SlideShare a Scribd company logo
1 of 43
In Vitro Plant Breeding
In vitro Culture
The culture and maintenance of plant cells and organs
under artificial conditions in tubes, glasses plastics
The culture of plant seeds, organs, tissues, cells, or
protoplasts under a controlled and artificial environment ,
usually applying plastic or glass vessels, aseptic techniques and
defined growth media
The growth and development of plant seeds, organs,
tissues, cells or protoplasts under a controlled and artificial
environment , usually applying plastic or glass vessels, aseptic
techniques (axenic) conditions) and defined growth media
1. Environmental condition optimized (nutrition, light,
temperature).
2. Ability to give rise to callus, embryos, adventitious
roots and shoots.
3. Ability to grow as single cells (protoplasts,
microspores, suspension cultures).
4. Plant cells are totipotent, able to regenerate a whole
plant.
Characteristic of plant
In vitro Culture
Three fundamental abilities of plants
Totipotency
The potential or inherent capacity of a plant cell to develop into
an entire plant if suitably stimulated.
It implies that all the information necessary for growth and
reproduction of the organism is contained in the cell
Dedifferentiation
Capacity of mature cells to return to meristematic condition and
development of a new growing point, follow by redifferentiation
which is the ability to reorganize into new organ
Competency
The endogenous potential of a given cells or tissue to develop in a
particular way
Important Factors
• Growth Media
– Minerals, growth factors, carbon source, hormones
• Environmental Factors
– Light, temperature, photoperiod, sterility, growth media
• Explant Source
– Usually, the younger, less differentiated explant, the better
for tissue culture
– Different species show differences in amenability to tissue
culture
– In many cases, different genotypes within a species will have
variable responses to tissue culture; response to somatic
embryogenesis has been transferred between melon cultivars
through sexual hybridization
Basis for plant in vitro Culture
• Two hormones affect plant differentiation:
– Auxin: Stimulates root development
– Cytokinin: Stimulates shoot development
• Generally, the ratio of these two hormones can
determine plant development:
↑ Auxin ↓Cytokinin = Root development
↑ Cytokinin ↓Auxin = Shoot development
– Auxin = Cytokinin = Callus development
Hormone Product Name Function in Plant Tissue Culture
Auxins Indole-3-Acetic Acid
Indole-3-Butyric Acid
Indole-3-Butyric Acid, Potassium Salt
Îą-Naphthaleneacetic Acid
2,4-Dichlorophenoxyacetic Acid
p-Chlorophenoxyacetic acid
Picloram
Dicamba
Adventitous root formation (high concen)
Adventitious shoot formation (low concen)
Induction of somatic embryos
Cell Division
Callus formation and growth
Inhibition of axillary buds
Inhibition of root elongation
Cytokinins 6-Benzylaminopurine
6-Îł,Îł-Dimethylallylaminopurine (2iP)
Kinetin
Thidiazuron (TDZ)
N-(2-chloro-4-pyridyl)-N’Phenylurea
Zeatin
Zeatin Riboside
Adventitious shoot formation
Inhibition of root formation
Promotes cell division
Modulates callus initiation and growth
Stimulation of axillary’s bud breaking and growth
Inhibition of shoot elongation
Inhibition of leaf senescence
Gibberellins Gibberellic Acid Stimulates shoot elongation
Release seeds, embryos, and apical buds from dormancy
Inhibits adventitious root formation
Paclobutrazol and ancymidol inhibit gibberellin synthesis thus
resulting in shorter shoots, and promoting tuber, corm, and bulb
formation.
Abscisic Acid Abscisic Acid Stimulates bulb and tuber formation
Stimulates the maturation of embryos
Promotes the start of dormancy
Polyamines Putrescine
Spermidine
Promotes adventitious root formation
Promotes somatic embryogenesis
Promotes shoot formation
Control of in vitro culture
Cytokinin
Auxin
Leaf strip
Adventitious
Shoot
Root
Callus
Stem Explant: Scrophularia sp
Types of In vitro culture
(explant based)
 Culture of intact plants (seed and seedling culture)
 Embryo culture (immature embryo culture)
 Organ culture
 Callus culture
 Cell suspension culture
 Protoplast culture
Seed culture
Growing seed aseptically in vitro on artificial media
Increasing efficiency of germination of seeds that are
difficult to germinate in vivo
Precocious germination by application of plant growth
regulators
Production of clean seedlings for explants or meristem
culture
Embryo culture
 Growing embryo aseptically in vitro on artificial nutrient media
 It is developed from the need to rescue embryos (embryo rescue)
from wide crosses where fertilization occurred, but embryo
development did not occur
 It has been further developed for the production of plants from
embryos developed by non-sexual methods (haploid production
discussed later)
 Overcoming embryo abortion due to incompatibility barriers
 Overcoming seed dormancy and self-sterility of seeds
 Shortening of breeding cycle
Organ culture
Any plant organ can serve as an explant to initiate
cultures
No. Organ Culture types
1. Shoot Shoot tip culture
2. Root Root culture
3. Leaf Leaf culture
4. Flower Anther/ovary culture
Shoot apical meristem culture
 Production of virus free
germplasm
 Mass production of
desirable genotypes
 Facilitation of exchange
between locations
(production of clean
material)
 Cryopreservation (cold
storage) or in vitro
conservation of
germplasm
Root organ culture
Ovary or ovule culture
Production of haploid plants
A common explant for the initiation of somatic
embryogenic cultures
Overcoming abortion of embryos of wide hybrids at
very early stages of development due to incompatibility
barriers
In vitro fertilization for the production of distant hybrids
