This document discusses clustering dichotomous health care data using the K-means algorithm after transforming the data using Wiener transformation. It begins with an introduction to dichotomous data and the challenges of clustering medical data. It then describes the K-means clustering algorithm and various distance measures used for binary data clustering. The document proposes using Wiener transformation to first transform binary data to real values before applying K-means clustering. It evaluates the results on a lens dataset using inter-cluster and intra-cluster distances, finding the transformed data yields better clusters than the original binary data according to these metrics.