SlideShare a Scribd company logo
1 of 18
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Gibbs Free Energy Change, Equilibrium and Cell Potential
cellnFEG  
Relationship between
Energetics and Equilibrium
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free
energy change
H
G
Relationship bet ∆G, Kc and E cell
cellnFEG  
STHG  cKRTG ln 
cK
Relationship between
Energetics and Cell Potential

G cellE
Gibbs free
energy change
Cell potential
F = Faraday constant
(96 500 Cmol-1)
n = number
electron
Relationship bet ∆G, Kc and Ecell
ΔGθ Kc Eθ/V Extent of rxn
> 0 < 1 < 0 No Reaction
Non spontaneous
ΔGθ = 0 Kc = 1 0 Equilibrium
Mix reactant/product
< 0 > 1 > 0 Reaction complete
Spontaneous
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactants
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
Relationship bet ∆G and Kc
shift to left (reactant)
shift to right (products)
cellE

G
cK
K
nF
RT
E cell ln
Magnitude of Kc Extend of reaction
How far rxn shift to right or left?
Not how fast
cK
Position of equilibrium
cK
Temp
dependent
Extend
of rxn
Not how fast
Shift to left/
favour reactant
Shift to right/
favour product
cK
Relationship between
Equilibrium and Energetics
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free energy change
H
G cK
G
Energetically
Thermodynamically
Favourable/feasible
ΔGθ ln K Kc Eq mixture
ΔGθ -ve
< 0
Positive
( + )
Kc > 1 Product
(Right)
ΔGθ +ve
> 0
Negative
( - )
Kc < 1 Reactant
(left)
ΔGθ = 0 0 Kc = 1 Equilibrium
Measure work
available from system
Sign predict
spontaneity of rxn
Negative (-ve)
spontaneous
Positive (+ve)
NOT
spontaneous
veG  veG 
NOT
favourable
Energetically
favourable
Product formation NO product
cKRTG ln 
Magnitude of Kc Extend of reaction
How far rxn shift to right or left?
Not how fast
cK
Position of equilibrium
cK
Temp
dependent
Extend
of rxn
Not how fast
Shift to left/
favour reactant
Shift to right/
favour product
cK
Relationship between
Equilibrium and Energetics
cKRTG ln 
STHG 
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free energy change
H
G cK
ΔGθ ln K Kc Eq mixture
ΔGθ -ve
< 0
Positive
( + )
Kc > 1 Product
(Right)
ΔGθ +ve
> 0
Negative
( - )
Kc < 1 Reactant
(left)
ΔGθ = 0 0 Kc = 1 Equilibrium
cKRTG ln 
STHG 
∆Hsys ∆Ssys ∆Gsys Description
- +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, All Temp
+ -
∆G = ∆H - T∆S
∆G = + ve
Non spontaneous, All Temp
+ +
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, High ↑ Temp
- -
∆G = ∆H - T∆S
∆G = - ve
Spontaneous, Low ↓ Temp
Relationship bet ∆G and Kc
G
Energetically
Thermodynamically
Favourable/feasible
Sign predict
spontaneity of rxn
veG  veG 
NOT
favourable
Energetically
favourable
Product formation NO product
KRTG ln
Predict will rxn occur with ΔG and Kc
cK
Very SMALL
Kc < 1
Shift to right/
favour product
Shift to left/
favour reactant
Very BIG
Kc > 1
veG veG 
KRTG ln
1cK 1cK
Negative (-ve)
spontaneous
Positive (+ve)
NOT
spontaneous
Relationship bet ∆G and Kc
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactant
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
shift to left (reactant)
shift to right (product)
G, Gibbs free energy
A
Mixture composition
B
100% A 100% B
∆G decreases ↓
30 % A
70 % B
Equilibrium mixture
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy minimum
∆G < 0
∆G < 0
∆G = 0
Free energy system is lowered on the way to equilibrium
Rxn proceed to minimum free energy ∆G = 0
System seek lowest possible free energy
Product have lower free energy than reactant
∆G < 0 product
reactant
G
Energetically
Thermodynamically
Favourable/feasible
Sign predict
spontaneity of rxn
veG  veG 
NOT
favourable
Energetically
favourable
Product formation NO product
KRTG ln
cK
Very SMALL
Kc < 1
Shift to right/
favour product
Shift to left/
favour reactant
Very BIG
Kc > 1
veG veG 
KRTG ln
1cK 1cK
Negative (-ve)
spontaneous
Positive (+ve)
NOT
spontaneous
Relationship bet ∆G, Q and Kc
G, Gibbs free energy
A
B
100% A 100% B
∆G decreases ↓
30 % A
70 % B
Equilibrium mixture
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy
minimum
∆G < 0
∆G < 0
∆G = 0
∆G < 0 product
reactant
G, Gibbs free energy
reactant product∆G < 0
A
B
∆G decreases ↓
100% A 100% B30 % A
70 % B
∆G = 0
Q = K
∆G < 0
Q < K
∆G > 0
∆G < 0
Q > K
∆G > 0
A ↔ B A ↔ B
Equilibrium mixture
Predict will rxn occur with ΔG and Kc
Relationship bet ∆G and Kc
G, Gibbs free energy
A
B
100%
A
100%
B
∆G decreases ↓
30 % A
70 % B
Equilibrium mix close to product
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy minimum
∆G < 0
∆G < 0
∆G = 0
∆G < -10
Kc > 1
A ↔ B A ↔ B
G, Gibbs free energy
A
B
∆G decreases ↓
∆G < -100
100%
A
100%
B
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc > 1Equilibrium mix close to product
10 % A
90 % B
∆G < 0
∆G < 0 ∆G = 0
∆G very –ve → Kc > 1 → (more product/close to completion)∆G –ve → Kc > 1 → (more product > reactant)
A ↔ B
G, Gibbs free energy
100%
A
100%
B
A
B
∆G +ve → Kc < 1 → (more reactant > product)
∆G > +10
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc < 1
∆G increases ↑
70 % A
30 % B
Equilibrium mix close to reactant
∆G < 0
∆G = 0
A ↔ B
G, Gibbs free energy
∆G more +ve → Kc < 1 → (All reactant / no product at all)
A
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc < 1100%
A
100%
B
Equilibrium mix close to reactant/ No reaction.
∆G > +100
B
90 % A
10 % B
∆G increases ↑
∆G = 0
∆G < 0
reactant
reactant
reactant
reactant
productproduct
product product
Relationship bet ∆G and Kc
shift to left (reactant)
shift to right (product)
G, Gibbs free energy
A
B
100%
A
100%
B
∆G decreases ↓
30 % A
70 % B
Equilibrium mixture
∆G < 0
∆G = 0 (Equilibrium)
↓
Free energy minimum
∆G < 0
∆G < 0
∆G = 0
Free energy system is lowered on the way to equilibrium
Rxn proceed to minimum free energy ∆G = 0
System seek lowest possible free energy
Product have lower free energy than reactant
∆G < -10
Kc > 1
A ↔ B A ↔ B
G, Gibbs free energy
A
B
∆G decreases ↓
∆G < -100
100%
A
100%
B
∆G = 0 (Equilibrium)
↓
Free energy minimum
Kc > 1Equilibrium mixture
10 % A
90 % B
∆G < 0
∆G < 0 ∆G = 0
∆G very –ve → Kc > 1 → (All product/close to completion)∆G –ve → Kc > 1 → (more product > reactant)
∆G
∆G = 0
∆G > 0
∆G < 0
No reaction/most reactants
Kc <1
Complete rxn/Most products
Kc > 1
Kc = 1 (Equilibrium)
Reactants = Products
reactant
reactant
ΔGθ Kc Eq mixture
ΔGθ = + 200 9 x 10-36 Reactant
ΔGθ = + 10 2 x 1-2 Mixture
ΔGθ = 0 Kc = 1 Equilibrium
ΔGθ = - 10 5 x 101 Mixture
ΔGθ = - 200 1 x 1035 Products
298314.8
)212000(
ln