avoiding style and stigmatic incompatibility that inhibits
pollen germination and pollen tube growth
Anther and microspore culture
Production of haploid plants
Production of homozygous diploid lines
through chromosome doubling, thus reducing
the time required to produce inbred lines
Uncovering mutations or recessive phenotypes
Callus Culture
Callus:
An un-organised mass of cells
A tissue that develops in response to injury caused by physical or
chemical means
Most cells of which are differentiated although may be and are
often highly unorganized within the tissue
Cell suspension culture
When callus pieces are
agitated in a liquid
medium, they tend to
break up.
Suspensions are much
easier to bulk up than
callus since there is no
manual transfer or solid
support.
Protoplast culture
The isolation and culture of plant protoplasts in vitro
Protoplast
The living material of a plant or bacterial cell, including the
protoplasm and plasma membrane after the cell wall has been
removed.
Plant Regeneration Pathways
 Existing Meristems (Microcutting)
Uses meristematic cells to regenerate whole plant.
 Organogenesis
Relies on the production of organs either directly from an
explant or callus structure
 Somatic Embryogenesis
Embryo-like structures which can develop into whole plants in a
way that is similar to zygotic embryos are formed from somatic
cells
(Source:Victor. et al., 2004)
Microcutting propagation
The production of shoots from pre-existing meristems only.
Organogenesis
• The ability of non-
meristematic plant tissues to
form various organs de novo.
• The formation of
adventitious organs
• The production of roots,
shoots or leaves
• These organs may arise out
of pre-existing meristems or
out of differentiated cells
• This may involve a callus
intermediate but often occurs
without callus.
Indirect organogenesis
Explant
Callus
Meristemoid
Primordium
Direct Organogenesis
Direct shoot/root formation from the explant
Somatic Embryogenesis
• The formation of
adventitious embryos
• The production of
embryos from somatic or
“non-germ” cells.
• It usually involves a callus
intermediate stage which
can result in variation
among seedlings
Types of embryogenic cells
• Pre-embryogenic determined cells, PEDCs
– The cells are committed to embryonic development and need
only to be released. Such cells are found in embryonic tissue.
• Induced embryogenic determined cells, IEDCs
– In majority of cases embryogenesis is through indirect method.
– Specific growth regulator concentrations and/or cultural
conditions are required for initiation of callus and then
redetermination of these cells into the embryogenic pattern of
development.
Various terms for non-
zygotic embryos
 Adventious embryos
Somatic embryos arising directly from other organs or
embryos.
 Parthenogenetic embryos (apomixis)
Somatic embryos are formed by the unfertilized egg.
 Androgenetic embryos
Somatic embryos are formed by the male gametophyte.
Somatic Embryogenesis and
Organogenesis
• Both of these technologies can be used as
methods of micropropagation.
• It is not always desirable because they may not
always result in populations of identical plants.
• The most beneficial use of somatic
embryogenesis and organogenesis is in the
production of whole plants from a single cell (or
a few cells).
Somatic embryogenesis differs
from organogenesis
• Bipolar structure with a closed radicular end rather
than a monopolar structure.
• The embryo arises from a single cell and has no
vascular connection with the mother tissue.
Two routes to somatic
embryogenesis
(Sharp et al., 1980)
• Direct embryogenesis
– Embryos initiate directly from explant in the absence
of callus formation.
• Indirect embryogenesis
– Callus from explant takes place from which embryos
are developed.
Direct somatic embryogenesis
Direct embryo formation from an explant
Indirect Somatic Embryogenesis
Explant → Callus Embryogenic → Maturation → Germination
1. Calus induction
2. Callus embryogenic development
3. Multiplication
4. Maturation
5. Germination
Somatic embryogenesis as a
means of propagation is
seldom used
High probability of mutations
The method is usually rather difficult.
Losing regenerative capacity become greater with
repeated subculture
Induction of embryogenesis is very difficult with many
plant species.
A deep dormancy often occurs with somatic
embryogenesis
Peanut somatic embryogenesis
Induction
• Auxins required for induction
–Proembryogenic masses form
–2,4-D most used
–NAA, dicamba also used
Development
Auxin must be removed for embryo development
Continued use of auxin inhibits embryogenesis
Stages are similar to those of zygotic embryogenesis
– Globular
– Heart
– Torpedo
– Cotyledonary
– Germination (conversion)
Maturation
• Require complete maturation with apical
meristem, radicle, and cotyledons
• Often obtain repetitive embryony
• Storage protein production necessary
• Often require ABA for complete maturation
• ABA often required for normal embryo
morphology
– Fasciation
– Precocious germination
Germination
• May only obtain 3-5% germination
• Sucrose (10%), mannitol (4%) may be required
• Drying (desiccation)
– ABA levels decrease
– Woody plants
– Final moisture content 10-40%
• Chilling
– Decreases ABA levels
– Woody plants
Steps of Micropropagation
• Stage 0 – Selection & preparation of the mother plant
– sterilization of the plant tissue takes place
• Stage I  - Initiation of culture
– explant placed into growth media
• Stage II - Multiplication
– explant transferred to shoot media; shoots can be constantly
divided
• Stage III - Rooting
– explant transferred to root media
• Stage IV - Transfer to soil
– explant returned to soil; hardened off

