Volumes By Cylindrical Shells
          slice || rotation 
Volumes By Cylindrical Shells
              slice || rotation 
          y  f x
   y




          x
Volumes By Cylindrical Shells
                   slice || rotation 
               y  f x
   y



       a   b   x
Volumes By Cylindrical Shells
                      slice || rotation 
                  y  f x
   y



       a x   b   x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y



       a x   b x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y



       a x   b x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y



       a x   b x
                                           x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y

                       y
       a x   b x
                                           x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y

                       y  f x
       a x   b x
                                           x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y

                       y  f x
       a x   b x
                                           2x   x
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y

                       y  f x
       a x   b x
                                             2x             x

                                    A x   2x  f  x 
Volumes By Cylindrical Shells
                    slice || rotation 
                y  f x
   y

                       y  f x
       a x   b x
                                             2x             x

                                    A x   2x  f  x 
                                      V  2x  f  x   x
Volumes By Cylindrical Shells
                            slice || rotation 
                          y  f x
   y

                               y  f x
       a x      b x
                                                     2x             x

                                            A x   2x  f  x 
                                              V  2x  f  x   x
                      b
        V  lim  2x  f  x   x
              x 0
                      xa
Volumes By Cylindrical Shells
                            slice || rotation 
                          y  f x
   y

                               y  f x
       a x      b x
                                                     2x             x

                                            A x   2x  f  x 
                                              V  2x  f  x   x
                      b
        V  lim  2x  f  x   x
              x 0
                      xa
                  b
           2  xf  x dx
                  a
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2


    -2           2      x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2
        y

    -2          2       x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2
        y

    -2          2       x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2
        y

    -2          2       x

              y
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2         1
        y             x  4  y  2

    -2          2       x

              y




    2x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2         1
        y             x  4  y  2

    -2          2       x

              y




    2x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2         1
        y             x  4  y  2

    -2           2      x

               y




                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2         1
        y             x  4  y  2

    -2           2      x

               y



              2y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2         1
        y             x  4  y  2

    -2           2            x

               y
                        A y   2y 24  y 1 
                                                
                                               2
                                                
              2y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                 y  4  x2         1
        y             x  4  y  2

    -2           2       x

               y
                  A y   2y 24  y 1 
                                          
                                         2
                                          
                                      1
              2y V  4y 4  y 2  y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis             4         1
                                                 V  lim  4y 4  y 2  y
             y                                       y 0
                                                           x 0
             4
                 y  4  x2         1
        y             x  4  y  2

    -2           2       x

               y
                  A y   2y 24  y 1 
                                          
                                         2
                                          
                                      1
              2y V  4y 4  y 2  y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis             4           1
                                                 V  lim  4y 4  y 2  y
             y                                       y 0
                                                           x 0
             4
                 y  4 x  2                             4          1
        y
                                    1
                       x  4  y  2              4  y 4  y 2 dy
                                                        0


    -2           2       x

               y
                  A y   2y 24  y 1 
                                          
                                         2
                                          
                                      1
              2y V  4y 4  y 2  y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis             4           1
                                                 V  lim  4y 4  y 2  y
             y                                       y 0
                                                           x 0
             4
                 y  4 x  2                             4          1
        y
                                    1
                       x  4  y  2              4  y 4  y 2 dy
                                                        0
                                                         4         1

    -2           2       x                          4  4  y  y dy
                                                                   2

                                                         0

               y
                  A y   2y 24  y 1 
                                          
                                         2
                                          
                                      1
              2y V  4y 4  y 2  y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis             4           1
                                                 V  lim  4y 4  y 2  y
             y                                       y 0
                                                           x 0
             4
                 y  4 x  2                             4          1
        y
                                    1
                       x  4  y  2              4  y 4  y 2 dy
                                                        0
                                                         4         1

    -2           2       x                          4  4  y  y dy
                                                                   2

                                                        0

               y
                                                        4
                                                           1      3
                                                                     
