SlideShare a Scribd company logo
1 of 41
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
==========
ĐINH THỊ NGỌC MINH
PHÂN PHỐI GIÁ TRỊ
CỦA HÀM PHÂN HÌNH VÀ
ĐẠO HÀM CỦA NÓ
Chuyên ngành: Toán giải tích
Mã số: 60.46.01
LUẬN VĂN THẠC SĨ TOÁN HỌC
Thái Nguyên - 2010
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
MỤC LỤC
LỜI NÓI ĐẦU .......................................................................................................1
Chương 1: Hai định lý cơ bản của Nevanlinna.......................................................3
1.1. Công thức Poison – Jensen..............................................................................3
1.1.1. Định lý..........................................................................................................3
1.1.2. Hệ quả...........................................................................................................6
1.2. Hàm đặc trưng – Định lý cơ bản thứ nhất........................................................7
1.2.1. Định nghĩa ....................................................................................................7
1.2.2. Một số tính chất đơn giản của hàm đặc trưng ...............................................9
1.2.3. Định lý cơ bản thứ nhất.................................................................................9
1.3. Định lý cơ bản thứ hai....................................................................................10
1.3.1. Định lý ( Bất đẳng thức cơ bản)..................................................................10
1.3.2. Bổ đề 1........................................................................................................11
1.3.3. Bổ đề 2........................................................................................................12
1.3.4. Định lý........................................................................................................16
1.3.5. Định nghĩa ..................................................................................................17
1.3.6. Định lý (Quan hệ số khuyết).......................................................................18
1.3.7. Định lý........................................................................................................20
Chương 2: Phân phối giá trị của hàm phân hình và đạo hàm của nó. ...................24
2.1. Sự phân phối giá trị của các hàm phân hình...................................................24
2.1.1. Định nghĩa ..................................................................................................24
2.1.2. Định lý (Milloux)........................................................................................24
2.1.3. Định lý........................................................................................................26
2.1.4. Định lý........................................................................................................28
2.1.5. Bổ đề:..........................................................................................................28
2.2. Phân phối giá trị của hàm phân hình và đạo hàm của nó ...............................32
2.2.8. Định lý........................................................................................................34
2.2.9. Định lý........................................................................................................36
KẾT LUẬN..........................................................................................................38
TÀI LIỆU THAM KHẢO....................................................................................39
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn1
LỜI NÓI ĐẦU
Lý thuyết phân phối giá trị các hàm phân hình (lý thuyết Nevanlinna )
là một trong những hướng nghiên cứu cơ bản của giải tích phức và vẫn đang
thu hút được sự quan tâm rộng rãi của các nhà toán học trên thế giới. Đề tài
luận văn thuộc hướng nghiên cứu nói trên, với mục đích trình bày một số kết
quả gần đây của lý thuyết phân phối giá trị.
Phân phối giá trị của hàm phân hình và đạo hàm của nó là vấn đề
không những được quan tâm trong giải tích phức mà còn có nhiều ứng dụng
trong nghiên cứu các vấn đề khác, chẳng hạn như phương trình vi phân.
Sau quá trình nghiên cứu, tôi đã hoàn thành luận văn với đề tài: “Phân
phối giá trị của hàm phân hình và đạo hàm của nó”. Luận văn gồm phần mở
đầu, hai chương nội dung, phần kết và danh mục tài liệu tham khảo.
Chương1: Trình bày định nghĩa các hàm đặc trưng, hai định lý cơ bản
của Nevanlinna,...
Chương2: Trình bày định nghĩa, định lý, một số kết quả của Milloux và
vấn đề chính của luận văn: Phân phối giá trị của hàm phân hình và đạo hàm
của nó.
Kết quả này có được là nhờ sự hướng dẫn tận tình của GS. TSKH Hà
Huy Khoái. Thầy không chỉ tận tình hướng dẫn mà còn động viên tôi trong
suốt quá trình nghiên cứu và hoàn thành luận văn. Nhân dịp này em xin gửi
lời cảm ơn sâu sắc tới thầy!
Đồng thời, em cũng xin chân thành cảm ơn các thầy cô trong hội đồng
bảo vệ luận văn thạc sỹ đã tạo điều kiện thuận lợi để em vững tin hơn trong
việc chuẩn bị bảo vệ luận văn của mình.
Xin chân thành cảm ơn Đại học Thái Nguyên, Đại học Sư phạm, Khoa
sau đại học của Đại học Sư phạm, Khoa toán cùng các thầy cô giáo đã tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn2
điều kiện tốt nhất cho em học tập cũng như nghiên cứu và hoàn thành luận
văn của mình.
Xin cảm ơn các anh, chị , các bạn học viên lớp cao học Toán_K16 Đại
học Sư phạm Thái Nguyên đã giúp đỡ, chia sẻ kinh nghiệm cùng tôi trong
suốt thời gian viết luận văn.
Tôi xin chân thành cảm ơn gia đình và bạn bè đã cổ vũ, động viên tôi trong
quá trình làm luận văn.
Mặc dù đã rất cố gắng nhưng chắc chắn luận văn sẽ không tránh khỏi
những thiếu sót, vì vậy rất mong được sự đóng góp ý kiến của thầy cô giáo,
các bạn đồng nghiệp, các bạn học viên để luận văn được hoàn chỉnh hơn.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn3
Chương 1
Hai định lý cơ bản của Nevanlinna
1.1. Công thức Poison – Jensen
1.1.1. Định lý
Giả sử  f z là hàm phân hình trong hình tròn  z R , 0 R   , có
các không điểm  1,2,...,a M   ; các cực điểm  1,2,...,b N   trong hình
tròn đó( mỗi không điểm hoặc cực điểm được tính một số lần bằng bội của
nó).
Khi đó, nếu    ; 0 , 0,i
z re r R f z
    ; ta có:
     
