SlideShare a Scribd company logo
1 of 28
LIDAR
ALEX BERTINO
STEPHANIE HALBERT
CO-ADVISOR: RYAN BURKS
WHAT IS LIDAR?
β€’ LiDAR (Light Detection and
Ranging)
β€’ 𝐷 =
π‘βˆ—π‘‘
2
β€’ Micropulse system
β€’ Coherent
β€’ Eye safe
β€’ Pulsating laser
β€’ Cloud Point
VELODYNE MODEL HDL-64E
β€’ 64 channels
β€’ 26.9Β° FOV
β€’ Wavelength: 903 nm
β€’ 60W w/ 12 V – 32 V @ 4
amps
β€’ Single or Double return mode
β€’ Single: 1,300,000 pts/s
β€’ Double: 2,200,000 pts/s
β€’ Rotates @ 5 Hz – 20 Hz
β€’ 4 blocks with 16 lasers
β€’ Transmitter is the side circles
and receiver is center
β€’ 120 meter cars and foliage
(.80 reflective) and 50 meter
for pavement (.10 reflective)
β€’ 5 ns pulse
β€’ 8” Outer Diameter
β€’ Temp range: -10Β°C - +60Β°C
DERIVATION OF WAVE EQUATION
β€’ Maxwell’s Equations
β€’ Take curl of 𝛻 Γ— 𝐸 to get wave eqn
β€’ Euler’s Equation
β€’ Fourier Transform
β€’ Assume uncharged medium
(𝜌 = 0)
𝛻 Γ— 𝐡 = πœ‡πœŽπΈ + πœ‡πœ–
πœ•πΈ
πœ•π‘‘
𝛻 Γ— 𝛻 Γ— = 𝛻 𝛻 βˆ™ βˆ’ 𝛻2
𝛻 𝛻 βˆ™ 𝐸 = 𝛻 𝜌/πœ–π›» βˆ™ 𝐸 = 𝜌/πœ–
𝛻 𝜌/πœ– βˆ’ 𝛻2 𝐸 = βˆ’
πœ•
πœ•π‘‘
πœ‡πœŽπΈ + πœ‡πœ–
πœ•πΈ
πœ•π‘‘
0 βˆ’ 𝛻2 𝐸 = βˆ’πœ‡πœŽ
πœ•πΈ
πœ•π‘‘
βˆ’ πœ‡πœ–
πœ•2 𝐸
πœ•π‘‘2
𝑒 π‘–πœ”π‘‘
= cos(πœ”π‘‘) + 𝑖sin(πœ”π‘‘)
πœ•
πœ•π‘‘
𝑒 π‘–πœ”π‘‘
= π‘–πœ”π‘’ π‘–πœ”π‘‘
,
πœ•2
πœ•π‘‘2 𝑒 π‘–πœ”π‘‘
= βˆ’πœ”2
𝑒 π‘–πœ”π‘‘
𝛻2
𝐸 + πœ‡πœ–πœ”2
βˆ’ π‘–πœ‡πœŽπœ” 𝐸 = 0
𝛻 Γ— 𝐸 = βˆ’
πœ•π΅
πœ•π‘‘
𝛻 Γ— 𝛻 Γ— 𝐸 = βˆ’
πœ•
πœ•π‘‘
𝛻 Γ— 𝐡
FREQUENCY DOMAIN:
WAVE
ELECTROMAGNETIC
EQUATION
β€’ E: Electric Field
β€’ ΞΌ: Permittivity of Medium
β€’ πœ–: Permeability of Medium
β€’ Ο‰: Angular Wave Frequency
β€’ i: Imaginary Unit
DIFFICULTIES
WITH FINITE
ELEMENT
ANALYSIS
β€’ Resolution of Small
Frequencies (10 elements
per wavelength)
β€’ Computationally
Expensive (Especially 3D)
β€’ Boundary Interactions
β€’ Reflection
β€’ Refraction
β€’ Metallic Surfaces
β€’ Scattering
SIMULATION COMPROMISES
β€’ Lower Frequency Waves (30 MHZ)
β€’ Larger Laser Width (10 m)
β€’ 2D Simulation
β€’ Continuous Medium
EFFECTS STUDIED
β€’ Frequency ( 10 – 100 MHz )
β€’ Power ( 1 – 1016 W/m )
β€’ Relative Permeability ( 1 – 10 )
β€’ Relative Permittivity ( 1 – 10 )
β€’ 2 Sources spaced apart w/ one source being at angle towards
other
LIDAR SOURCE
BOUNDARY
CONDITION
β€’ Sinusoidally Varying
Frequency
β€’ Plane Wave
SCATTERING
BOUNDARY
CONDITION
β€’ Approximates Effects of Far
Field
β€’ Flux Boundary Condition
β€’ 1st Order Approximation
β€’ Valid for Contact Angles