                                                    4   4 y  y dy
                                                          
                                                               2   2

                               24  y 1             0           
                  A y   2y
                                          
                                         2
                                          
                                      1
              2y V  4y 4  y 2  y


                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis             4           1
                                                 V  lim  4y 4  y 2  y
             y                                       y 0
                                                           x 0
             4
                 y  4 x  2                             4          1
        y
                                    1
                       x  4  y  2              4  y 4  y 2 dy
                                                        0
                                                         4         1

    -2           2       x                          4  4  y  y dy
                                                                   2

                                                        0

               y
                                                        4
                                                           1      3
                                                                     
                                                    4   4 y  y dy
                                                          
                                                                2  2

                               24  y 1             0           
                  A y   2y                                       5 4
                                          
                                         2
                                                       8 2 2 2 
                                                               3

                                      1             4  y  y 
              2y V  4y 4  y 2  y                3       5 0



                    1
    2 x  24  y  2
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis             4           1
                                                 V  lim  4y 4  y 2  y
             y                                       y 0
                                                           x 0
             4
                 y  4 x  2                             4          1
        y
                                    1
                       x  4  y  2              4  y 4  y 2 dy
                                                        0
                                                         4         1

    -2           2       x                          4  4  y  y dy
                                                                   2

                                                        0

               y
                                                        4
                                                           1        3
                                                                       
                                                    4   4 y  y dy
                                                          
                                                                2    2

                               24  y 1             0             
                  A y   2y                                         5 4
                                          
                                         2
                                                       8 2 2 2 
                                                               3

                                      1             4  y  y 
              2y V  4y 4  y 2  y                3       5 0
                                                         8    2 32   0
                                                     4  8                 
                                                          3      5          
                                                      512
                                                    
                    1
    2 x  24  y  2
                                                       15
                                                             units 3
ii  Find the volume generated when x 2  y 2  4 is rotated
    about the line x  4
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y
               2
x2  y2  4

      -2              2                                 x

              -2
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y
               2
x2  y2  4

      -2              2       4                         x

              -2
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y
              2
x2  y2  4

      -2              2       4                         x

              -2 x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y
              2
x2  y2  4

      -2              2       4                         x

              -2 x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y
              2
x2  y2  4

      -2              2       4                         x

              -2 x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2              2       4                          x

              -2 x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2              2       4                          x

              -2 x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2              2       4                          x

              -2 x




                                  x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2              2       4                          x

              -2 x


       2y


                                  x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2              2       4                          x

              -2 x


       2y
 2 4  x2
                                  x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2                2       4                        x

              -2 x


       2y
 2 4  x2

                  2 4  x        x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2                2       4                        x

              -2 x
                                          A x   2 4  x 2  2 4  x 
       2y
 2 4  x2

                  2 4  x        x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2                2       4                        x

              -2 x
                                          A x   2 4  x 2  2 4  x 
       2y                                        4 4  x  4  x 2
 2 4  x2

                  2 4  x        x
ii  Find the volume generated when x 2  y 2  4 is rotated
     about the line x  4
             y                                   torus
              2
x2  y2  4

      -2                2       4                        x

              -2 x
                                          A x   2 4  x 2  2 4  x 
       2y                                        4 4  x  4  x 2
 2 4  x2
                                            V  4 4  x  4  x 2  x
                  2 4  x        x
2
V  lim
   x  0
             4 4  x  4  x 2  x
            x  2
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
              2                2
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
              2                2
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2



          semi-circle
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
              2                2
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2



          semi-circle
         1  2 2 
   16 
        2          
                    
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
              2                2
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2



          semi-circle       odd  even  odd function
         1  2 2 
   16 
        2          
                    
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
              2                2
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2



          semi-circle       odd  even  odd function
         1  2 2 
   16 
        2           0
                    
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx
        2
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx
        2                     2
              2                2
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2



          semi-circle       odd  even  odd function
         1  2 2 
   16 
        2           0
                    