More Related Content

What's hot

Organo genesis, Embryo genesis, Synthetic seeds
Organo genesis, Embryo genesis, Synthetic seedsOrgano genesis, Embryo genesis, Synthetic seeds
Organo genesis, Embryo genesis, Synthetic seedsAbhinava J V
 
Marker Assisted production of doubled haploid plants - A boon for feeding the...
Marker Assisted production of doubled haploid plants - A boon for feeding the...Marker Assisted production of doubled haploid plants - A boon for feeding the...
Marker Assisted production of doubled haploid plants - A boon for feeding the...Ragavendran Abbai
 
Introduction to basic biotechnology part b
Introduction to basic biotechnology  part bIntroduction to basic biotechnology  part b
Introduction to basic biotechnology part bHORTIPEDIA INDIA
 
Somatic embryogenesis and artificial seed production
Somatic embryogenesis and artificial seed productionSomatic embryogenesis and artificial seed production
Somatic embryogenesis and artificial seed productionArvind Yadav
 
Micropropagation in fruit crops
Micropropagation in fruit cropsMicropropagation in fruit crops
Micropropagation in fruit cropsRajesh Pati
 
Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...
Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...
Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...A Biodiction : A Unit of Dr. Divya Sharma
 
Embryogenesis ; 27 march 15
Embryogenesis ; 27 march 15Embryogenesis ; 27 march 15
Embryogenesis ; 27 march 15avinash sharma
 
Somatic hybridization
Somatic hybridizationSomatic hybridization
Somatic hybridizationDev Hingra
 
somatic emryogenesis and synthetic seed production
somatic emryogenesis and synthetic seed productionsomatic emryogenesis and synthetic seed production
somatic emryogenesis and synthetic seed productionsaurav saha
 
Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...
Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...
Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...Pawan Nagar
 
Callus Induction and Shoot Regeneration in VIGNA RADIATA
Callus Induction and Shoot Regeneration in VIGNA RADIATACallus Induction and Shoot Regeneration in VIGNA RADIATA
Callus Induction and Shoot Regeneration in VIGNA RADIATAijsrd.com
 
Applications of-plant-tissue-culture
Applications of-plant-tissue-cultureApplications of-plant-tissue-culture
Applications of-plant-tissue-cultureDr. Harish Kakrani
 
Organogenesis & somatic hybridrization
Organogenesis & somatic hybridrizationOrganogenesis & somatic hybridrization
Organogenesis & somatic hybridrizationneha_ag
 
different culture in plant tissue culture
different culture in plant tissue culturedifferent culture in plant tissue culture
different culture in plant tissue cultureSingana Bhargavi
 
Micropropagation and transformation
Micropropagation and transformationMicropropagation and transformation
Micropropagation and transformationMohamed Abu Salah
 
EMBRYO CULTURE AND EMBRYO RESCUE
EMBRYO CULTURE AND EMBRYO RESCUEEMBRYO CULTURE AND EMBRYO RESCUE
EMBRYO CULTURE AND EMBRYO RESCUEMariya Raju
 

What's hot (20)

Haploid production
Haploid productionHaploid production
Haploid production
 
Plant regeneration and somaclonal variations
Plant regeneration and somaclonal variationsPlant regeneration and somaclonal variations
Plant regeneration and somaclonal variations
 
Organo genesis, Embryo genesis, Synthetic seeds
Organo genesis, Embryo genesis, Synthetic seedsOrgano genesis, Embryo genesis, Synthetic seeds
Organo genesis, Embryo genesis, Synthetic seeds
 
Marker Assisted production of doubled haploid plants - A boon for feeding the...
Marker Assisted production of doubled haploid plants - A boon for feeding the...Marker Assisted production of doubled haploid plants - A boon for feeding the...
Marker Assisted production of doubled haploid plants - A boon for feeding the...
 