RT
G
Kc
Zn ↔ Zn2+ + 2e Eθ = +0.76
Cu2+ + 2e ↔ Cu Eθ = +0.34
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Cu Voltaic Cell
-e -e
Zn/Cu half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 +0.17
Cu2+ + 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
cellnFEG  
E cell with ∆G
F = Faraday constant
(96 500 Cmol-1)
n = number electron
cellnFEG  
kJJG
G
212212300
10.1965002




∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn SpontaneouscKRTG ln 
Equilibrium
constant
Gas constant, 8.314
∆G with Kc
cKRTG ln  37
103.1 cK
Favour products
Zn ↔ Zn2+ + 2e Eθ = +0.76
2Ag++2e ↔ 2Ag Eθ = +0.80
Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq) | Ag (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Ag Voltaic Cell
-e -e
Zn/Ag half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.76) = +1.56V
Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V
Ag+ + e ↔ Ag(cathode) Eθ = +0.80V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Ag+ + e ↔ Ag Eθ = +0.80V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn - 0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag + 0.80
1/2Br2 + e- ↔ Br- +1.07
+
+1.56 V
Ag
Eθ
Zn/Ag = +1.56V
Ag+
-
-
-
-
+
+
+
+
Zn
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
301301000
56.1965002




∆G with Kc
cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
cKRTG ln 
298314.8
)301000(
ln





RT
G
Kc
52
105.3 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
Favour products
Mn ↔ Mn2+ + 2e Eθ = +1.19
Ni2+ + 2e ↔ Ni Eθ = -0.26
Mn + Ni2+ → Mn2+ + Ni Eθ = +0.93V
Mn half cell (-ve)
Oxidation
Ni half cell (+ve)
Reduction
Anode Cathode
Mn(s) | Mn2+
(aq) || Ni2+
(aq) | Ni (s)
Cell diagram
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Mn/Ni Voltaic Cell
-e -e
Mn/Ni half cells
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = -0.26 – (-1.19) = +0.93V
Mn 2+ + 2e ↔ Mn (anode) Eθ = -1.19V
Ni2+ + 2e ↔ Ni (cathode) Eθ = -0.26V
Std electrode potential as std reduction potential
Find Eθ
cell (use reduction potential)Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Mn 2+ + 2e ↔ Mn Eθ = -1.19V
Ni2+ + 2e ↔ Ni Eθ = -0.26V
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni - 0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
+
+0.93 V
Eθ
Mn/Ni = +0.93V
Ni2+
-
-
-
-
NiMn
+
+
+
+Mn2+
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
179179490
93.0965002




cKRTG ln 
298314.8
)179000(
ln





RT
G
Kc
cKRTG ln 
∆G with Kc
Gas constant, 8.314 Equilibrium
constant
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
31
102.2 cK
Favour products
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
H+ + e- ↔ H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2S +0.17
Cu2+ + 2e- ↔ Cu +0.34
Cu ↔ Cu2+ + 2e Eθ = -0.34
2H+ + 2e ↔ H2 Eθ = +0.00
Cu + 2H+→ Cu2+ +H2 Eθ = -0.34V
Rxn bet Cu + H+
Will it happen ?
Eθ
= -0.34V
(NON spontaneous)
О
Cu(s) | Cu2+
(aq) || H+ H2 | Pt (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (+0.34) = -0.34V
Eθ
= -0.34V
(NON spontaneous)
О
Rxn not feasible
Determine spontaneity rxn. Will it HAPPEN ?
Find Eθ
cell (use reduction potential)
Eθ
Cu/H+ = - 0.34V
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
6565620
34.0965002




cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
∆G with Kc
cKRTG ln 
298314.8
)65000(
ln