   32 2 units 3
2
V  lim
    x  0
              4 4  x  4  x 2  x
             x  2
         2
   4  4  x  4  x 2 dx                        Exercise 3B;
        2                                            3, 4, 6, 8
         2                     2
   4  4 4  x 2 dx  4  x 4  x 2 dx           Exercise 3C;
        2                     2
              2                2
                                                    1, 3, 9, 12, 20
   16  4  x 2 dx  4  x 4  x 2 dx
             2                2



          semi-circle       odd  even  odd function
         1  2 2 
   16 
        2           0
                    
   32 2 units 3

X2 t05 02 cylindrical shells (2012)

  • 1.
    Volumes By CylindricalShells slice || rotation 
  • 2.
    Volumes By CylindricalShells slice || rotation  y  f x y x
  • 3.
    Volumes By CylindricalShells slice || rotation  y  f x y a b x
  • 4.
    Volumes By CylindricalShells slice || rotation  y  f x y a x b x
  • 5.
    Volumes By CylindricalShells slice || rotation  y  f x y a x b x
  • 6.
    Volumes By CylindricalShells slice || rotation  y  f x y a x b x
  • 7.
    Volumes By CylindricalShells slice || rotation  y  f x y a x b x x
  • 8.
    Volumes By CylindricalShells slice || rotation  y  f x y y a x b x x
  • 9.
    Volumes By CylindricalShells slice || rotation  y  f x y y  f x a x b x x
  • 10.
    Volumes By CylindricalShells slice || rotation  y  f x y y  f x a x b x 2x x
  • 11.
    Volumes By CylindricalShells slice || rotation  y  f x y y  f x a x b x 2x x A x   2x  f  x 
  • 12.
    Volumes By CylindricalShells slice || rotation  y  f x y y  f x a x b x 2x x A x   2x  f  x  V  2x  f  x   x
  • 13.
    Volumes By CylindricalShells slice || rotation  y  f x y y  f x a x b x 2x x A x   2x  f  x  V  2x  f  x   x b V  lim  2x  f  x   x x 0 xa
  • 14.
    Volumes By CylindricalShells slice || rotation  y  f x y y  f x a x b x 2x x A x   2x  f  x  V  2x  f  x   x b V  lim  2x  f  x   x x 0 xa b  2  xf  x dx a
  • 15.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis
  • 16.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 2 x
  • 17.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 y -2 2 x
  • 18.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 y -2 2 x
  • 19.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 y -2 2 x y
  • 20.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 1 y  x  4  y  2 -2 2 x y 2x
  • 21.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 1 y  x  4  y  2 -2 2 x y 2x
  • 22.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 1 y  x  4  y  2 -2 2 x y 1 2 x  24  y  2
  • 23.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 1 y  x  4  y  2 -2 2 x y 2y 1 2 x  24  y  2
  • 24.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 1 y  x  4  y  2 -2 2 x y A y   2y 24  y 1    2   2y 1 2 x  24  y  2
  • 25.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 1 y  x  4  y  2 -2 2 x y A y   2y 24  y 1    2   1 2y V  4y 4  y 2  y 1 2 x  24  y  2
  • 26.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis 4 1 V  lim  4y 4  y 2  y y y 0 x 0 4 y  4  x2 1 y  x  4  y  2 -2 2 x y A y   2y 24  y 1    2   1 2y V  4y 4  y 2  y 1 2 x  24  y  2
  • 27.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis 4 1 V  lim  4y 4  y 2  y y y 0 x 0 4 y  4 x 2 4 1 y 1  x  4  y  2  4  y 4  y 2 dy 0 -2 2 x y A y   2y 24  y 1    2   1 2y V  4y 4  y 2  y 1 2 x  24  y  2
  • 28.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis 4 1 V  lim  4y 4  y 2  y y y 0 x 0 4 y  4 x 2 4 1 y 1  x  4  y  2  4  y 4  y 2 dy 0 4 1 -2 2 x  4  4  y  y dy 2 0 y A y   2y 24  y 1    2   1 2y V  4y 4  y 2  y 1 2 x  24  y  2