   
2 2 2
2 2
0
2 2
1 1
1
log log
2 2 cos
log log .
i
M N
R r
f z f Re d
R Rr r
R z a R z b
R a z R b z


 
  

  
 


  
 
 
 

 
Chứng minh.
+ Bước 1: Trước tiên, giả sử rằng hàm  f z không có không điểm và
cực điểm trong  z R . Ta chứng minh công thức cho trường hợp 0z  .
Theo giả thiết  f z chỉnh hình và khác 0 trong  z R nên  log f z là hàm
chỉnh hình trong hình tròn đó. Theo định lý Cauchy ta có:
     
2
0
1 1
log 0 log log Re
2 2
i
z R
dz
f f z f d
i z



 
   .
Lấy phần thực hai vế ta được:
   
2
0
1
log 0 log Re
2
i
f f d




  .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn4
+ Bước 2: Xét trường hợp , 0.i
z re r
 
Theo công thức Cauchy ta có:
   
1
log log .
2 R
d
f z f
i z


 


Mặt khác, do điểm
2
R
z
có môđun
2 2
R R
R
z r
  nên điểm đó nằm ngoài hình
tròn, do đó:
  2
1
log 0.
2 R
d
f
Ri
z








Từ đó ta có:
   
 
 
  
2
22
2
1 1 1
log log
2
1
log .
2
R
R
f z f d
Ri z
z
R z
f d
i z R z


 
 

 
  


 
 
  
 
  


 


Thay Re , iRe ,i i
d d 
   
     2 2 2
Re 2 cos .i
R z z R Rr r
        
Ta được:
     
2 2 2
2 2
0
1
log log Re .
2 2 cos
i R r
f z f d
R Rr r



  


  
Lấy phần thực hai vế ta được công thức cần chứng minh đối với trường hợp
hàm  f z chỉnh hình và khác không.
+ Bước 3: Giả sử  f z không có không điểm và cực điểm trong
 R  nhưng có thể có không điểm và cực điểm trên biên R  .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn5
(*) Nhận xét:  f z chỉ có hữu hạn không điểm, cực điểm trên biên.
Chứng minh. Giả sử  f z có vô hạn không điểm, cực điểm trên R  .
Do R  compact, tồn tại 0 là điểm giới hạn của tập hợp các không điểm
suy ra 0f  .
(+) Giả sử  f z có vô hạn cực điểm trên  n
 0 : 0lim kn
k
 