RT
G
Kc
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
12
104 
cK
Favour reactants
-0.34 V
acid
copper
Predicting will rxn occur with ΔG, E cell and Kc
+
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
H+ + e- ↔ H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2S +0.17
Cu2+ + 2e- ↔ Cu +0.34
Au3+ + 3e- ↔ Au +1.58
Rxn bet Au + H+
Will it happen ?
Eθ
= -1.58 V
(NON spontaneous)
О
Au(s) | Au3+
(aq) || H+ H2 | Pt (s)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.00 – (+1.58) = -1.58V
Eθ
= - 1.58 V
(NON spontaneous)
О
Rxn not feasible
Determine spontaneity rxn. Will it HAPPEN ?
Find Eθ
cell (use reduction potential)
Eθ
Au/H+ = - 1.58V
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
914914820
58.1965006




cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
∆G with Kc
cKRTG ln 
298314.8
)914000(
ln





RT
G
Kc
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
50
104 
cK
Kc too small – No reaction at all
-1.58 V
acid
gold
2Au ↔ 2Au3+ + 6e Eθ = -1.58
6H+ + 6e ↔ 3H2 Eθ = 0.00
2Au + 6H+ → 2Au3+ + 3H2 Eθ = -1.58V
Predicting will rxn occur with ΔG, E cell and Kc
+
Eθ
= - 0.20 V
(NON spontaneous)
(Oxidation) (Reduction)
Anode Cathode
Find Eθ
cell (use formula)
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = 0.34 – (0.54) = - 0.20V
Eθ
= - 0.20 V
(NON spontaneous)
Determine spontaneity rxn. Will it HAPPEN ?
Find Eθ
cell (use reduction potential)
Eθ
Cu2+/I- = - 0.20V
E cell with ∆G
cellnFEG  
n = number electron F = Faraday constant
(96 500 Cmol-1)
cellnFEG  
kJJG
G
3838600
20.0965002




cKRTG ln 
Gas constant, 8.314 Equilibrium
constant
∆G with Kc
cKRTG ln 
298314.8
)38000(
ln





RT
G
Kc
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
7
102.2 
cK
-1.58 V
Cu2+
I-Rxn bet Cu2+ +I-
Will it happen ?
2I- ↔ I2 + 2e Eθ = -0.54
Cu2+ + 2e ↔ Cu Eθ = +0.34
2I- + Cu2+→ Cu + I2 Eθ = -0.20V
Pt(s) | I-, I2 || Cu2+
(aq) | Cu (s)
Favour reactants
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
I2 + 2e- ↔ I- +0.54
Rxn not feasible
О
О
- 0.20 V
Predicting will rxn occur with ΔG, E cell and Kc
Will I- oxidize
Cu 2+ to Cu
Click here to view free energy
Predicting Spontaneity of Rxn
Thermodynamic, ΔG Equilibrium, Kc
 1cK
 1cK
KRTG ln
G
veG 
cK
1cK
Energetically
favourable
0G
Predicting rxn will occur?
N2(g) + 3H2(g) ↔ 2NH3(g)
H2O(l) ↔ H+
(aq)+ OH-
(aq)
Shift toward
reactants
Energetically
unfavourable
Non spontaneous
Mixture
reactant/productEquilibrium
veG  Spontaneous Shift toward
product
79G
33G
6
10G
14
101 
cK
5
105cK
Fe(s) + 3O2(g) ↔ 2Fe2O3(s)
261
101cK
Shift toward
reactants
Energetically
unfavourable
Shift toward
product
Energetically
favourable
Energetically
favourable
Kinetically unfavourable/(stable)
Rate too slow due to HIGH activation energy
Rusting Process
Energy barrier
Shift toward
product
Click here for notes
cellnFEG  
Cell Potential
cellE
0cellE
0cellE
0cellE
0cellE
0cellE
0cellE
Eθ
= +0.44V
IB Questions
Esterification produce ethyl ethanoate. ΔG = -4.38kJmol-1 Cal Kc
CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l)
Kc = 5.9
cKRTG ln
RT
G
Kc

ln
29831.8
4380
ln


cK
2
?cK
NO oxidized to NO2. Kc = 1.7 x 1012. Cal ∆G at 298K1
3 4
2NO + O2 ↔ NO2 ?G
cKRTG ln
11
12
7.6969772
)107.1ln(298314.8



kJmolJmolG
G
Predict if iron react with HCI in absence air. Cal E cell , ∆G and Kc
Oxidized sp ↔ Reduced sp Eθ/V
Fe2+ + 2e- ↔ Fe -0.44
2H+ + 2e- ↔ H2 0.00
O2 +2H2O+4e ↔ 4OH- +0.40
Fe2+ + 2e- ↔ Fe -0.44
2H+ + 2e- ↔ H2 0.00
О
О
Fe ↔ Fe2+ + 2e Eθ = +0.44
2H+ + 2e ↔ H2 Eθ = 0.00V
Fe + 2H+ → Fe2+ + H2 Eθ = +0.44V
cellnFEG  
kJJG
G
8584900
44.0965002




cKRTG ln 
298314.8
)85000(
ln





RT
G
Kc
14
108.7 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
Fe2+ + 2e- ↔ Fe -0.44
O2 +2H2O+4e ↔ 4OH- +0.40
2Fe ↔ 2Fe2+ + 4e Eθ = +0.44
O2+2H2O+4e ↔ 4OH- Eθ = +0.40
2Fe +O2 +2H2O→2Fe2++4OH- Eθ = +0.84V
Eθ
= +0.84V
Oxidized sp ↔ Reduced sp Eθ/V
Fe2+ + 2e- ↔ Fe -0.44
2H+ + 2e- ↔ H2 0.00
O2 +2H2O+4e ↔ 4OH- +0.40
Predict iron react HCI in presence of air. Cal E cell , ∆G and Kc
О
О
cellnFEG  
kJJG
G
324324000
84.0965004