Close to 90o
LASER INTENSITY -
GAUSSIAN
β€’ c: Speed of Light through Medium
β€’ πœ– o: Permittivity of Free Space
β€’ n: Material Refractive Index
β€’ Units of W/m2
β€’ Power Flux in the Direction of
Laser Propagation
β€’ Es = E: Electrical Field
β€’ r: Distance from the center of the
beam
β€’ Ο‰0: Radius where intensity has
decreased to 1/e (0.135) of its
WAVE PROPAGATION (TIME DOMAIN)
30 MHZ 100 MHZ
DEFAULT
RESULTS
β€’ Frequency: 30 MHz
β€’ Electric Field: 3.1 * 104
V/m
β€’ Distance: 100 m
EFFECT OF
FREQUENCY
β€’ 10 – 100 MHz
β€’ Laser Intensity Increases
at High Frequencies
β€’ Slowly Decaying Relative
Intensity
EFFECT OF
POWER
β€’ 1 – 1016 W/m
β€’ Linear Increase with
Power
β€’ Exponential Increase with
Electric Field
β€’ Rapidly Decaying Laser
Intensity
EFFECT OF
RELATIVE
PERMEABILITY
β€’ 1 – 10 (unitless)
β€’ Similar Results to
Increased Frequency
β€’ Shortened Lidar
Wavelength
β€’ Neglects Conductivity,
Non-Continuous Medium
EFFECT OF
RELATIVE
PERMITTIVITY
β€’ 1 – 10 (unitless)
β€’ Identical Results to
Permeability
INTENSITY
INCREASED FREQUENCY VS. INCREASED
POWER
FREQUENCY POWER
INTERFERENCE
β€’ Have 2 (or more) source
points
β€’ Separation between sources
>> Ξ»
β€’ Constructive vs. Destructive
β€’ Light waves
β€’ Can’t see but intensity can be
measured
DERIVATION OF INTENSITY FOR MULTI-
SOURCES
𝐸 = 𝐸0 cos 𝛼 + πœ”π‘‘ = 𝐸0 𝑒 𝑖(𝛼+πœ”π‘‘)
𝐸0
2
= (𝐸0 𝑒 𝑖𝛼)(𝐸0 𝑒 𝑖𝛼)
βˆ—
𝛼 = βˆ’ π‘₯π‘˜ + πœ€ = βˆ’(
2πœ‹π‘₯
Ξ»
π‘₯ + πœ€)
𝐼 = 𝐼3 + 𝐼2 + 𝐼12
𝐸0
2
=
𝑖=1
𝑁
𝐸0𝑖
2
+
𝑗>𝑖
𝑁
𝑖=1
𝑁
𝐸0𝑖 𝐸0𝑗
𝐸0
2
= 𝑁2 𝐸01
2
𝐼 = πœ–π‘£πΈ2
𝐼1 = 𝐸1
2
, 𝐼2 = 𝐸2
2
, 𝐼12 = (𝐸1 βˆ™ 𝐸2)2
𝐸0
2
=
𝑖=1
𝑁
𝐸0𝑖
2
+ 2
𝑖=1
𝑁
𝑗=1
𝑁
𝐸0𝑖 𝐸 π‘œπ‘— cos(𝛼𝑖 βˆ’ 𝛼𝑗)
β€’ Where E: electric field, I: intensity, Ξ±:
phase
d
x1
x2
L
π‘₯2 = π‘₯1 + 𝐿
𝑑 sin πœƒ = π‘šπΏ = π‘šβˆ†π‘₯
βˆ†π›Ό = π‘₯2 π‘˜ + πœ€ βˆ’ π‘₯1 π‘˜ + πœ€ = βˆ†π‘₯
2πœ‹
Ξ»
βˆ†π›Ό =
2πœ‹
Ξ»
𝑑 sin πœƒ
π‘š
𝐿 = π‘₯2 βˆ’ π‘₯1 = βˆ†π‘₯
ΞΈ
𝐸0
2
=
𝑖=1
𝑁
𝐸0𝑖
2
+ 2
𝑖=1
𝑁
𝑗=1
𝑁
𝐸0𝑖 𝐸 π‘œπ‘— cos(𝛼𝑖 βˆ’ 𝛼𝑗)
β€’ Young’s Two-Split Experiment
β€’ Finding the intensity @ any
point
O
LIGHT
INTERFERENCE
GEOMETRY
𝐼 = πœ–π‘£πΈ2
EFFECT OF ANGLE
β€’ Angle 18Β°- 48Β°
β€’ Assumptions:
monochromatic coherent
wave
β€’ Intensity decreases as
angle increases
CONCLUSION
β€’ Increasing Frequency Leads to a More Favorable Intensity
Distribution
β€’ Increased Permeability/Permittivity favorable in a Non-
Conducting, Continuous Medium
β€’ Increase of Intensity with a lower intersection Angle