Introduction to basic biotechnology part b
Introduction to basic biotechnology  part bIntroduction to basic biotechnology  part b
Introduction to basic biotechnology part b
 
Somatic embryogenesis and artificial seed production
Somatic embryogenesis and artificial seed productionSomatic embryogenesis and artificial seed production
Somatic embryogenesis and artificial seed production
 
Micropropagation in fruit crops
Micropropagation in fruit cropsMicropropagation in fruit crops
Micropropagation in fruit crops
 
Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...
Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...
Clonal Propagation: Introduction, Techniques, Factors, Applications and Disad...
 
Embryogenesis ; 27 march 15
Embryogenesis ; 27 march 15Embryogenesis ; 27 march 15
Embryogenesis ; 27 march 15
 
Somatic hybridization
Somatic hybridizationSomatic hybridization
Somatic hybridization
 
somatic emryogenesis and synthetic seed production
somatic emryogenesis and synthetic seed productionsomatic emryogenesis and synthetic seed production
somatic emryogenesis and synthetic seed production
 
Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...
Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...
Direct organogenesis, embryogenesis, micro grafting, meristem culture and its...
 
Callus Induction and Shoot Regeneration in VIGNA RADIATA
Callus Induction and Shoot Regeneration in VIGNA RADIATACallus Induction and Shoot Regeneration in VIGNA RADIATA
Callus Induction and Shoot Regeneration in VIGNA RADIATA
 
Applications of-plant-tissue-culture
Applications of-plant-tissue-cultureApplications of-plant-tissue-culture
Applications of-plant-tissue-culture
 
Zygotic Embryo culture
Zygotic Embryo cultureZygotic Embryo culture
Zygotic Embryo culture
 
Organogenesis & somatic hybridrization
Organogenesis & somatic hybridrizationOrganogenesis & somatic hybridrization
Organogenesis & somatic hybridrization
 
different culture in plant tissue culture
different culture in plant tissue culturedifferent culture in plant tissue culture
different culture in plant tissue culture
 
Artificial seed
Artificial seedArtificial seed
Artificial seed
 
Micropropagation and transformation
Micropropagation and transformationMicropropagation and transformation
Micropropagation and transformation
 
EMBRYO CULTURE AND EMBRYO RESCUE
EMBRYO CULTURE AND EMBRYO RESCUEEMBRYO CULTURE AND EMBRYO RESCUE
EMBRYO CULTURE AND EMBRYO RESCUE
 

Similar to 2011plntbiotech

2011 plant tissue culture using totipotancy
2011 plant tissue culture using totipotancy2011 plant tissue culture using totipotancy
2011 plant tissue culture using totipotancyDr. Manish Kapoor
 
micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.YoGeshSharma834784
 
MEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptxMEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptxPrithivirajan Senthilkumar
 
Plant tissue culture (1)
Plant tissue culture (1)Plant tissue culture (1)
Plant tissue culture (1)Hamza Khan
 
micropropagation.ppt
micropropagation.pptmicropropagation.ppt
micropropagation.pptJahanviSaini5
 
Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891Rajesh Kumar
 
Techniques of in vitro culture
Techniques of in vitro cultureTechniques of in vitro culture
Techniques of in vitro cultureSharayu Deshmukh
 
Micro-propagation.pdf
Micro-propagation.pdfMicro-propagation.pdf
Micro-propagation.pdfShweta Tiwari
 
Tissue culture terminology.pptx
Tissue culture terminology.pptxTissue culture terminology.pptx
Tissue culture terminology.pptxvaishaliarora56
 
Tissue culture 1 (2017-2018)
Tissue culture 1 (2017-2018)Tissue culture 1 (2017-2018)
Tissue culture 1 (2017-2018)Ahmed Metwaly
 
