This document summarizes an empirical study comparing several supervised machine learning approaches for word sense disambiguation: Naive Bayes, decision tree, decision list, and support vector machine (SVM). The study used a dataset of 15 words annotated with senses from WordNet and Senseval-3. Each approach was implemented and evaluated based on its accuracy in identifying the correct sense of each word. The results showed that the decision list approach achieved the highest overall accuracy of 69.12%, followed by SVM at 56.11%, naive Bayes at 58.32%, and decision tree at 45.14%. Thus, the study concluded that decision list performed best on this dataset for the task of word sense disambiguation.