cKRTG ln 
298314.8
)324000(
ln





RT
G
Kc
56
108.2 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn SpontaneousRusting is spontaneous
x 2
О
О
О
О
Predict if manganate will oxidize chloride ion?
MnO2 + 4H+ + 2CI- → Mn2+ + 2H2O + CI2
5
MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
2CI- ↔ CI2 + 2e Eθ = -1.36
MnO2 + 4H+ + 2e ↔ Mn2+ + 2H2O Eθ = +1.23
MnO2 + 4H++2CI- → Mn2++2H2O+CI2 Eθ= -0.13V
Eθ
= -0.13V
Oxidized sp ↔ Reduced sp Eθ/V
Cr2O7
2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33
MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
Predict if MnO4
- able to oxidize aq CI- to CI2
2MnO4 + 16H+ + 10CI- → 2Mn2+ + 8H2O + 5CI2
О
О
Oxidized sp ↔ Reduced sp Eθ/V
Cr2O7
2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33
MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
О
О
2CI- ↔ CI2 + 2e Eθ = -1.36
MnO4
- + 8H+ + 5e ↔ Mn2+ + 4H2O Eθ = +1.51
2MnO4 + 16H++10CI- → 2Mn2++8H2O+5CI2 Eθ= +0.15V
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
Eθ
= +0.15V
IB Questions
cellnFEG  
kJJG
G
2525000
13.0965002




cKRTG ln 
298314.8
)25000(
ln





RT
G
Kc
5
105.4 
cK
∆G +ve, E -ve, K < 1
∆G >0, E < 0, K < 1
↓
Rxn Non Spontaneous
6
cellnFEG  
kJJG
G
144144750
15.09650010




cKRTG ln 
298314.8
)144000(
ln





RT
G
Kc
25
105.1 cK
∆G –ve, E +ve, K > 1
∆G <0, E > 0, K > 1
↓
Rxn Spontaneous
x 5
x 2
О
О
О
О
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

More Related Content

What's hot

Le chatelier’s principle
Le chatelier’s principleLe chatelier’s principle
Le chatelier’s principlemkappel
 
Electrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran ParambadathElectrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran ParambadathSurendran Parambadath
 
Reductive alkylation
Reductive alkylationReductive alkylation
Reductive alkylationKomal Daipule
 
enzyme catalyzed reactions
enzyme catalyzed reactionsenzyme catalyzed reactions
enzyme catalyzed reactionspriyaswain27
 
2012 Orbital Hybrization, Sigma and Pi Bonds
2012 Orbital Hybrization, Sigma and Pi Bonds2012 Orbital Hybrization, Sigma and Pi Bonds
2012 Orbital Hybrization, Sigma and Pi BondsDavid Young
 
K.revathi the steady state approximation
K.revathi the steady state approximationK.revathi the steady state approximation
K.revathi the steady state approximationDiscover for new
 
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...Lawrence kok
 
Metal clusters smith2017
Metal clusters smith2017Metal clusters smith2017
Metal clusters smith2017ahlam50
 
Le châtelier’s principle
Le châtelier’s principleLe châtelier’s principle
Le châtelier’s principlegbsliebs2002
 
Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...
Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...
Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...Bapi Mondal
 
FRIEDEL CRAFT REACTIONS
FRIEDEL CRAFT REACTIONSFRIEDEL CRAFT REACTIONS
FRIEDEL CRAFT REACTIONSLESLINDANIEL
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumArunesh Gupta
 
Lecture 18.2b- Le Chatelier's Principle
Lecture 18.2b- Le Chatelier's PrincipleLecture 18.2b- Le Chatelier's Principle
Lecture 18.2b- Le Chatelier's PrincipleMary Beth Smith
 

What's hot (20)

Le chatelier’s principle
Le chatelier’s principleLe chatelier’s principle
Le chatelier’s principle
 
Electrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran ParambadathElectrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran Parambadath
 
Reductive alkylation
Reductive alkylationReductive alkylation
Reductive alkylation
 
enzyme catalyzed reactions
enzyme catalyzed reactionsenzyme catalyzed reactions
enzyme catalyzed reactions
 
2012 Orbital Hybrization, Sigma and Pi Bonds
2012 Orbital Hybrization, Sigma and Pi Bonds2012 Orbital Hybrization, Sigma and Pi Bonds
2012 Orbital Hybrization, Sigma and Pi Bonds
 
Gases
Gases Gases
Gases
 
The Shapes Of Molecules
The Shapes Of MoleculesThe Shapes Of Molecules
The Shapes Of Molecules
 
steric effect.pptx
steric effect.pptxsteric effect.pptx
steric effect.pptx
 
K.revathi the steady state approximation
K.revathi the steady state approximationK.revathi the steady state approximation
K.revathi the steady state approximation
 
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical Isomer and ...
 
Metal clusters smith2017
Metal clusters smith2017Metal clusters smith2017
Metal clusters smith2017
 
Le châtelier’s principle
Le châtelier’s principleLe châtelier’s principle
Le châtelier’s principle
 
Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...
Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...
Deactivation and regeneration of catalysts and heterogeneous reaction kinetic...
 