Ubaid afzal (11)
Ubaid afzal (11)Ubaid afzal (11)
Ubaid afzal (11)ubaid afzal
 
Plant bio 1 introduction to cell tissue culture
Plant bio 1 introduction to cell tissue culturePlant bio 1 introduction to cell tissue culture
Plant bio 1 introduction to cell tissue cultureDr. Preeti Pal
 
plant tissue culture technique and importance
plant tissue culture technique and importanceplant tissue culture technique and importance
plant tissue culture technique and importanceYoGeshSharma834784
 
micropropagation in plant biotechnology.pptx
micropropagation in plant biotechnology.pptxmicropropagation in plant biotechnology.pptx
micropropagation in plant biotechnology.pptxSanghamitraMohapatra5
 
Cell and tissue culture
Cell and tissue cultureCell and tissue culture
Cell and tissue cultureMuhammadMukheed1
 

Similar to 2011plntbiotech (20)

4638063.ppt
4638063.ppt4638063.ppt
4638063.ppt
 
2011 plant tissue culture using totipotancy
2011 plant tissue culture using totipotancy2011 plant tissue culture using totipotancy
2011 plant tissue culture using totipotancy
 
micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.
 
MEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptxMEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptx
MEDICINAL PLANT BIOTECHNOLOGY UNIT 2, MPG, SEM 2.pptx
 
Plant tissue culture (1)
Plant tissue culture (1)Plant tissue culture (1)
Plant tissue culture (1)
 
micropropagation.ppt
micropropagation.pptmicropropagation.ppt
micropropagation.ppt
 
Tissue culture
Tissue culture  Tissue culture
Tissue culture
 
Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891
 
Techniques of in vitro culture
Techniques of in vitro cultureTechniques of in vitro culture
Techniques of in vitro culture
 
Micro-propagation.pdf
Micro-propagation.pdfMicro-propagation.pdf
Micro-propagation.pdf
 
Tissue culture terminology.pptx
Tissue culture terminology.pptxTissue culture terminology.pptx
Tissue culture terminology.pptx
 
Tissue culture 1 (2017-2018)
Tissue culture 1 (2017-2018)Tissue culture 1 (2017-2018)
Tissue culture 1 (2017-2018)
 
Plant Tissue Culture - Organogenesis
Plant Tissue Culture - Organogenesis Plant Tissue Culture - Organogenesis
Plant Tissue Culture - Organogenesis
 
Ubaid afzal (11)
Ubaid afzal (11)Ubaid afzal (11)
Ubaid afzal (11)
 
Plant bio 1 introduction to cell tissue culture
Plant bio 1 introduction to cell tissue culturePlant bio 1 introduction to cell tissue culture
Plant bio 1 introduction to cell tissue culture
 
plant tissue culture technique and importance
plant tissue culture technique and importanceplant tissue culture technique and importance
plant tissue culture technique and importance
 
Plant Tissue Culture: Somatic Embryogenesis
Plant Tissue Culture: Somatic EmbryogenesisPlant Tissue Culture: Somatic Embryogenesis
Plant Tissue Culture: Somatic Embryogenesis
 
micropropagation in plant biotechnology.pptx
micropropagation in plant biotechnology.pptxmicropropagation in plant biotechnology.pptx
micropropagation in plant biotechnology.pptx
 
Plant tissue culture
Plant tissue culturePlant tissue culture
Plant tissue culture
 
Cell and tissue culture
Cell and tissue cultureCell and tissue culture
Cell and tissue culture
 

More from Andrew Hutabarat

Format laporan acara 1
Format laporan acara 1Format laporan acara 1
Format laporan acara 1Andrew Hutabarat
 
Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman
Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada TanamanKonsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman
Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada TanamanAndrew Hutabarat
 
Contoh proposal penelitian ilmiah
Contoh proposal penelitian ilmiahContoh proposal penelitian ilmiah
Contoh proposal penelitian ilmiahAndrew Hutabarat
 
Kuliah fisiologi lingkungan 2014 ind 1
Kuliah fisiologi lingkungan 2014 ind 1Kuliah fisiologi lingkungan 2014 ind 1
Kuliah fisiologi lingkungan 2014 ind 1Andrew Hutabarat
 
Kuliah fisiologi lingkungan 2014 ind
Kuliah fisiologi lingkungan 2014 indKuliah fisiologi lingkungan 2014 ind
Kuliah fisiologi lingkungan 2014 indAndrew Hutabarat
 
The biodiversity budiastuti 2014
The biodiversity budiastuti 2014The biodiversity budiastuti 2014
The biodiversity budiastuti 2014Andrew Hutabarat
 
Site dan mode of action
Site dan mode of actionSite dan mode of action
Site dan mode of actionAndrew Hutabarat
 
Kuliang fisiologi lingkungan ing 2014 2 1
Kuliang fisiologi lingkungan ing 2014 2 1Kuliang fisiologi lingkungan ing 2014 2 1
Kuliang fisiologi lingkungan ing 2014 2 1Andrew Hutabarat
 
