SlideShare a Scribd company logo
1 of 28
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (1/28)
Part IV
MANUFACTURING SYSTEMS
Chapters:
13.Introduction to Manufacturing Systems
14.Single-Station Manufacturing Cells
15.Manual Assembly Lines
16.Automated Production Lines
17.Automated Assembly Systems
18.Cellular Manufacturing
19.Flexible Manufacturing Systems
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (2/28)
Manufacturing Systems in the
Production System
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (3/28)
Ch 13 Introduction to
Manufacturing Systems
Sections:
1. Components of a Manufacturing System
2. A Classification Scheme for Manufacturing Systems
3. Overview of the Classification System
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (4/28)
Manufacturing System Defined
“A collection of integrated equipment and human
resources, whose function is to perform one or more
processing and/or assembly operations on a starting raw
material, part, or set of parts”
 Equipment includes
 Production machines and tools
 Material handling and work positioning devices
 Computer systems
 Human resources are required either full-time or
periodically to keep the system running
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (5/28)
Examples of Manufacturing Systems
 Single-station cells
 Machine clusters
 Manual assembly lines
 Automated transfer lines
 Automated assembly systems
 Machine cells (cellular manufacturing)
 Flexible manufacturing systems
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (6/28)
Components of a
Manufacturing System
1. Production machines
2. Material handling system
3. Computer system to coordinate and/or control the
preceding components
4. Human workers to operate and manage the system
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (7/28)
Production Machines
 In virtually all modern manufacturing systems, most of the
actual processing or assembly work is accomplished by
machines or with the aid of tools
 Classification of production machines:
1. Manually operated machines are controlled or
supervised by a human worker
2. Semi-automated machines perform a portion of the
work cycle under some form of program control, and a
worker tends the machine the rest of the cycle
3. Fully automated machines operate for extended
periods of time with no human attention
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (8/28)
Manually Operated Machine
Manually operated machines are controlled or supervised by a human
worker. The machine provides the power for the operation and the
worker provides the control. The entire work cycle is operator controlled.
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (9/28)
Semi-Automated Machine
A semi-automated machine performs a portion of the work cycle under
some form of program control, and a worker tends to the machine for
the remainder of the cycle. Typical worker tasks include loading and
unloading parts
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (10/28)
Fully-Automated Machine
Machine operates for extended periods (longer than one work cycle)
without worker attention (periodic tending may be needed).
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (11/28)
Material Handling System
 In most manufacturing systems that process or assemble
discrete parts and products, the following material
handling functions must be provided:
1. Loading work units at each station
2. Positioning work units at each station
3. Unloading work units at each station
4. Transporting work units between stations in multi-
station systems
5. Temporary storage of work units
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (12/28)
Work Transport Between Stations
 Two general categories of work transport in multi-station
manufacturing systems:
1. Fixed routing
 Work units always flow through the same
sequence of workstations
 Most production lines exemplify this category
2. Variable routing
 Work units are moved through a variety of different
station sequences
 Most job shops exemplify this category
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (13/28)
(a) Fixed Routing and
(b) Variable Routing
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (14/28)
Computer Control System
 Typical computer functions in a manufacturing system:
 Communicate instructions to workers (receive processing or
assembly instructions for the specific work unit)
 Download part programs to computer-controlled machines
 Control material handling system
 Schedule production
 Failure diagnosis when malfunctions occur and preventive
maintenance
 Safety monitoring (protect both the human worker and equipment)
 Quality control (detect and reject defective work units produced by
the system)
 Operations management (manage overall operations)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (15/28)
Classification of
Manufacturing Systems
 Factors that define and distinguish manufacturing
systems:
1. Types of operations performed
2. Number of workstations
3. System layout
4. Automation and manning level
5. Part or product variety
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (16/28)
Types of Operations Performed