FRIEDEL CRAFT REACTIONS
FRIEDEL CRAFT REACTIONSFRIEDEL CRAFT REACTIONS
FRIEDEL CRAFT REACTIONS
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Molecular Orbital Theory
Molecular Orbital Theory  Molecular Orbital Theory
Molecular Orbital Theory
 
Inductive effects
Inductive effectsInductive effects
Inductive effects
 
Lecture 18.2b- Le Chatelier's Principle
Lecture 18.2b- Le Chatelier's PrincipleLecture 18.2b- Le Chatelier's Principle
Lecture 18.2b- Le Chatelier's Principle
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 

Viewers also liked

IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcLawrence kok
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyLawrence kok
 
Tang 01b enthalpy, entropy, and gibb's free energy
Tang 01b  enthalpy, entropy, and gibb's free energyTang 01b  enthalpy, entropy, and gibb's free energy
Tang 01b enthalpy, entropy, and gibb's free energymrtangextrahelp
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyLawrence kok
 
Partial gibbs free energy and gibbs duhem equation
Partial gibbs free energy and gibbs duhem equationPartial gibbs free energy and gibbs duhem equation
Partial gibbs free energy and gibbs duhem equationSunny Chauhan
 
Chemical Thermodynamics
Chemical ThermodynamicsChemical Thermodynamics
Chemical ThermodynamicsLALIT SHARMA
 
Excess gibbs free energy models
Excess gibbs free energy modelsExcess gibbs free energy models
Excess gibbs free energy modelsSunny Chauhan
 
Lecture 18.4- Free Energy
Lecture 18.4- Free EnergyLecture 18.4- Free Energy
Lecture 18.4- Free EnergyMary Beth Smith
 
2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams
 2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams 2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams
2006 E.C. aait materials i regular chapter 6 introduction to phase diagramsfisehaye tium
 
Chem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIIIChem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIIILumen Learning
 
Chem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VIIChem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VIILumen Learning
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldLawrence kok
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyLawrence kok
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingLawrence kok
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionLawrence kok
 

Viewers also liked (20)

IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and Entropy
 
Tang 01b enthalpy, entropy, and gibb's free energy
Tang 01b  enthalpy, entropy, and gibb's free energyTang 01b  enthalpy, entropy, and gibb's free energy
Tang 01b enthalpy, entropy, and gibb's free energy
 
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontanietyIB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
IB Chemistry on Gibbs Free Energy vs Entropy on spontaniety
 
Partial gibbs free energy and gibbs duhem equation
Partial gibbs free energy and gibbs duhem equationPartial gibbs free energy and gibbs duhem equation
Partial gibbs free energy and gibbs duhem equation
 
Chemical Thermodynamics
Chemical ThermodynamicsChemical Thermodynamics
Chemical Thermodynamics
 
FREE ENERGY
FREE ENERGYFREE ENERGY
FREE ENERGY
 
Excess gibbs free energy models
Excess gibbs free energy modelsExcess gibbs free energy models
Excess gibbs free energy models
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Lecture 18.4- Free Energy
Lecture 18.4- Free EnergyLecture 18.4- Free Energy
Lecture 18.4- Free Energy
 
2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams
 2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams 2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams
2006 E.C. aait materials i regular chapter 6 introduction to phase diagrams
 
Biological thermodynamics
Biological thermodynamicsBiological thermodynamics
Biological thermodynamics
 
Chem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIIIChem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIII
 
Chem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VIIChem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VII
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 

Similar to Relationship between Gibbs free energy change, equilibrium constant and cell potential

F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibriaMithil Fal Desai
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.Lawrence kok
 
Ch19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptCh19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptHosamAhmed35
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellLawrence kok
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistrySundar Singh
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
Unit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumUnit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumHikaShasho
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.Lawrence kok
 
12 Entropy
12 Entropy12 Entropy
12 Entropyjanetra
 
Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01Cleophas Rwemera
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesLawrence kok
 
Chapter2烷烃
Chapter2烷烃Chapter2烷烃
Chapter2烷烃superxuds
 
Chapter2 140330083641-phpapp02
Chapter2 140330083641-phpapp02Chapter2 140330083641-phpapp02
Chapter2 140330083641-phpapp02Cleophas Rwemera
 
4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.pptNarenova
 
Ch17 hrw rxn kinetics
Ch17 hrw rxn kineticsCh17 hrw rxn kinetics
Ch17 hrw rxn kineticsTiffany Le
 
Tang 03 equilibrium law - keq 2
Tang 03   equilibrium law - keq 2Tang 03   equilibrium law - keq 2
Tang 03 equilibrium law - keq 2mrtangextrahelp
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxFathiShokry
 

Similar to Relationship between Gibbs free energy change, equilibrium constant and cell potential (20)

F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibria
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
Lec39post.pdf
Lec39post.pdfLec39post.pdf
Lec39post.pdf
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
 
Ch19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptCh19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.ppt
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
Unit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibriumUnit-6.pptEquilibrium concept and acid-base equilibrium
Unit-6.pptEquilibrium concept and acid-base equilibrium
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
12 Entropy
12 Entropy12 Entropy
12 Entropy
 
Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01Ch21 130105202245-phpapp01
Ch21 130105202245-phpapp01
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
 
Chapter2烷烃
Chapter2烷烃Chapter2烷烃
Chapter2烷烃
 
Chapter2 140330083641-phpapp02
Chapter2 140330083641-phpapp02Chapter2 140330083641-phpapp02
Chapter2 140330083641-phpapp02
 
4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.ppt
 
Ch17 hrw rxn kinetics
Ch17 hrw rxn kineticsCh17 hrw rxn kinetics
Ch17 hrw rxn kinetics
 
Tang 03 equilibrium law - keq 2
Tang 03   equilibrium law - keq 2Tang 03   equilibrium law - keq 2
Tang 03 equilibrium law - keq 2
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsx
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 

Relationship between Gibbs free energy change, equilibrium constant and cell potential