FUTURE GOALS
β€’ Implement Beam Envelope/Ray Optics
β€’ Reflection/Refraction Across a Non-Continuous/Conducting
Medium
β€’ Larger Lidar Frequency
β€’ Smaller Beam Width
β€’ Beam Pulse and Response
REFERENCES
β€’ https://www.quora.com/How-does-LIDAR-work
β€’ https://autonomoustuff.com/wp-content/uploads/2018/04/63-
9194_Rev-G_HDL-64E_S3_Spec-Sheet_Web.pdf
β€’ http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser-
rangefinder-lidar-pseudo-disassembled
β€’ http://felix.rohrba.ch/en/2015/lidar-footprint-diameter/
β€’ http://velodynelidar.com/hdl-64e.html
β€’ https://en.wikipedia.org/wiki/Lidar
β€’ https://www.comsol.com/blogs/autonomous-vehicles-putting-
technology-in-the-drivers-seat/
β€’ https://en.wikipedia.org/wiki/Inhomogeneous_electromagnetic_wav
e_equation
β€’ https://www.comsol.com/blogs/modeling-metallic-objects-in-
wave-electromagnetics-problems/
β€’ https://em.geosci.xyz/content/maxwell1_fundamentals/frequency_
domain_equations.html
β€’ https://www.rp-photonics.com/optical_intensity.html
β€’ https://www.newport.com/n/gaussian-beam-optics
β€’ https://www.comsol.com/blogs/modeling-of-materials-in-wave-
electromagnetics-problems/
β€’ https://www.comsol.com/video/equation-based-modeling-custom-
simulations-comsol-multiphysics
β€’ https://www.comsol.com/blogs/using-perfectly-matched-layers-
and-scattering-boundary-conditions-for-wave-electromagnetics-
problems/
β€’ https://www.comsol.com/blogs/taking-care-of-fast-oscillations-
wave-optics-module/
β€’ https://www.comsol.com/blogs/guide-to-frequency-domain-wave-
electromagnetics-modeling/
β€’ https://www.comsol.com/blogs/introducing-ray-optics-module/
β€’ https://www.comsol.com/blogs/computational-electromagnetics-
modeling-which-module-to-use/
β€’ https://www.comsol.com/blogs/how-to-use-the-beam-envelopes-
method-for-wave-optics-simulations/
β€’ https://en.wikipedia.org/wiki/Leonhard_Euler#Mathematical_n
otation
β€’ https://en.wikipedia.org/wiki/Fourier_transform
β€’ https://www.rp-photonics.com/gaussian_beams.html
β€’ https://en.wikipedia.org/wiki/Wave_interference
β€’ http://www.physicsclassroom.com/class/light/Lesson-1/Two-
Point-Source-Interference
β€’ https://www.microscopyu.com/techniques/polarized-
light/principles-of-interference
β€’ Hecht, Eugene. Optics. 4th ed., Addison Wesley, 2002.
β€’ http://1.bp.blogspot.com/-
OLSZv2U7Mvs/T9ONFCHhD1I/AAAAAAAACSM