 Processing operations on work units versus assembly operations to
combine individual parts into assembled entities
 Type(s) of materials processed
 Size and weight of work units
 Part or product complexity
 For assembled products, number of components per product
 For individual parts, number of distinct operations to complete
processing
 Part geometry
 For machined parts, rotational vs. non-rotational
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (17/28)
Number of Workstations
 Convenient measure of the size of the system
 Let n = number of workstations
 Individual workstations can be identified by subscript i,
where i = 1, 2,...,n
 Affects performance factors such as workload capacity,
production rate, and reliability
 As n increases, this usually means greater workload
capacity and higher production rate
 There must be a synergistic effect that derives from n
multiple stations working together vs. n single stations
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (18/28)
System Layout
 Applies mainly to multi-station systems
 Fixed routing vs. variable routing
 In systems with fixed routing, workstations are usually
arranged linearly
 In systems with variable routing, a variety of layouts are
possible
 System layout is an important factor in determining the
most appropriate type of material handling system
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (19/28)
Automation and Manning Levels
 Level of workstation automation
 Manually operated
 Semi-automated
 Fully automated
 Manning level Mi = proportion of time worker is in
attendance at station i
 Mi = 1 means that one worker must be at the station
continuously
 Mi  1 indicates manual operations
 Mi < 1 usually denotes some form of automation
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (20/28)
Part or Product Variety:
Flexibility
“The degree to which the system is capable of dealing with variations
in the parts or products it produces”
 Three cases:
1. Single-model case - all parts or products are identical (sufficient
demand/fixed automation)
2. Batch-model case - different parts or products are produced by
the system, but they are produced in batches because
changeovers are required (hard product variety)
3. Mixed-model case - different parts or products are produced by
the system, but the system can handle the differences without the
need for time-consuming changes in setup (soft product variety)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (21/28)
Three Cases of Product Variety
in Manufacturing Systems
(a) Single-model case, (b) batch model case, and (c) mixed-model case
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (22/28)
Enablers of Flexibility
 Identification of the different work units
 The system must be able to identify the differences
between work units in order to perform the correct
processing sequence
 Quick changeover of operating instructions
 The required work cycle programs must be readily
available to the control unit
 Quick changeover of the physical setup
 System must be able to change over the fixtures and
tools required for the next work unit in minimum time
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (23/28)
Manufacturing Systems for Medium or
High Product Complexity
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (24/28)
Manufacturing Systems for Low
Product Complexity
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (25/28)
Overview of Classification Scheme
 Single-station cells
 n = 1
 Manual or automated
 Multi-station systems with fixed routing
 n > 1
 Typical example: production line
 Multi-station systems with variable routing
 n > 1
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (26/28)
Single-Station Cells
 n = 1
 Two categories:
1. Manned workstations - manually operated or semi-
automated production machine (M = 1)
2. Fully automated machine (M < 1)
 Most widely used manufacturing system - reasons:
 Easiest and least expensive to implement
 Most adaptable, adjustable, and flexible system
 Can be converted to automated station if demand for
part or product justifies
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (27/28)
Multi-Station Systems
with Fixed Routing
 n > 1
 Common example = production line - a series of
workstations laid out so that the part or product moves
through each station, and a portion of the total work
content is performed at each station
 Conditions favoring the use of production lines:
 Quantity of work units is high
 Work units are similar or identical, so similar operations
are required in the same sequence
 Total work content can be divided into separate tasks of
approximately equal duration
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (28/28)
Multi-Station Systems
with Variable Routing
 n > 1
 Defined as a group of workstations organized to achieve
some special purpose, such as:
 Production of a family of parts requiring similar (but not
identical) processing operations
 Assembly of a family of products requiring similar (but
not identical) assembly operations
 Production of a complete set of components used to
assemble one unit of a final product
 Typical case in cellular manufacturing