  • 29.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis 4 1 V  lim  4y 4  y 2  y y y 0 x 0 4 y  4 x 2 4 1 y 1  x  4  y  2  4  y 4  y 2 dy 0 4 1 -2 2 x  4  4  y  y dy 2 0 y 4  1 3   4   4 y  y dy  2 2 24  y 1  0  A y   2y   2   1 2y V  4y 4  y 2  y 1 2 x  24  y  2
  • 30.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis 4 1 V  lim  4y 4  y 2  y y y 0 x 0 4 y  4 x 2 4 1 y 1  x  4  y  2  4  y 4  y 2 dy 0 4 1 -2 2 x  4  4  y  y dy 2 0 y 4  1 3   4   4 y  y dy  2 2 24  y 1  0  A y   2y 5 4   2   8 2 2 2  3 1  4  y  y  2y V  4y 4  y 2  y 3 5 0 1 2 x  24  y  2
  • 31.
    e.g. i Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis 4 1 V  lim  4y 4  y 2  y y y 0 x 0 4 y  4 x 2 4 1 y 1  x  4  y  2  4  y 4  y 2 dy 0 4 1 -2 2 x  4  4  y  y dy 2 0 y 4  1 3   4   4 y  y dy  2 2 24  y 1  0  A y   2y 5 4   2   8 2 2 2  3 1  4  y  y  2y V  4y 4  y 2  y 3 5 0 8    2 32   0  4  8   3 5  512  1 2 x  24  y  2 15 units 3
  • 32.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4
  • 33.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y 2 x2  y2  4 -2 2 x -2
  • 34.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y 2 x2  y2  4 -2 2 4 x -2
  • 35.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y 2 x2  y2  4 -2 2 4 x -2 x
  • 36.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y 2 x2  y2  4 -2 2 4 x -2 x
  • 37.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y 2 x2  y2  4 -2 2 4 x -2 x
  • 38.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x
  • 39.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x
  • 40.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x x
  • 41.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x 2y x
  • 42.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x 2y  2 4  x2 x
  • 43.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x 2y  2 4  x2 2 4  x  x
  • 44.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x A x   2 4  x 2  2 4  x  2y  2 4  x2 2 4  x  x
  • 45.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x A x   2 4  x 2  2 4  x  2y  4 4  x  4  x 2  2 4  x2 2 4  x  x
  • 46.
    ii  Findthe volume generated when x 2  y 2  4 is rotated about the line x  4 y torus 2 x2  y2  4 -2 2 4 x -2 x A x   2 4  x 2  2 4  x  2y  4 4  x  4  x 2  2 4  x2 V  4 4  x  4  x 2  x 2 4  x  x
  • 47.
    2 V  lim x  0  4 4  x  4  x 2  x x  2
  • 48.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2
  • 49.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2
  • 50.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2 2 2  16  4  x 2 dx  4  x 4  x 2 dx 2 2
  • 51.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2 2 2  16  4  x 2 dx  4  x 4  x 2 dx 2 2 semi-circle
  • 52.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2 2 2  16  4  x 2 dx  4  x 4  x 2 dx 2 2 semi-circle  1  2 2   16  2  
  • 53.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2 2 2  16  4  x 2 dx  4  x 4  x 2 dx 2 2 semi-circle odd  even  odd function  1  2 2   16  2  
  • 54.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2 2 2  16  4  x 2 dx  4  x 4  x 2 dx 2 2 semi-circle odd  even  odd function  1  2 2   16  2  0 
  • 55.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx 2 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx 2 2 2 2  16  4  x 2 dx  4  x 4  x 2 dx 2 2 semi-circle odd  even  odd function  1  2 2   16  2  0   32 2 units 3
  • 56.
    2 V  lim x  0  4 4  x  4  x 2  x x  2 2  4  4  x  4  x 2 dx Exercise 3B; 2 3, 4, 6, 8 2 2  4  4 4  x 2 dx  4  x 4  x 2 dx Exercise 3C; 2 2 2 2 1, 3, 9, 12, 20  16  4  x 2 dx  4  x 4  x 2 dx 2 2 semi-circle odd  even  odd function  1  2 2   16  2  0   32 2 units 3