  • 1. http://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Gibbs Free Energy Change, Equilibrium and Cell Potential
  • 2. cellnFEG   Relationship between Energetics and Equilibrium cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G Relationship bet ∆G, Kc and E cell cellnFEG   STHG  cKRTG ln  cK Relationship between Energetics and Cell Potential  G cellE Gibbs free energy change Cell potential F = Faraday constant (96 500 Cmol-1) n = number electron Relationship bet ∆G, Kc and Ecell ΔGθ Kc Eθ/V Extent of rxn > 0 < 1 < 0 No Reaction Non spontaneous ΔGθ = 0 Kc = 1 0 Equilibrium Mix reactant/product < 0 > 1 > 0 Reaction complete Spontaneous ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactants ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products Relationship bet ∆G and Kc shift to left (reactant) shift to right (products) cellE  G cK K nF RT E cell ln
  • 3. Magnitude of Kc Extend of reaction How far rxn shift to right or left? Not how fast cK Position of equilibrium cK Temp dependent Extend of rxn Not how fast Shift to left/ favour reactant Shift to right/ favour product cK Relationship between Equilibrium and Energetics cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G cK G Energetically Thermodynamically Favourable/feasible ΔGθ ln K Kc Eq mixture ΔGθ -ve < 0 Positive ( + ) Kc > 1 Product (Right) ΔGθ +ve > 0 Negative ( - ) Kc < 1 Reactant (left) ΔGθ = 0 0 Kc = 1 Equilibrium Measure work available from system Sign predict spontaneity of rxn Negative (-ve) spontaneous Positive (+ve) NOT spontaneous veG  veG  NOT favourable Energetically favourable Product formation NO product cKRTG ln 
  • 4. Magnitude of Kc Extend of reaction How far rxn shift to right or left? Not how fast cK Position of equilibrium cK Temp dependent Extend of rxn Not how fast Shift to left/ favour reactant Shift to right/ favour product cK Relationship between Equilibrium and Energetics cKRTG ln  STHG  Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H G cK ΔGθ ln K Kc Eq mixture ΔGθ -ve < 0 Positive ( + ) Kc > 1 Product (Right) ΔGθ +ve > 0 Negative ( - ) Kc < 1 Reactant (left) ΔGθ = 0 0 Kc = 1 Equilibrium cKRTG ln  STHG  ∆Hsys ∆Ssys ∆Gsys Description - + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, All Temp + - ∆G = ∆H - T∆S ∆G = + ve Non spontaneous, All Temp + + ∆G = ∆H - T∆S ∆G = - ve Spontaneous, High ↑ Temp - - ∆G = ∆H - T∆S ∆G = - ve Spontaneous, Low ↓ Temp Relationship bet ∆G and Kc
  • 5. G Energetically Thermodynamically Favourable/feasible Sign predict spontaneity of rxn veG  veG  NOT favourable Energetically favourable Product formation NO product KRTG ln Predict will rxn occur with ΔG and Kc cK Very SMALL Kc < 1 Shift to right/ favour product Shift to left/ favour reactant Very BIG Kc > 1 veG veG  KRTG ln 1cK 1cK Negative (-ve) spontaneous Positive (+ve) NOT spontaneous Relationship bet ∆G and Kc ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactant ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products shift to left (reactant) shift to right (product) G, Gibbs free energy A Mixture composition B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mixture ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 Free energy system is lowered on the way to equilibrium Rxn proceed to minimum free energy ∆G = 0 System seek lowest possible free energy Product have lower free energy than reactant ∆G < 0 product reactant
  • 6. G Energetically Thermodynamically Favourable/feasible Sign predict spontaneity of rxn veG  veG  NOT favourable Energetically favourable Product formation NO product KRTG ln cK Very SMALL Kc < 1 Shift to right/ favour product Shift to left/ favour reactant Very BIG Kc > 1 veG veG  KRTG ln 1cK 1cK Negative (-ve) spontaneous Positive (+ve) NOT spontaneous Relationship bet ∆G, Q and Kc G, Gibbs free energy A B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mixture ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 ∆G < 0 product reactant G, Gibbs free energy reactant product∆G < 0 A B ∆G decreases ↓ 100% A 100% B30 % A 70 % B ∆G = 0 Q = K ∆G < 0 Q < K ∆G > 0 ∆G < 0 Q > K ∆G > 0 A ↔ B A ↔ B Equilibrium mixture Predict will rxn occur with ΔG and Kc
  • 7. Relationship bet ∆G and Kc G, Gibbs free energy A B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mix close to product ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 ∆G < -10 Kc > 1 A ↔ B A ↔ B G, Gibbs free energy A B ∆G decreases ↓ ∆G < -100 100% A 100% B ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc > 1Equilibrium mix close to product 10 % A 90 % B ∆G < 0 ∆G < 0 ∆G = 0 ∆G very –ve → Kc > 1 → (more product/close to completion)∆G –ve → Kc > 1 → (more product > reactant) A ↔ B G, Gibbs free energy 100% A 100% B A B ∆G +ve → Kc < 1 → (more reactant > product) ∆G > +10 ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc < 1 ∆G increases ↑ 70 % A 30 % B Equilibrium mix close to reactant ∆G < 0 ∆G = 0 A ↔ B G, Gibbs free energy ∆G more +ve → Kc < 1 → (All reactant / no product at all) A ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc < 1100% A 100% B Equilibrium mix close to reactant/ No reaction. ∆G > +100 B 90 % A 10 % B ∆G increases ↑ ∆G = 0 ∆G < 0 reactant reactant reactant reactant productproduct product product