More Related Content

What's hot

Flexible manufacturing system (fms) and automated guided vehicle system (agvs)
Flexible manufacturing system (fms) and automated guided vehicle system (agvs)Flexible manufacturing system (fms) and automated guided vehicle system (agvs)
Flexible manufacturing system (fms) and automated guided vehicle system (agvs)mathanArumugam
 
Computer Aided Process Planning (CAPP)
Computer Aided Process Planning (CAPP)Computer Aided Process Planning (CAPP)
Computer Aided Process Planning (CAPP)Pratik Gandhi
 
Automation in assembly line
Automation in assembly lineAutomation in assembly line
Automation in assembly linepranav teli
 
06 group technology
06 group technology06 group technology
06 group technologyArif Rahman
 
Manufacturing Automation
Manufacturing AutomationManufacturing Automation
Manufacturing AutomationDhaval Chauhan
 
Automation in Manufacturing (Unit-1) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-1) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-1) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-1) by Varun Pratap Singh.pdfVarun Pratap Singh
 
Robots in manufacturing
Robots in manufacturingRobots in manufacturing
Robots in manufacturingAnirudh Reddy
 
Automated manufacturing systems
Automated manufacturing systemsAutomated manufacturing systems
Automated manufacturing systemsMR Z
 
Industrial automation sustem
Industrial automation sustemIndustrial automation sustem
Industrial automation sustemParas kumar
 
Introduction to flexible manufacturing system (fms)
Introduction to flexible manufacturing system (fms)Introduction to flexible manufacturing system (fms)
Introduction to flexible manufacturing system (fms)Nilraj Vasandia
 
Low cost automation
Low cost automationLow cost automation
Low cost automationIshwar Bhoge
 
Flexible manufacturing system full
Flexible manufacturing system fullFlexible manufacturing system full
Flexible manufacturing system fullRanjeet Kumar
 
CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & M
CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & MCELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & M
CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & MBalamurugan Subburaj
 
Computer Integrated Manufacturing System
Computer Integrated Manufacturing SystemComputer Integrated Manufacturing System
Computer Integrated Manufacturing SystemSaif Eye
 
REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT
REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENTREPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT
REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENTlaxtwinsme
 

What's hot (20)

Flexible manufacturing system (fms) and automated guided vehicle system (agvs)
Flexible manufacturing system (fms) and automated guided vehicle system (agvs)Flexible manufacturing system (fms) and automated guided vehicle system (agvs)
Flexible manufacturing system (fms) and automated guided vehicle system (agvs)
 
Computer Aided Process Planning (CAPP)
Computer Aided Process Planning (CAPP)Computer Aided Process Planning (CAPP)
Computer Aided Process Planning (CAPP)
 
Robotics or Robot Technology
Robotics or Robot Technology Robotics or Robot Technology
Robotics or Robot Technology
 
Manual Assembly Lines
Manual Assembly LinesManual Assembly Lines
Manual Assembly Lines
 
Automation in assembly line
Automation in assembly lineAutomation in assembly line
Automation in assembly line
 
06 group technology
06 group technology06 group technology
06 group technology
 
Manual Assembly Lines1
Manual Assembly Lines1Manual Assembly Lines1
Manual Assembly Lines1
 
Manufacturing models and metrics costs
Manufacturing models and metrics costsManufacturing models and metrics costs
Manufacturing models and metrics costs
 
Manufacturing Automation
Manufacturing AutomationManufacturing Automation
Manufacturing Automation
 
Automation in Manufacturing (Unit-1) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-1) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-1) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-1) by Varun Pratap Singh.pdf
 
Robots in manufacturing
Robots in manufacturingRobots in manufacturing
Robots in manufacturing
 
Automated manufacturing systems
Automated manufacturing systemsAutomated manufacturing systems
Automated manufacturing systems
 
Unit 2.1 cim
Unit 2.1 cimUnit 2.1 cim
Unit 2.1 cim
 
Industrial automation sustem
Industrial automation sustemIndustrial automation sustem
Industrial automation sustem
 
Introduction to flexible manufacturing system (fms)
Introduction to flexible manufacturing system (fms)Introduction to flexible manufacturing system (fms)
Introduction to flexible manufacturing system (fms)
 
Low cost automation
Low cost automationLow cost automation
Low cost automation
 
Flexible manufacturing system full
Flexible manufacturing system fullFlexible manufacturing system full
Flexible manufacturing system full
 
CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & M
CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & MCELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & M
CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEM - UNIT 5 - CAD & M
 
Computer Integrated Manufacturing System
Computer Integrated Manufacturing SystemComputer Integrated Manufacturing System
Computer Integrated Manufacturing System
 
REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT
REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENTREPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT
REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT
 