More Related Content

What's hot (15)

Rigid rotators
Rigid rotatorsRigid rotators
Rigid rotators
Β 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
Β 
Chapter 2 geometrical_optics_b
Chapter 2 geometrical_optics_bChapter 2 geometrical_optics_b
Chapter 2 geometrical_optics_b
Β 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
Β 
Anschp38
Anschp38Anschp38
Anschp38
Β 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
Β 
Section3revision
Section3revisionSection3revision
Section3revision
Β 
Anschp31
Anschp31Anschp31
Anschp31
Β 
NMR.pptx
NMR.pptxNMR.pptx
NMR.pptx
Β 
Learning objective
Learning objectiveLearning objective
Learning objective
Β 
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
 SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH... SUBJECT: PHYSICS - Chapter 6 : Superposition of waves  (CLASS XII - MAHARASH...
SUBJECT: PHYSICS - Chapter 6 : Superposition of waves (CLASS XII - MAHARASH...
Β 
Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen Atom
Β 
Topic 7 wave_interference_latest_update
Topic 7 wave_interference_latest_updateTopic 7 wave_interference_latest_update
Topic 7 wave_interference_latest_update
Β 
Nuclear overhauser effect
Nuclear overhauser effectNuclear overhauser effect
Nuclear overhauser effect
Β 
Rules for filling electrons in various orbitals
Rules for filling electrons in various orbitalsRules for filling electrons in various orbitals
Rules for filling electrons in various orbitals
Β 

Similar to Finite Element LIDAR Analysis for Self Driving Cars

Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptxPhysics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
AzzahDyahPramata2
Β 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
Clifford Stone
Β 

Similar to Finite Element LIDAR Analysis for Self Driving Cars (20)

Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
Β 
To detemine the wavelength of semiconductor laser
To detemine the wavelength of semiconductor laserTo detemine the wavelength of semiconductor laser
To detemine the wavelength of semiconductor laser
Β 
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptxPhysics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Physics 498 SQD -- Lecture 2 -- Defining properties FINAL dvh.pptx
Β 
Ec 2401 wireless communication unit 2
Ec 2401 wireless communication   unit 2Ec 2401 wireless communication   unit 2
Ec 2401 wireless communication unit 2
Β 
LDV
LDVLDV
LDV
Β 
X ray diffraction(xrd) principle and use
X ray diffraction(xrd) principle and useX ray diffraction(xrd) principle and use
X ray diffraction(xrd) principle and use
Β 
Microwaves Applications
Microwaves ApplicationsMicrowaves Applications
Microwaves Applications
Β 
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Β 
maxwells equation
 maxwells equation maxwells equation
maxwells equation
Β 
Unit22 maxwells equation
Unit22 maxwells equationUnit22 maxwells equation
Unit22 maxwells equation
Β 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing
Β 
Optical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdfOptical Devices-Lecture Notes.pdf
Optical Devices-Lecture Notes.pdf
Β 
Basics of radiation and production of x rays
Basics of radiation and production of x raysBasics of radiation and production of x rays
Basics of radiation and production of x rays
Β 
EC6602-Antenna fundamentals
EC6602-Antenna fundamentals EC6602-Antenna fundamentals
EC6602-Antenna fundamentals
Β 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
Β 
Mentes [m.tech. viva] (1)
Mentes [m.tech. viva] (1)Mentes [m.tech. viva] (1)
Mentes [m.tech. viva] (1)
Β 
4_2020_03_20!07_33_21_PM.ppt
4_2020_03_20!07_33_21_PM.ppt4_2020_03_20!07_33_21_PM.ppt
4_2020_03_20!07_33_21_PM.ppt
Β 
ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)
Β 
Ftir final presentation
Ftir final presentationFtir final presentation
Ftir final presentation
Β 
LASER (1) (1).pdf
LASER (1) (1).pdfLASER (1) (1).pdf
LASER (1) (1).pdf
Β 

Recently uploaded

SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
CHAIRMAN M
Β 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
Kira Dess
Β 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
rahulmanepalli02
Β 

Recently uploaded (20)

Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
Β 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Β 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
Β 
Independent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging StationIndependent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging Station
Β 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
Β 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
Β 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
Β 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
Β 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
Β 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
Β 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
Β 
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Β 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
Β 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
Β 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
Β 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
Β 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
Β 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
Β 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
Β 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
Β 