  • 8. Relationship bet ∆G and Kc shift to left (reactant) shift to right (product) G, Gibbs free energy A B 100% A 100% B ∆G decreases ↓ 30 % A 70 % B Equilibrium mixture ∆G < 0 ∆G = 0 (Equilibrium) ↓ Free energy minimum ∆G < 0 ∆G < 0 ∆G = 0 Free energy system is lowered on the way to equilibrium Rxn proceed to minimum free energy ∆G = 0 System seek lowest possible free energy Product have lower free energy than reactant ∆G < -10 Kc > 1 A ↔ B A ↔ B G, Gibbs free energy A B ∆G decreases ↓ ∆G < -100 100% A 100% B ∆G = 0 (Equilibrium) ↓ Free energy minimum Kc > 1Equilibrium mixture 10 % A 90 % B ∆G < 0 ∆G < 0 ∆G = 0 ∆G very –ve → Kc > 1 → (All product/close to completion)∆G –ve → Kc > 1 → (more product > reactant) ∆G ∆G = 0 ∆G > 0 ∆G < 0 No reaction/most reactants Kc <1 Complete rxn/Most products Kc > 1 Kc = 1 (Equilibrium) Reactants = Products reactant reactant ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactant ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products
  • 9. 298314.8 )212000( ln      RT G Kc Zn ↔ Zn2+ + 2e Eθ = +0.76 Cu2+ + 2e ↔ Cu Eθ = +0.34 Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Cu Voltaic Cell -e -e Zn/Cu half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Cu2+ + 2e ↔ Cu (cathode) Eθ = +0.34V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ - - - - Zn Cu + + + + cellnFEG   E cell with ∆G F = Faraday constant (96 500 Cmol-1) n = number electron cellnFEG   kJJG G 212212300 10.1965002     ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn SpontaneouscKRTG ln  Equilibrium constant Gas constant, 8.314 ∆G with Kc cKRTG ln  37 103.1 cK Favour products
  • 10. Zn ↔ Zn2+ + 2e Eθ = +0.76 2Ag++2e ↔ 2Ag Eθ = +0.80 Zn + Ag+ → Zn 2+ + Ag Eθ = +1.56V Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq) | Ag (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Ag Voltaic Cell -e -e Zn/Ag half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.76) = +1.56V Zn 2+ + 2e ↔ Zn (anode) Eθ = -0.76V Ag+ + e ↔ Ag(cathode) Eθ = +0.80V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Ag+ + e ↔ Ag Eθ = +0.80V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn - 0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag + 0.80 1/2Br2 + e- ↔ Br- +1.07 + +1.56 V Ag Eθ Zn/Ag = +1.56V Ag+ - - - - + + + + Zn E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 301301000 56.1965002     ∆G with Kc cKRTG ln  Gas constant, 8.314 Equilibrium constant cKRTG ln  298314.8 )301000( ln      RT G Kc 52 105.3 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous Favour products
  • 11. Mn ↔ Mn2+ + 2e Eθ = +1.19 Ni2+ + 2e ↔ Ni Eθ = -0.26 Mn + Ni2+ → Mn2+ + Ni Eθ = +0.93V Mn half cell (-ve) Oxidation Ni half cell (+ve) Reduction Anode Cathode Mn(s) | Mn2+ (aq) || Ni2+ (aq) | Ni (s) Cell diagram Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Mn/Ni Voltaic Cell -e -e Mn/Ni half cells Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = -0.26 – (-1.19) = +0.93V Mn 2+ + 2e ↔ Mn (anode) Eθ = -1.19V Ni2+ + 2e ↔ Ni (cathode) Eθ = -0.26V Std electrode potential as std reduction potential Find Eθ cell (use reduction potential)Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Mn 2+ + 2e ↔ Mn Eθ = -1.19V Ni2+ + 2e ↔ Ni Eθ = -0.26V Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni - 0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 + +0.93 V Eθ Mn/Ni = +0.93V Ni2+ - - - - NiMn + + + +Mn2+ E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 179179490 93.0965002     cKRTG ln  298314.8 )179000( ln      RT G Kc cKRTG ln  ∆G with Kc Gas constant, 8.314 Equilibrium constant ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous 31 102.2 cK Favour products
  • 12. Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 H+ + e- ↔ H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2S +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu ↔ Cu2+ + 2e Eθ = -0.34 2H+ + 2e ↔ H2 Eθ = +0.00 Cu + 2H+→ Cu2+ +H2 Eθ = -0.34V Rxn bet Cu + H+ Will it happen ? Eθ = -0.34V (NON spontaneous) О Cu(s) | Cu2+ (aq) || H+ H2 | Pt (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (+0.34) = -0.34V Eθ = -0.34V (NON spontaneous) О Rxn not feasible Determine spontaneity rxn. Will it HAPPEN ? Find Eθ cell (use reduction potential) Eθ Cu/H+ = - 0.34V E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 6565620 34.0965002     cKRTG ln  Gas constant, 8.314 Equilibrium constant ∆G with Kc cKRTG ln  298314.8 )65000( ln      RT G Kc ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 12 104  cK Favour reactants -0.34 V acid copper Predicting will rxn occur with ΔG, E cell and Kc +