 . Do các kn là các cực điểm.
Suy ra 0 là bất thường cốt yếu   f  không phân hình.
Giả sử 0 là một không điểm hoặc cực điểm cấp k trong lân cận 0 ;  f  có
khai triển:
       0 ;f g g      chỉnh hình khác 0 trong lân cận 0 ;
  0log logf    trong lân cận 0 .
Với mỗi 0 là không điểm, cực điểm, ta vẽ vòng tròn tâm 0 bán kính
0  đủ nhỏ.
Xét C : Hợp các cung tròn bán kính  nằm bên trong  R  thay tích
phân trên C, R  tại lân cận 0 bởi cung C .
Suy ra trên chu tuyến mới  f z không có không điểm, cực điểm.
Áp dụng được bước 2.
Tích phân trên chu tuyến mới khác tích phân trên  C R  một đại lượng
là:    
1 1
log 2 0 log
2 2r
   
 
   ,
log 0   khi 0  .
Vậy cho 0  ta được công thức cần chứng minh.
+ Bước 4: Trường hợp tổng quát.
Với các giả thiết như trong định lý ta đặt:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn6
   
 
 
2
1
2
1
,
N
M
R b
R b
f
R a
R a

 

 


  











dễ thấy   0,    bên trong hình tròn R  , nên ta áp dụng được công
thức đã chứng minh trong bước 3.
Mặt khác, các hàm trong hai dấu tích chính là các hàm thực hiện ánh xạ hình
tròn R  lên hình tròn đơn vị, nên môđun của chúng bằng 1 khi R  .
Từ đó, nếu Rei
  thì    f   .
Ta có:
     
2 2 2
2 2
0
1
log log Re .
2 2 cos
i R r
z f d
R Rr r


 
  


  
Từ công thức của hàm    ta được công thức Poisson-Jensen cho trường
hợp tổng quát.
1.1.2. Hệ quả
Trong những giả thiết của Định lý, đồng thời nếu  0 0,f  , ta có:
   
2
1 10
1
log 0 log Re log log .
2
M N
i
a b
f f d
R R

 
 

  
   
Khi  0 0f  hoặc  công thức trên thay đổi chút ít. Thật vậy, nếu  0 0f 
hoặc  0f   hàm  f z có khai triển tại lân cận 0z  dạng:
   ...f z C z
    .
Xét hàm  
 R f z
z
z


  .
Ta thấy  0 0,  , đồng thời khi    Re ,i
f
     . Từ đó ta có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn7
 
2
1 10
1
log log Re log log log
2
M N
i
a b
C f d R
R R

 

 
 
  
     .
(*) Nhận xét: Giả sử  f z là hàm phân hình trong một miền G nào đó. Ta gọi
cấp của hàm  f z tại điểm 0z G , ký hiệu 0zord f , là số nguyên m sao cho
hàm  
 
 0
m
f z
g z
z z


chỉnh hình và khác không tại 0z .
(*) Ví dụ:
(1) 0z là 0 điểm cấp k của  f z   0zord 0f k k  .
(2) 0z là cực điểm cấp k của  f z  0zord f k  .
(3) Tại 0z hàm  f z chỉnh hình, khác 0  0zord 0f  .
Công thức Poisson – Jensen có thể viết dưới dạng:
       
222
2 2
0
1
log log Re ord log
2 Re
i
i
R z R z
f z f f
R zz





 
 
 

 ,
trong đó tổng lấy theo mọi  trong hình tròn  R  .
1.2. Hàm đặc trưng – Định lý cơ bản thứ nhất
1.2.1. Định nghĩa
Giả sử x là số thực dương, ta định nghĩa:
 log ax 0;logxx m

Ta có:
1
log log logx x
x
 
  ,
vì: 1:log 0 log logx x x x
   
1 1
log 0 log 0
x x

   .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn8
0 1:log 0 log 0
1 1 1
log 0 log log log .
x x x
x
x x x


    
    
Như vậy, ta có:
   
 
2 2 2
0 0 0
1 1 1 1
log Re log Re log
2 2 2 Re
i i
i
f d f d d
f
  
 

  
  