Similar to Production System-II.ppt

Introduction CIM
Introduction CIMIntroduction CIM
Introduction CIMNafis Ahmad
 
MT 308 Industrial Automation.ppt
MT 308 Industrial Automation.pptMT 308 Industrial Automation.ppt
MT 308 Industrial Automation.pptMohammedAlobaidy16
 
Automated-Assembly-Systems.ppt
Automated-Assembly-Systems.pptAutomated-Assembly-Systems.ppt
Automated-Assembly-Systems.pptAbhishekChavan77
 
Ch 5 Industrial Control Systems.ppt
Ch 5  Industrial Control Systems.pptCh 5  Industrial Control Systems.ppt
Ch 5 Industrial Control Systems.pptKhalil Alhatab
 
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdfLecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdfkyaswanth3
 
Manufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptxManufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptxMasAyuHassan1
 
2. automation & control technology
2. automation & control technology2. automation & control technology
2. automation & control technologyMahros Darsin
 
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...RuthviCool1
 
3. industrial control system
3. industrial control system3. industrial control system
3. industrial control systemMahros Darsin
 
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdfVarun Pratap Singh
 
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdfVarun Pratap Singh
 
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdfVarun Pratap Singh
 

Similar to Production System-II.ppt (20)

Introduction CIM
Introduction CIMIntroduction CIM
Introduction CIM
 
MT 308 Industrial Automation.ppt
MT 308 Industrial Automation.pptMT 308 Industrial Automation.ppt
MT 308 Industrial Automation.ppt
 
Production System-1.ppt
Production System-1.pptProduction System-1.ppt
Production System-1.ppt
 
67034 ch01
67034 ch0167034 ch01
67034 ch01
 
Automated Assembly Systems
Automated Assembly SystemsAutomated Assembly Systems
Automated Assembly Systems
 
Automated-Assembly-Systems.ppt
Automated-Assembly-Systems.pptAutomated-Assembly-Systems.ppt
Automated-Assembly-Systems.ppt
 
automation method.ppt
automation method.pptautomation method.ppt
automation method.ppt
 
Ch 5 Industrial Control Systems.ppt
Ch 5  Industrial Control Systems.pptCh 5  Industrial Control Systems.ppt
Ch 5 Industrial Control Systems.ppt
 
Chapter 1.pdf
Chapter 1.pdfChapter 1.pdf
Chapter 1.pdf
 
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdfLecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
 
Manufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptxManufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptx
 
2. automation & control technology
2. automation & control technology2. automation & control technology
2. automation & control technology
 
NC Programming
NC ProgrammingNC Programming
NC Programming
 
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
 
67042 ch09
67042 ch0967042 ch09
67042 ch09
 
3. industrial control system
3. industrial control system3. industrial control system
3. industrial control system
 
overview of mfg
overview of mfgoverview of mfg
overview of mfg
 
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
 
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
 
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
 

More from AbhishekChavan77 (20)

Testing.pptx
Testing.pptxTesting.pptx
Testing.pptx
 
Brake1.pptx
Brake1.pptxBrake1.pptx
Brake1.pptx
 
CHAPTER 4 Suspension.pptx
CHAPTER 4 Suspension.pptxCHAPTER 4 Suspension.pptx
CHAPTER 4 Suspension.pptx
 
Electric Vehicle.pptx
Electric Vehicle.pptxElectric Vehicle.pptx
Electric Vehicle.pptx
 
Crystal Structure.pptx
Crystal Structure.pptxCrystal Structure.pptx
Crystal Structure.pptx
 
Charging & BMS.pptx
Charging & BMS.pptxCharging & BMS.pptx
Charging & BMS.pptx
 
EV-1.pptx
EV-1.pptxEV-1.pptx
EV-1.pptx
 
BCM.pptx
BCM.pptxBCM.pptx
BCM.pptx
 
Brake.pptx
Brake.pptxBrake.pptx
Brake.pptx
 
Chassis.pptx
Chassis.pptxChassis.pptx
Chassis.pptx
 
ABS.pptx
ABS.pptxABS.pptx
ABS.pptx
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
Specimen Preparation.pptx
Specimen Preparation.pptxSpecimen Preparation.pptx
Specimen Preparation.pptx
 