Finite Element LIDAR Analysis for Self Driving Cars

  • 2. WHAT IS LIDAR? β€’ LiDAR (Light Detection and Ranging) β€’ 𝐷 = π‘βˆ—π‘‘ 2 β€’ Micropulse system β€’ Coherent β€’ Eye safe β€’ Pulsating laser β€’ Cloud Point
  • 3. VELODYNE MODEL HDL-64E β€’ 64 channels β€’ 26.9Β° FOV β€’ Wavelength: 903 nm β€’ 60W w/ 12 V – 32 V @ 4 amps β€’ Single or Double return mode β€’ Single: 1,300,000 pts/s β€’ Double: 2,200,000 pts/s β€’ Rotates @ 5 Hz – 20 Hz β€’ 4 blocks with 16 lasers β€’ Transmitter is the side circles and receiver is center β€’ 120 meter cars and foliage (.80 reflective) and 50 meter for pavement (.10 reflective) β€’ 5 ns pulse β€’ 8” Outer Diameter β€’ Temp range: -10Β°C - +60Β°C
  • 4. DERIVATION OF WAVE EQUATION β€’ Maxwell’s Equations β€’ Take curl of 𝛻 Γ— 𝐸 to get wave eqn β€’ Euler’s Equation β€’ Fourier Transform β€’ Assume uncharged medium (𝜌 = 0) 𝛻 Γ— 𝐡 = πœ‡πœŽπΈ + πœ‡πœ– πœ•πΈ πœ•π‘‘ 𝛻 Γ— 𝛻 Γ— = 𝛻 𝛻 βˆ™ βˆ’ 𝛻2 𝛻 𝛻 βˆ™ 𝐸 = 𝛻 𝜌/πœ–π›» βˆ™ 𝐸 = 𝜌/πœ– 𝛻 𝜌/πœ– βˆ’ 𝛻2 𝐸 = βˆ’ πœ• πœ•π‘‘ πœ‡πœŽπΈ + πœ‡πœ– πœ•πΈ πœ•π‘‘ 0 βˆ’ 𝛻2 𝐸 = βˆ’πœ‡πœŽ πœ•πΈ πœ•π‘‘ βˆ’ πœ‡πœ– πœ•2 𝐸 πœ•π‘‘2 𝑒 π‘–πœ”π‘‘ = cos(πœ”π‘‘) + 𝑖sin(πœ”π‘‘) πœ• πœ•π‘‘ 𝑒 π‘–πœ”π‘‘ = π‘–πœ”π‘’ π‘–πœ”π‘‘ , πœ•2 πœ•π‘‘2 𝑒 π‘–πœ”π‘‘ = βˆ’πœ”2 𝑒 π‘–πœ”π‘‘ 𝛻2 𝐸 + πœ‡πœ–πœ”2 βˆ’ π‘–πœ‡πœŽπœ” 𝐸 = 0 𝛻 Γ— 𝐸 = βˆ’ πœ•π΅ πœ•π‘‘ 𝛻 Γ— 𝛻 Γ— 𝐸 = βˆ’ πœ• πœ•π‘‘ 𝛻 Γ— 𝐡
  • 5. FREQUENCY DOMAIN: WAVE ELECTROMAGNETIC EQUATION β€’ E: Electric Field β€’ ΞΌ: Permittivity of Medium β€’ πœ–: Permeability of Medium β€’ Ο‰: Angular Wave Frequency β€’ i: Imaginary Unit
  • 6. DIFFICULTIES WITH FINITE ELEMENT ANALYSIS β€’ Resolution of Small Frequencies (10 elements per wavelength) β€’ Computationally Expensive (Especially 3D) β€’ Boundary Interactions β€’ Reflection β€’ Refraction β€’ Metallic Surfaces β€’ Scattering
  • 7. SIMULATION COMPROMISES β€’ Lower Frequency Waves (30 MHZ) β€’ Larger Laser Width (10 m) β€’ 2D Simulation β€’ Continuous Medium
  • 8. EFFECTS STUDIED β€’ Frequency ( 10 – 100 MHz ) β€’ Power ( 1 – 1016 W/m ) β€’ Relative Permeability ( 1 – 10 ) β€’ Relative Permittivity ( 1 – 10 ) β€’ 2 Sources spaced apart w/ one source being at angle towards other
  • 9. LIDAR SOURCE BOUNDARY CONDITION β€’ Sinusoidally Varying Frequency β€’ Plane Wave
  • 10. SCATTERING BOUNDARY CONDITION β€’ Approximates Effects of Far Field β€’ Flux Boundary Condition β€’ 1st Order Approximation β€’ Valid for Contact Angles Close to 90o
