This document discusses recommender systems, including:
1. It provides an overview of recommender systems, their history, and common problems like top-N recommendation and rating prediction.
2. It then discusses what makes a good recommender system, including experiment methods like offline, user surveys, and online experiments, as well as evaluation metrics like prediction accuracy, diversity, novelty, and user satisfaction.
3. Key metrics that are important to evaluate recommender systems are discussed, such as user satisfaction, prediction accuracy, coverage, diversity, novelty, serendipity, trust, robustness, and response time. The document emphasizes selecting metrics based on business goals.