  • 13. Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 H+ + e- ↔ H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2S +0.17 Cu2+ + 2e- ↔ Cu +0.34 Au3+ + 3e- ↔ Au +1.58 Rxn bet Au + H+ Will it happen ? Eθ = -1.58 V (NON spontaneous) О Au(s) | Au3+ (aq) || H+ H2 | Pt (s) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.00 – (+1.58) = -1.58V Eθ = - 1.58 V (NON spontaneous) О Rxn not feasible Determine spontaneity rxn. Will it HAPPEN ? Find Eθ cell (use reduction potential) Eθ Au/H+ = - 1.58V E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 914914820 58.1965006     cKRTG ln  Gas constant, 8.314 Equilibrium constant ∆G with Kc cKRTG ln  298314.8 )914000( ln      RT G Kc ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 50 104  cK Kc too small – No reaction at all -1.58 V acid gold 2Au ↔ 2Au3+ + 6e Eθ = -1.58 6H+ + 6e ↔ 3H2 Eθ = 0.00 2Au + 6H+ → 2Au3+ + 3H2 Eθ = -1.58V Predicting will rxn occur with ΔG, E cell and Kc +
  • 14. Eθ = - 0.20 V (NON spontaneous) (Oxidation) (Reduction) Anode Cathode Find Eθ cell (use formula) Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = 0.34 – (0.54) = - 0.20V Eθ = - 0.20 V (NON spontaneous) Determine spontaneity rxn. Will it HAPPEN ? Find Eθ cell (use reduction potential) Eθ Cu2+/I- = - 0.20V E cell with ∆G cellnFEG   n = number electron F = Faraday constant (96 500 Cmol-1) cellnFEG   kJJG G 3838600 20.0965002     cKRTG ln  Gas constant, 8.314 Equilibrium constant ∆G with Kc cKRTG ln  298314.8 )38000( ln      RT G Kc ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 7 102.2  cK -1.58 V Cu2+ I-Rxn bet Cu2+ +I- Will it happen ? 2I- ↔ I2 + 2e Eθ = -0.54 Cu2+ + 2e ↔ Cu Eθ = +0.34 2I- + Cu2+→ Cu + I2 Eθ = -0.20V Pt(s) | I-, I2 || Cu2+ (aq) | Cu (s) Favour reactants Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ I- +0.54 Rxn not feasible О О - 0.20 V Predicting will rxn occur with ΔG, E cell and Kc Will I- oxidize Cu 2+ to Cu
  • 15. Click here to view free energy Predicting Spontaneity of Rxn Thermodynamic, ΔG Equilibrium, Kc  1cK  1cK KRTG ln G veG  cK 1cK Energetically favourable 0G Predicting rxn will occur? N2(g) + 3H2(g) ↔ 2NH3(g) H2O(l) ↔ H+ (aq)+ OH- (aq) Shift toward reactants Energetically unfavourable Non spontaneous Mixture reactant/productEquilibrium veG  Spontaneous Shift toward product 79G 33G 6 10G 14 101  cK 5 105cK Fe(s) + 3O2(g) ↔ 2Fe2O3(s) 261 101cK Shift toward reactants Energetically unfavourable Shift toward product Energetically favourable Energetically favourable Kinetically unfavourable/(stable) Rate too slow due to HIGH activation energy Rusting Process Energy barrier Shift toward product Click here for notes cellnFEG   Cell Potential cellE 0cellE 0cellE 0cellE 0cellE 0cellE 0cellE
  • 16. Eθ = +0.44V IB Questions Esterification produce ethyl ethanoate. ΔG = -4.38kJmol-1 Cal Kc CH3COOH(l) + C2H5OH(l) ↔ CH3COOC2H5(l) + H2O(l) Kc = 5.9 cKRTG ln RT G Kc  ln 29831.8 4380 ln   cK 2 ?cK NO oxidized to NO2. Kc = 1.7 x 1012. Cal ∆G at 298K1 3 4 2NO + O2 ↔ NO2 ?G cKRTG ln 11 12 7.6969772 )107.1ln(298314.8    kJmolJmolG G Predict if iron react with HCI in absence air. Cal E cell , ∆G and Kc Oxidized sp ↔ Reduced sp Eθ/V Fe2+ + 2e- ↔ Fe -0.44 2H+ + 2e- ↔ H2 0.00 O2 +2H2O+4e ↔ 4OH- +0.40 Fe2+ + 2e- ↔ Fe -0.44 2H+ + 2e- ↔ H2 0.00 О О Fe ↔ Fe2+ + 2e Eθ = +0.44 2H+ + 2e ↔ H2 Eθ = 0.00V Fe + 2H+ → Fe2+ + H2 Eθ = +0.44V cellnFEG   kJJG G 8584900 44.0965002     cKRTG ln  298314.8 )85000( ln      RT G Kc 14 108.7 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous Fe2+ + 2e- ↔ Fe -0.44 O2 +2H2O+4e ↔ 4OH- +0.40 2Fe ↔ 2Fe2+ + 4e Eθ = +0.44 O2+2H2O+4e ↔ 4OH- Eθ = +0.40 2Fe +O2 +2H2O→2Fe2++4OH- Eθ = +0.84V Eθ = +0.84V Oxidized sp ↔ Reduced sp Eθ/V Fe2+ + 2e- ↔ Fe -0.44 2H+ + 2e- ↔ H2 0.00 O2 +2H2O+4e ↔ 4OH- +0.40 Predict iron react HCI in presence of air. Cal E cell , ∆G and Kc О О cellnFEG   kJJG G 324324000 84.0965004     cKRTG ln  298314.8 )324000( ln      RT G Kc 56 108.2 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn SpontaneousRusting is spontaneous x 2 О О О О
  • 17. Predict if manganate will oxidize chloride ion? MnO2 + 4H+ + 2CI- → Mn2+ + 2H2O + CI2 5 MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 2CI- ↔ CI2 + 2e Eθ = -1.36 MnO2 + 4H+ + 2e ↔ Mn2+ + 2H2O Eθ = +1.23 MnO2 + 4H++2CI- → Mn2++2H2O+CI2 Eθ= -0.13V Eθ = -0.13V Oxidized sp ↔ Reduced sp Eθ/V Cr2O7 2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33 MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Predict if MnO4 - able to oxidize aq CI- to CI2 2MnO4 + 16H+ + 10CI- → 2Mn2+ + 8H2O + 5CI2 О О Oxidized sp ↔ Reduced sp Eθ/V Cr2O7 2-+ 14H+ + 6e- ↔ 2Cr3+ + 7H2O +1.33 MnO2 +4H+ + 2e- ↔ Mn2+ + 2H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 О О 2CI- ↔ CI2 + 2e Eθ = -1.36 MnO4 - + 8H+ + 5e ↔ Mn2+ + 4H2O Eθ = +1.51 2MnO4 + 16H++10CI- → 2Mn2++8H2O+5CI2 Eθ= +0.15V 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Eθ = +0.15V IB Questions cellnFEG   kJJG G 2525000 13.0965002     cKRTG ln  298314.8 )25000( ln      RT G Kc 5 105.4  cK ∆G +ve, E -ve, K < 1 ∆G >0, E < 0, K < 1 ↓ Rxn Non Spontaneous 6 cellnFEG   kJJG G 144144750 15.09650010     cKRTG ln  298314.8 )144000( ln      RT G Kc 25 105.1 cK ∆G –ve, E +ve, K > 1 ∆G <0, E > 0, K > 1 ↓ Rxn Spontaneous x 5 x 2 О О О О
  • 18. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com