Kuliang fisiologi lingkungan ing 2014 2
Kuliang fisiologi lingkungan ing 2014 2Kuliang fisiologi lingkungan ing 2014 2
Kuliang fisiologi lingkungan ing 2014 2Andrew Hutabarat
 
The biodiversity ho 2015
The biodiversity ho 2015The biodiversity ho 2015
The biodiversity ho 2015Andrew Hutabarat
 

More from Andrew Hutabarat (20)

Jabs 0910 213
Jabs 0910 213Jabs 0910 213
Jabs 0910 213
 
Format proposal 2
Format proposal 2Format proposal 2
Format proposal 2
 
Format laporan acara 1
Format laporan acara 1Format laporan acara 1
Format laporan acara 1
 
Sistem Komputer
Sistem KomputerSistem Komputer
Sistem Komputer
 
Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman
Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada TanamanKonsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman
Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman
 
Contoh proposal penelitian ilmiah
Contoh proposal penelitian ilmiahContoh proposal penelitian ilmiah
Contoh proposal penelitian ilmiah
 
Kuliah fisiologi lingkungan 2014 ind 1
Kuliah fisiologi lingkungan 2014 ind 1Kuliah fisiologi lingkungan 2014 ind 1
Kuliah fisiologi lingkungan 2014 ind 1
 
Kuliah fisiologi lingkungan 2014 ind
Kuliah fisiologi lingkungan 2014 indKuliah fisiologi lingkungan 2014 ind
Kuliah fisiologi lingkungan 2014 ind
 
Integrated weed
Integrated weedIntegrated weed
Integrated weed
 
Ekotan 15
Ekotan 15Ekotan 15
Ekotan 15
 
The biodiversity budiastuti 2014
The biodiversity budiastuti 2014The biodiversity budiastuti 2014
The biodiversity budiastuti 2014
 
Site dan mode of action
Site dan mode of actionSite dan mode of action
Site dan mode of action
 
Seed bank
Seed bankSeed bank
Seed bank
 
Managemen gulma
Managemen gulmaManagemen gulma
Managemen gulma
 
Kuliang fisiologi lingkungan ing 2014 2 1
Kuliang fisiologi lingkungan ing 2014 2 1Kuliang fisiologi lingkungan ing 2014 2 1
Kuliang fisiologi lingkungan ing 2014 2 1
 
I gulma l2
I gulma l2I gulma l2
I gulma l2
 
Ecologi gulma
Ecologi gulmaEcologi gulma
Ecologi gulma
 
Kuliang fisiologi lingkungan ing 2014 2
Kuliang fisiologi lingkungan ing 2014 2Kuliang fisiologi lingkungan ing 2014 2
Kuliang fisiologi lingkungan ing 2014 2
 
Ekotanjut1
Ekotanjut1Ekotanjut1
Ekotanjut1
 
The biodiversity ho 2015
The biodiversity ho 2015The biodiversity ho 2015
The biodiversity ho 2015
 