 
    .
Đặt    
2
0
1
, log Re
2
i
m R f f d





  .
Giả sử f có các cực điểm  1,vb v n (mỗi cực điểm được tính một số lần
bằng bậc của nó), và các không điểm  1,a M   trong    ; ,z R n t f là
số cực điểm của f trong  z t .
Đặt    
1 0
, log ,
RN
v v
R dt
N R f n t f
b t
   .
Như vậy,
1 0
1 1
, log ,
RM
R dt
N R n t
f f ta 
   
    
   
  .
Khi đó công thức Poisson – Jensen được viết dưới dạng:
     
1 1
log 0 , , , ,f m R f m R N R f N R
f f
   
      
   
     
1 1
, , , , log 0m R f N R f m R N R f
f f
   
       
   
.
Đặt      , , ,T R f m R f N R f  , (1.1)
thì    
1
, , log 0T R f T R f
f
 
  
 
. (1.2)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn9
 ,T R f được gọi là hàm đặc trưng Nevanlinna của f.
1.2.2. Một số tính chất đơn giản của hàm đặc trưng
Giả sử    1 ,..., nf z f z là các hàm phân hình, ta có các bất đẳng thức
sau đây:
(1)    
1 1
, , log
l l
k k
k k
m r f z m r f l
 
 
  
 
  .
(2)    
11
, ,
l l
k k
kk
m r f z m r f

 
 
 
 .
(3)  
1 1
, ,
l l
k k
k k
N r f N r f
 
 
 
 
  .
(4)  
11
, ,
l l
k k
kk
N r f N r f

 
 
 
 .
(5)  
1 1
, , log
l l
k k
k k
T r f T r f l
 
 
  
 
  .
(6)  
11
, ,
l l
k k
kk
T r f T r f

 
 
 
 .
Đặc biệt, với mọi hàm phân hình  f z và mọi a C ta có:
   , , log log2T r f T r f a a
    . (1.3)
1.2.3. Định lý cơ bản thứ nhất
Giả sử  f z là hàm phân hình trong hình tròn  , 0,z R R a  là số
phức tùy ý. Khi đó ta có:
     
1 1
, , , log 0 , ,m R N R T R f f a a R
f a f a

   
           
trong đó  , log log2a R a 
  .
Chứng minh.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn10
Thật vậy, từ (1.1) và (1.2) ta có:
   
1 1 1
, , , , log 0m R N R T R T R f a f a
f a f a f a
     
                 
.
Từ (1.3) ta nhận được đẳng thức cần chứng minh.
(*) Nhận xét :
Từ định nghĩa các hàm Nevanlinna ta thấy rõ ý nghĩa của định lý cơ
bản thứ nhất. Hàm đếm
1
,N R
f a
 
  
được cho bởi công thức :
1
1
, log
M
R
N R
f a a 
 
  
 ,
trong đó a là các nghiệm của phương trình  f z a trong hình tròn z R .
Hàm xấp xỉ
 
2
0
1 1 1
, log
2 Rei
m R d
f a f a




 
 
  
 .
Như vậy, nếu f nhận càng nhiều giá trị gần a (tức là  Rei
f a
 nhỏ) thì hàm
m càng lớn. Như vậy có thể nói tổng trong vế trái của định lý cơ bản thứ nhất
là hàm ‘‘đo độ lớn của tập hợp nghiệm phương trình  f z a ’’ và ‘‘độ lớn
tập hợp tại đó  f z nhận giá trị gần bằng a’’. Trong khi đó vế phải của đẳng
thức trong định lý cơ bản có thể xem là không phụ thuộc a.
Vì thế định lý cơ bản thứ nhất cho thấy rằng hàm phân hình  f z nhận
mỗi giá trị a (và giá trị gần a ) một số lần như nhau.
1.3. Định lý cơ bản thứ hai
1.3.1. Định lý ( Bất đẳng thức cơ bản)
Giả sử  f z là hàm phân hình khác hằng số trong hình tròn  z r ;
1,..., ; 2qa a q  , là các số phức phân biệt. Khi đó ta có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn11
         1
1
, , 2 ,
q
v
v
m r m r a T r f N r S r

     ,
trong đó  1 0N r  , được cho bởi:
     1
1
, 2 , , '
'
N r N r N r f N r f
f
 
   
 