  • 11. LASER INTENSITY - GAUSSIAN β€’ c: Speed of Light through Medium β€’ πœ– o: Permittivity of Free Space β€’ n: Material Refractive Index β€’ Units of W/m2 β€’ Power Flux in the Direction of Laser Propagation β€’ Es = E: Electrical Field β€’ r: Distance from the center of the beam β€’ Ο‰0: Radius where intensity has decreased to 1/e (0.135) of its
  • 12. WAVE PROPAGATION (TIME DOMAIN) 30 MHZ 100 MHZ
  • 13. DEFAULT RESULTS β€’ Frequency: 30 MHz β€’ Electric Field: 3.1 * 104 V/m β€’ Distance: 100 m
  • 14. EFFECT OF FREQUENCY β€’ 10 – 100 MHz β€’ Laser Intensity Increases at High Frequencies β€’ Slowly Decaying Relative Intensity
  • 15. EFFECT OF POWER β€’ 1 – 1016 W/m β€’ Linear Increase with Power β€’ Exponential Increase with Electric Field β€’ Rapidly Decaying Laser Intensity
  • 16. EFFECT OF RELATIVE PERMEABILITY β€’ 1 – 10 (unitless) β€’ Similar Results to Increased Frequency β€’ Shortened Lidar Wavelength β€’ Neglects Conductivity, Non-Continuous Medium
  • 17. EFFECT OF RELATIVE PERMITTIVITY β€’ 1 – 10 (unitless) β€’ Identical Results to Permeability
  • 18. INTENSITY INCREASED FREQUENCY VS. INCREASED POWER FREQUENCY POWER
  • 19. INTERFERENCE β€’ Have 2 (or more) source points β€’ Separation between sources >> Ξ» β€’ Constructive vs. Destructive β€’ Light waves β€’ Can’t see but intensity can be measured
  • 20. DERIVATION OF INTENSITY FOR MULTI- SOURCES 𝐸 = 𝐸0 cos 𝛼 + πœ”π‘‘ = 𝐸0 𝑒 𝑖(𝛼+πœ”π‘‘) 𝐸0 2 = (𝐸0 𝑒 𝑖𝛼)(𝐸0 𝑒 𝑖𝛼) βˆ— 𝛼 = βˆ’ π‘₯π‘˜ + πœ€ = βˆ’( 2πœ‹π‘₯ Ξ» π‘₯ + πœ€) 𝐼 = 𝐼3 + 𝐼2 + 𝐼12 𝐸0 2 = 𝑖=1 𝑁 𝐸0𝑖 2 + 𝑗>𝑖 𝑁 𝑖=1 𝑁 𝐸0𝑖 𝐸0𝑗 𝐸0 2 = 𝑁2 𝐸01 2 𝐼 = πœ–π‘£πΈ2 𝐼1 = 𝐸1 2 , 𝐼2 = 𝐸2 2 , 𝐼12 = (𝐸1 βˆ™ 𝐸2)2 𝐸0 2 = 𝑖=1 𝑁 𝐸0𝑖 2 + 2 𝑖=1 𝑁 𝑗=1 𝑁 𝐸0𝑖 𝐸 π‘œπ‘— cos(𝛼𝑖 βˆ’ 𝛼𝑗) β€’ Where E: electric field, I: intensity, Ξ±: phase
  • 21. d x1 x2 L π‘₯2 = π‘₯1 + 𝐿 𝑑 sin πœƒ = π‘šπΏ = π‘šβˆ†π‘₯ βˆ†π›Ό = π‘₯2 π‘˜ + πœ€ βˆ’ π‘₯1 π‘˜ + πœ€ = βˆ†π‘₯ 2πœ‹ Ξ» βˆ†π›Ό = 2πœ‹ Ξ» 𝑑 sin πœƒ π‘š 𝐿 = π‘₯2 βˆ’ π‘₯1 = βˆ†π‘₯ ΞΈ 𝐸0 2 = 𝑖=1 𝑁 𝐸0𝑖 2 + 2 𝑖=1 𝑁 𝑗=1 𝑁 𝐸0𝑖 𝐸 π‘œπ‘— cos(𝛼𝑖 βˆ’ 𝛼𝑗) β€’ Young’s Two-Split Experiment β€’ Finding the intensity @ any point O LIGHT INTERFERENCE GEOMETRY 𝐼 = πœ–π‘£πΈ2
  • 22. EFFECT OF ANGLE β€’ Angle 18Β°- 48Β° β€’ Assumptions: monochromatic coherent wave β€’ Intensity decreases as angle increases
  • 23. CONCLUSION β€’ Increasing Frequency Leads to a More Favorable Intensity Distribution β€’ Increased Permeability/Permittivity favorable in a Non- Conducting, Continuous Medium β€’ Increase of Intensity with a lower intersection Angle
  • 24. FUTURE GOALS β€’ Implement Beam Envelope/Ray Optics β€’ Reflection/Refraction Across a Non-Continuous/Conducting Medium β€’ Larger Lidar Frequency β€’ Smaller Beam Width β€’ Beam Pulse and Response
