analysis » Experimental Validation » HiEff/SC-FGR Cycle » Path to Commercialization » Appendix - NPSS Code
  • 62. 62 HiEff ModTM Power Generation System (Path to Commercialization) Technical issues • Direct (helium) vs indirect (helium, helium/argon mixtures) cycle • Lower capital investment (indirect - fewer turbomachinery stages) vs. lower operational cost (direct - higher efficiency) • Further numerical studies • Development of helium and helium/argon turbomachinery maps • Reactor simulation (INL Moose, SNL MELCOR) • sCO2 simulation (SNL Fuego) • Additional cycle design optimization • Part-load performance • Transients; load following, start-up, emergency shutdown, ? • Experimental validation (concept validation, code refinement) • Small-scale prototype experiment • SNL Air Brayton CBC test loop • Tsinghua (proof of concept) ? Path to commercialization • ??