(J) Other Graphs
e.g. (i) (2003)
         The diagram shows the graph of y = f(x)




 Draw separate sketches of the graphs of the following;
1
i  y 
         f x
1
i  y 
         f x




                 1



                 -1
1
i  y 
         f x




                 1



                 -1
1
i  y 
         f x




                 1



                 -1
1
i  y 
         f x




                 1
                 1
                 2

                 -1
1
i  y 
         f x




                 1
                 1
                 2

                 -1
ii  y  f  x   f  x 




                              1



                              -1
ii  y  f  x   f  x 




                              1



                              -1
ii  y  f  x   f  x 


                              4




                              1



                              -1
ii  y  f  x   f  x 


                              4




                              1



                              -1
ii  y  f  x   f  x 


                              4




                              1



                              -1
iii  y   f  x 2




                         1



                         -1
iii  y   f  x 2


                         4




                         1



                         -1
iii  y   f  x 2


                         4




                         1



                         -1
iii  y   f  x 2


                         4




                         1



                         -1
iv  y  e f  x 




                      1



                      -1
iv  y  e f  x 
      y  f  x e f  x 




                               1



                               -1
iv  y  e f  x 
      y  f  x e f  x 
i.e. stationary
points remain




                               1



                               -1
iv  y  e f  x 
      y  f  x e f  x 
i.e. stationary
points remain                  e2




                               1



                               -1
iv  y  e f  x 
      y  f  x e f  x 
i.e. stationary
points remain                  e2




                               1



                               -1
iv  y  e f  x 
      y  f  x e f  x 
i.e. stationary
points remain                  e2




                               1



                               -1
iv  y  e f  x 
      y  f  x e f  x 
i.e. stationary
points remain                  e2




                               1



                               -1
iv  y  e f  x 
      y  f  x e f  x 
i.e. stationary
points remain                  e2




                               1



                               -1
e.g. (ii) (2002)
         The diagram shows the graph of y = f(x)




 Draw separate sketches of the graphs of the following;
1
i  y 
         f x
1
i  y 
         f x
1
i  y 
         f x
1
i  y 
         f x
1
i  y 
         f x
1
i  y 
         f x
1
i  y 
         f x
1
i  y 
         f x
ii  y 2  f  x 
ii  y 2  f  x 
ii  y 2  f  x 
ii  y 2  f  x 
ii  y 2  f  x 
iii  y  f  x 
iii  y  f  x 
iii  y  f  x 
iii  y  f  x 
iii  y  f  x 
iv  y  log f  x 
iv  y  log f  x 
iv  y  log f  x 
iv  y  log f  x 
Exercise 1A; 9, 10, 11a, 12

Exercise 1B; 2bd, 9egh, 11ace, 13af, 14abf, 30, 32e, 34

X2 T07 07 other graphs (2011)