Crystal Structure.pptx
Crystal Structure.pptxCrystal Structure.pptx
Crystal Structure.pptx
 
Deformation.pptx
Deformation.pptxDeformation.pptx
Deformation.pptx
 
Material Properties.pptx
Material Properties.pptxMaterial Properties.pptx
Material Properties.pptx
 
EV PPT.pptx
EV PPT.pptxEV PPT.pptx
EV PPT.pptx
 
Auto Sensor-74.ppt
Auto Sensor-74.pptAuto Sensor-74.ppt
Auto Sensor-74.ppt
 
Vehicle Dynamics.ppt
Vehicle Dynamics.pptVehicle Dynamics.ppt
Vehicle Dynamics.ppt
 
Residential Air Filtration.ppt
Residential Air Filtration.pptResidential Air Filtration.ppt
Residential Air Filtration.ppt
 

Recently uploaded

(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 

Recently uploaded (20)

(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 

Production System-II.ppt

  • 1. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (1/28) Part IV MANUFACTURING SYSTEMS Chapters: 13.Introduction to Manufacturing Systems 14.Single-Station Manufacturing Cells 15.Manual Assembly Lines 16.Automated Production Lines 17.Automated Assembly Systems 18.Cellular Manufacturing 19.Flexible Manufacturing Systems
  • 2. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (2/28) Manufacturing Systems in the Production System
  • 3. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (3/28) Ch 13 Introduction to Manufacturing Systems Sections: 1. Components of a Manufacturing System 2. A Classification Scheme for Manufacturing Systems 3. Overview of the Classification System
  • 4. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (4/28) Manufacturing System Defined “A collection of integrated equipment and human resources, whose function is to perform one or more processing and/or assembly operations on a starting raw material, part, or set of parts”  Equipment includes  Production machines and tools  Material handling and work positioning devices  Computer systems  Human resources are required either full-time or periodically to keep the system running
  • 5. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (5/28) Examples of Manufacturing Systems  Single-station cells  Machine clusters  Manual assembly lines  Automated transfer lines  Automated assembly systems  Machine cells (cellular manufacturing)  Flexible manufacturing systems
  • 6. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (6/28) Components of a Manufacturing System 1. Production machines 2. Material handling system 3. Computer system to coordinate and/or control the preceding components 4. Human workers to operate and manage the system
  • 7. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (7/28) Production Machines  In virtually all modern manufacturing systems, most of the actual processing or assembly work is accomplished by machines or with the aid of tools  Classification of production machines: 1. Manually operated machines are controlled or supervised by a human worker 2. Semi-automated machines perform a portion of the work cycle under some form of program control, and a worker tends the machine the rest of the cycle 3. Fully automated machines operate for extended periods of time with no human attention
  • 8. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (8/28) Manually Operated Machine Manually operated machines are controlled or supervised by a human worker. The machine provides the power for the operation and the worker provides the control. The entire work cycle is operator controlled.
  • 9. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (9/28) Semi-Automated Machine A semi-automated machine performs a portion of the work cycle under some form of program control, and a worker tends to the machine for the remainder of the cycle. Typical worker tasks include loading and unloading parts
  • 10. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (10/28) Fully-Automated Machine Machine operates for extended periods (longer than one work cycle) without worker attention (periodic tending may be needed).
  • 11. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (11/28) Material Handling System  In most manufacturing systems that process or assemble discrete parts and products, the following material handling functions must be provided: 1. Loading work units at each station 2. Positioning work units at each station 3. Unloading work units at each station 4. Transporting work units between stations in multi- station systems 5. Temporary storage of work units
  • 12. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (12/28) Work Transport Between Stations  Two general categories of work transport in multi-station manufacturing systems: 1. Fixed routing  Work units always flow through the same sequence of workstations  Most production lines exemplify this category 2. Variable routing  Work units are moved through a variety of different station sequences  Most job shops exemplify this category
  • 13. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (13/28) (a) Fixed Routing and (b) Variable Routing
  • 14. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (14/28) Computer Control System  Typical computer functions in a manufacturing system:  Communicate instructions to workers (receive processing or assembly instructions for the specific work unit)  Download part programs to computer-controlled machines  Control material handling system  Schedule production  Failure diagnosis when malfunctions occur and preventive maintenance  Safety monitoring (protect both the human worker and equipment)  Quality control (detect and reject defective work units produced by the system)  Operations management (manage overall operations)