  • 25. REFERENCES β€’ https://www.quora.com/How-does-LIDAR-work β€’ https://autonomoustuff.com/wp-content/uploads/2018/04/63- 9194_Rev-G_HDL-64E_S3_Spec-Sheet_Web.pdf β€’ http://www.hizook.com/blog/2009/01/04/velodyne-hdl-64e-laser- rangefinder-lidar-pseudo-disassembled β€’ http://felix.rohrba.ch/en/2015/lidar-footprint-diameter/ β€’ http://velodynelidar.com/hdl-64e.html β€’ https://en.wikipedia.org/wiki/Lidar β€’ https://www.comsol.com/blogs/autonomous-vehicles-putting- technology-in-the-drivers-seat/
  • 26. β€’ https://en.wikipedia.org/wiki/Inhomogeneous_electromagnetic_wav e_equation β€’ https://www.comsol.com/blogs/modeling-metallic-objects-in- wave-electromagnetics-problems/ β€’ https://em.geosci.xyz/content/maxwell1_fundamentals/frequency_ domain_equations.html β€’ https://www.rp-photonics.com/optical_intensity.html β€’ https://www.newport.com/n/gaussian-beam-optics β€’ https://www.comsol.com/blogs/modeling-of-materials-in-wave- electromagnetics-problems/ β€’ https://www.comsol.com/video/equation-based-modeling-custom- simulations-comsol-multiphysics
  • 27. β€’ https://www.comsol.com/blogs/using-perfectly-matched-layers- and-scattering-boundary-conditions-for-wave-electromagnetics- problems/ β€’ https://www.comsol.com/blogs/taking-care-of-fast-oscillations- wave-optics-module/ β€’ https://www.comsol.com/blogs/guide-to-frequency-domain-wave- electromagnetics-modeling/ β€’ https://www.comsol.com/blogs/introducing-ray-optics-module/ β€’ https://www.comsol.com/blogs/computational-electromagnetics- modeling-which-module-to-use/ β€’ https://www.comsol.com/blogs/how-to-use-the-beam-envelopes- method-for-wave-optics-simulations/
  • 28. β€’ https://en.wikipedia.org/wiki/Leonhard_Euler#Mathematical_n otation β€’ https://en.wikipedia.org/wiki/Fourier_transform β€’ https://www.rp-photonics.com/gaussian_beams.html β€’ https://en.wikipedia.org/wiki/Wave_interference β€’ http://www.physicsclassroom.com/class/light/Lesson-1/Two- Point-Source-Interference β€’ https://www.microscopyu.com/techniques/polarized- light/principles-of-interference β€’ Hecht, Eugene. Optics. 4th ed., Addison Wesley, 2002. β€’ http://1.bp.blogspot.com/- OLSZv2U7Mvs/T9ONFCHhD1I/AAAAAAAACSM

Editor's Notes

  1. Single is 1,300,000 pts per sec and double is 2,200,000
  2. Sommerfeld radiation condition
  3. IF wanted to get warping of image (from rain or fog) would need to add in refraction Is a transient analysis
  4. IF wanted to get warping of image (from rain or fog) would need to add in refraction Is a transient analysis