Recently uploaded

ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 

Recently uploaded (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 

2011plntbiotech

  • 1. In Vitro Plant Breeding
  • 2. In vitro Culture The culture and maintenance of plant cells and organs under artificial conditions in tubes, glasses plastics The culture of plant seeds, organs, tissues, cells, or protoplasts under a controlled and artificial environment , usually applying plastic or glass vessels, aseptic techniques and defined growth media The growth and development of plant seeds, organs, tissues, cells or protoplasts under a controlled and artificial environment , usually applying plastic or glass vessels, aseptic techniques (axenic) conditions) and defined growth media
  • 3. 1. Environmental condition optimized (nutrition, light, temperature). 2. Ability to give rise to callus, embryos, adventitious roots and shoots. 3. Ability to grow as single cells (protoplasts, microspores, suspension cultures). 4. Plant cells are totipotent, able to regenerate a whole plant. Characteristic of plant In vitro Culture
  • 4. Three fundamental abilities of plants Totipotency The potential or inherent capacity of a plant cell to develop into an entire plant if suitably stimulated. It implies that all the information necessary for growth and reproduction of the organism is contained in the cell Dedifferentiation Capacity of mature cells to return to meristematic condition and development of a new growing point, follow by redifferentiation which is the ability to reorganize into new organ Competency The endogenous potential of a given cells or tissue to develop in a particular way
  • 5.
  • 6. Important Factors • Growth Media – Minerals, growth factors, carbon source, hormones • Environmental Factors – Light, temperature, photoperiod, sterility, growth media • Explant Source – Usually, the younger, less differentiated explant, the better for tissue culture – Different species show differences in amenability to tissue culture – In many cases, different genotypes within a species will have variable responses to tissue culture; response to somatic embryogenesis has been transferred between melon cultivars through sexual hybridization
  • 7. Basis for plant in vitro Culture • Two hormones affect plant differentiation: – Auxin: Stimulates root development – Cytokinin: Stimulates shoot development • Generally, the ratio of these two hormones can determine plant development: ↑ Auxin ↓Cytokinin = Root development ↑ Cytokinin ↓Auxin = Shoot development – Auxin = Cytokinin = Callus development
  • 8. Hormone Product Name Function in Plant Tissue Culture Auxins Indole-3-Acetic Acid Indole-3-Butyric Acid Indole-3-Butyric Acid, Potassium Salt Îą-Naphthaleneacetic Acid 2,4-Dichlorophenoxyacetic Acid p-Chlorophenoxyacetic acid Picloram Dicamba Adventitous root formation (high concen) Adventitious shoot formation (low concen) Induction of somatic embryos Cell Division Callus formation and growth Inhibition of axillary buds Inhibition of root elongation Cytokinins 6-Benzylaminopurine 6-Îł,Îł-Dimethylallylaminopurine (2iP) Kinetin Thidiazuron (TDZ) N-(2-chloro-4-pyridyl)-N’Phenylurea Zeatin Zeatin Riboside Adventitious shoot formation Inhibition of root formation Promotes cell division Modulates callus initiation and growth Stimulation of axillary’s bud breaking and growth Inhibition of shoot elongation Inhibition of leaf senescence Gibberellins Gibberellic Acid Stimulates shoot elongation Release seeds, embryos, and apical buds from dormancy Inhibits adventitious root formation Paclobutrazol and ancymidol inhibit gibberellin synthesis thus resulting in shorter shoots, and promoting tuber, corm, and bulb formation. Abscisic Acid Abscisic Acid Stimulates bulb and tuber formation Stimulates the maturation of embryos Promotes the start of dormancy Polyamines Putrescine Spermidine Promotes adventitious root formation Promotes somatic embryogenesis Promotes shoot formation
  • 9. Control of in vitro culture Cytokinin Auxin Leaf strip Adventitious Shoot Root Callus
  • 11. Types of In vitro culture (explant based)  Culture of intact plants (seed and seedling culture)  Embryo culture (immature embryo culture)  Organ culture  Callus culture  Cell suspension culture  Protoplast culture
  • 12. Seed culture Growing seed aseptically in vitro on artificial media Increasing efficiency of germination of seeds that are difficult to germinate in vivo Precocious germination by application of plant growth regulators Production of clean seedlings for explants or meristem culture
  • 13. Embryo culture  Growing embryo aseptically in vitro on artificial nutrient media  It is developed from the need to rescue embryos (embryo rescue) from wide crosses where fertilization occurred, but embryo development did not occur  It has been further developed for the production of plants from embryos developed by non-sexual methods (haploid production discussed later)  Overcoming embryo abortion due to incompatibility barriers  Overcoming seed dormancy and self-sterility of seeds  Shortening of breeding cycle
  • 14. Organ culture Any plant organ can serve as an explant to initiate cultures No. Organ Culture types 1. Shoot Shoot tip culture 2. Root Root culture 3. Leaf Leaf culture 4. Flower Anther/ovary culture
  • 15. Shoot apical meristem culture  Production of virus free germplasm  Mass production of desirable genotypes  Facilitation of exchange between locations (production of clean material)  Cryopreservation (cold storage) or in vitro conservation of germplasm
  • 17. Ovary or ovule culture Production of haploid plants A common explant for the initiation of somatic embryogenic cultures Overcoming abortion of embryos of wide hybrids at very early stages of development due to incompatibility barriers In vitro fertilization for the production of distant hybrids avoiding style and stigmatic incompatibility that inhibits pollen germination and pollen tube growth
  • 18. Anther and microspore culture Production of haploid plants Production of homozygous diploid lines through chromosome doubling, thus reducing the time required to produce inbred lines Uncovering mutations or recessive phenotypes