  • 15. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (15/28) Classification of Manufacturing Systems  Factors that define and distinguish manufacturing systems: 1. Types of operations performed 2. Number of workstations 3. System layout 4. Automation and manning level 5. Part or product variety
  • 16. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (16/28) Types of Operations Performed  Processing operations on work units versus assembly operations to combine individual parts into assembled entities  Type(s) of materials processed  Size and weight of work units  Part or product complexity  For assembled products, number of components per product  For individual parts, number of distinct operations to complete processing  Part geometry  For machined parts, rotational vs. non-rotational
  • 17. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (17/28) Number of Workstations  Convenient measure of the size of the system  Let n = number of workstations  Individual workstations can be identified by subscript i, where i = 1, 2,...,n  Affects performance factors such as workload capacity, production rate, and reliability  As n increases, this usually means greater workload capacity and higher production rate  There must be a synergistic effect that derives from n multiple stations working together vs. n single stations
  • 18. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (18/28) System Layout  Applies mainly to multi-station systems  Fixed routing vs. variable routing  In systems with fixed routing, workstations are usually arranged linearly  In systems with variable routing, a variety of layouts are possible  System layout is an important factor in determining the most appropriate type of material handling system
  • 19. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (19/28) Automation and Manning Levels  Level of workstation automation  Manually operated  Semi-automated  Fully automated  Manning level Mi = proportion of time worker is in attendance at station i  Mi = 1 means that one worker must be at the station continuously  Mi  1 indicates manual operations  Mi < 1 usually denotes some form of automation
  • 20. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (20/28) Part or Product Variety: Flexibility “The degree to which the system is capable of dealing with variations in the parts or products it produces”  Three cases: 1. Single-model case - all parts or products are identical (sufficient demand/fixed automation) 2. Batch-model case - different parts or products are produced by the system, but they are produced in batches because changeovers are required (hard product variety) 3. Mixed-model case - different parts or products are produced by the system, but the system can handle the differences without the need for time-consuming changes in setup (soft product variety)
  • 21. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (21/28) Three Cases of Product Variety in Manufacturing Systems (a) Single-model case, (b) batch model case, and (c) mixed-model case
  • 22. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (22/28) Enablers of Flexibility  Identification of the different work units  The system must be able to identify the differences between work units in order to perform the correct processing sequence  Quick changeover of operating instructions  The required work cycle programs must be readily available to the control unit  Quick changeover of the physical setup  System must be able to change over the fixtures and tools required for the next work unit in minimum time
  • 23. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (23/28) Manufacturing Systems for Medium or High Product Complexity
  • 24. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (24/28) Manufacturing Systems for Low Product Complexity
  • 25. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (25/28) Overview of Classification Scheme  Single-station cells  n = 1  Manual or automated  Multi-station systems with fixed routing  n > 1  Typical example: production line  Multi-station systems with variable routing  n > 1
  • 26. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (26/28) Single-Station Cells  n = 1  Two categories: 1. Manned workstations - manually operated or semi- automated production machine (M = 1) 2. Fully automated machine (M < 1)  Most widely used manufacturing system - reasons:  Easiest and least expensive to implement  Most adaptable, adjustable, and flexible system  Can be converted to automated station if demand for part or product justifies
  • 27. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (27/28) Multi-Station Systems with Fixed Routing  n > 1  Common example = production line - a series of workstations laid out so that the part or product moves through each station, and a portion of the total work content is performed at each station  Conditions favoring the use of production lines:  Quantity of work units is high  Work units are similar or identical, so similar operations are required in the same sequence  Total work content can be divided into separate tasks of approximately equal duration
  • 28. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. (28/28) Multi-Station Systems with Variable Routing  n > 1  Defined as a group of workstations organized to achieve some special purpose, such as:  Production of a family of parts requiring similar (but not identical) processing operations  Assembly of a family of products requiring similar (but not identical) assembly operations  Production of a complete set of components used to assemble one unit of a final product  Typical case in cellular manufacturing