  • 19. Callus Culture Callus: An un-organised mass of cells A tissue that develops in response to injury caused by physical or chemical means Most cells of which are differentiated although may be and are often highly unorganized within the tissue
  • 20. Cell suspension culture When callus pieces are agitated in a liquid medium, they tend to break up. Suspensions are much easier to bulk up than callus since there is no manual transfer or solid support.
  • 21. Protoplast culture The isolation and culture of plant protoplasts in vitro
  • 22. Protoplast The living material of a plant or bacterial cell, including the protoplasm and plasma membrane after the cell wall has been removed.
  • 23. Plant Regeneration Pathways  Existing Meristems (Microcutting) Uses meristematic cells to regenerate whole plant.  Organogenesis Relies on the production of organs either directly from an explant or callus structure  Somatic Embryogenesis Embryo-like structures which can develop into whole plants in a way that is similar to zygotic embryos are formed from somatic cells (Source:Victor. et al., 2004)
  • 24. Microcutting propagation The production of shoots from pre-existing meristems only.
  • 25. Organogenesis • The ability of non- meristematic plant tissues to form various organs de novo. • The formation of adventitious organs • The production of roots, shoots or leaves • These organs may arise out of pre-existing meristems or out of differentiated cells • This may involve a callus intermediate but often occurs without callus.
  • 26.
  • 28. Direct Organogenesis Direct shoot/root formation from the explant
  • 29. Somatic Embryogenesis • The formation of adventitious embryos • The production of embryos from somatic or “non-germ” cells. • It usually involves a callus intermediate stage which can result in variation among seedlings
  • 30. Types of embryogenic cells • Pre-embryogenic determined cells, PEDCs – The cells are committed to embryonic development and need only to be released. Such cells are found in embryonic tissue. • Induced embryogenic determined cells, IEDCs – In majority of cases embryogenesis is through indirect method. – Specific growth regulator concentrations and/or cultural conditions are required for initiation of callus and then redetermination of these cells into the embryogenic pattern of development.
  • 31. Various terms for non- zygotic embryos  Adventious embryos Somatic embryos arising directly from other organs or embryos.  Parthenogenetic embryos (apomixis) Somatic embryos are formed by the unfertilized egg.  Androgenetic embryos Somatic embryos are formed by the male gametophyte.
  • 32. Somatic Embryogenesis and Organogenesis • Both of these technologies can be used as methods of micropropagation. • It is not always desirable because they may not always result in populations of identical plants. • The most beneficial use of somatic embryogenesis and organogenesis is in the production of whole plants from a single cell (or a few cells).
  • 33. Somatic embryogenesis differs from organogenesis • Bipolar structure with a closed radicular end rather than a monopolar structure. • The embryo arises from a single cell and has no vascular connection with the mother tissue.
  • 34. Two routes to somatic embryogenesis (Sharp et al., 1980) • Direct embryogenesis – Embryos initiate directly from explant in the absence of callus formation. • Indirect embryogenesis – Callus from explant takes place from which embryos are developed.
  • 35. Direct somatic embryogenesis Direct embryo formation from an explant
  • 36. Indirect Somatic Embryogenesis Explant → Callus Embryogenic → Maturation → Germination 1. Calus induction 2. Callus embryogenic development 3. Multiplication 4. Maturation 5. Germination
  • 37. Somatic embryogenesis as a means of propagation is seldom used High probability of mutations The method is usually rather difficult. Losing regenerative capacity become greater with repeated subculture Induction of embryogenesis is very difficult with many plant species. A deep dormancy often occurs with somatic embryogenesis
  • 39. Induction • Auxins required for induction –Proembryogenic masses form –2,4-D most used –NAA, dicamba also used
  • 40. Development Auxin must be removed for embryo development Continued use of auxin inhibits embryogenesis Stages are similar to those of zygotic embryogenesis – Globular – Heart – Torpedo – Cotyledonary – Germination (conversion)
  • 41. Maturation • Require complete maturation with apical meristem, radicle, and cotyledons • Often obtain repetitive embryony • Storage protein production necessary • Often require ABA for complete maturation • ABA often required for normal embryo morphology – Fasciation – Precocious germination
  • 42. Germination • May only obtain 3-5% germination • Sucrose (10%), mannitol (4%) may be required • Drying (desiccation) – ABA levels decrease – Woody plants – Final moisture content 10-40% • Chilling – Decreases ABA levels – Woody plants
  • 43. Steps of Micropropagation • Stage 0 – Selection & preparation of the mother plant – sterilization of the plant tissue takes place • Stage I  - Initiation of culture – explant placed into growth media • Stage II - Multiplication – explant transferred to shoot media; shoots can be constantly divided • Stage III - Rooting – explant transferred to root media • Stage IV - Transfer to soil – explant returned to soil; hardened off

Editor's Notes

  1. Additional Points: Growth of plant cells outside of an intact plant A technique essential to many areas of plant science Culture of individual or groups of cells and whole organs contribute to the understanding of both fundamental and applied science Cultures can be sustained and maintained as a mass of undifferentiated cells for an extended period of time or regenerated into whole plants
  2. Emphasize the implications for genetic involvement: Could there be undesirable genes linked to genes influencing tissue culture response?