,
 
 1
' 3 1
, log log2 log
' 0
q
v v
f q
S r m r q
f a f


 
    
 
 ,
1
min 0.v
v q
a a


  
  
( Để đơn giản ta giả thiết:  ' 0 0,f  ).
Để chứng minh bất đẳng thức cơ bản trên ta chứng minh một số bổ đề
sau.
1.3.2. Bổ đề 1
Giả sử  g z là hàm phân hình trong hình tròn    , 0 0,z r g  
khi đó ta có:
 
 
 
2
0
1 1 1
, , log log 0
2 i
N r g N r d g
g g re




 
   
 
 .
Chứng minh.
     
1 1 1
, , , , , ,N r g N r T r g m r g T r m r
g g g
      
             
      
   
1 1
, , , ,T r g T r m r g m r
g g
      
         
      
 
 
 
2 2
0 0
1 1 1 1
log log log
0 2 2
i
i
g re d d
g g re
 


 
 
 
 
   
 
 
 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn12
 
 
2
0
1 1
log log
0 2
i
g re d
g




   .
Đặt  
1
1q
v v
F z
f a


 .
1.3.3. Bổ đề 2
Với các giả thiết của định lý, ta có:
   
1
1 3
log log log log2. *
q
q
F z q
f a  
  

  


Chứng minh.
+ Nếu với mọi  ,
3
f a
q


  thì (*) đúng.
Thật vậy với mọi  ta có :
1
1 3 1 3
log log
q
q q
q
f a f a  
 

  
 
 .
 Vế phải của (*) 0
+ Giả sử tồn tại v :
3
vf a
q

  .
Nếu tồn tại  thỏa mãn thì v là duy nhất. Vì nếu ngược lại: ;
3
vf a
q

 
.
3
f a
q


 

2
3
va a
q


   . (vô lý)
Với mọi ;
3
v f a
q


    ,
2
3 3
v vf a a a f a
q
 
 
        .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn13

1 3 1 3 1 1
2 2 2 v
q
q q f af a  
 

.
13
2 2
3
vf a q
qf a



 

.
 
1
1 1 1q
v vv v
F z
f a f a f a  
  
  
 
=
1 1 1 1
1 1
2 2
v
v v v
f a q
f a f a q f af a
   
            
 .
 
1
1 1 1
log log log2 log log log2
q
vv
F z
f a f a f a  
   
 
    
  
 
 
1
1 3
log 1 log log2
q
q
q
f a  
 

   


1
1 3
log log log2
q
q
q
f a  
 

  

 .
(*) Chứng minh định lý:
Lấy
2
0
1
2
d


  hai vế ta được:
 
2 2
10 0
1 1 1 3
log log log log2
2 2
q
i q
F re d d q
f a
 

 
 
  
 

  

  .
   
1
3
, , log log2
q
v
v
q
m r F m r a q



   .
   
1
3
, , log log2
q
v
v
q
m r a m r F q



   .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn14
 
1
1
, ; . . '.
'
1 '
, , , .
'
q
v v
f
m r F m r f F
f f
f f
m r m r m r
f f f a
 
  
 
    
       
     

 
1 1 1
, , ,
1 1
, log 0 , .
m r T r N r
f f f
T r f N r
f f
     
      
     
   
     
   
, , ,
' ' '
f f f
m r T r N r
f f f
     
      
     
 
 
0
, log ,
' ' 0 '
ff f
T r N r
f f f
   
     
   
 
 
0' '
, , , log
' ' 0
ff f f
m r N r N r
f f f f
     
        
     
.
Từ bổ đề một ta có:
 
 
 
 
2
0
' 0' 1
, , log log
' 2 0'
i
i
f re ff f
N r N r d
f f ff re




   
     
   
 .
     
1 '
, , log 0 , ,
f
m r F T r f f N r m r
f f
   
      
   
 
 1
0'
, log
' 0
q
v v
ff
m r
f a f
 
  
 

 
 
 
 
2
0
' 01
log log
2 0'
i
i
f re f
d
ff re




  .
       
1
3
, , , , log log2
q
v
v
q
m r m r a m r m r F q



      
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn15
     
 
 
2
10
1 '
, , log 0 , ,
1 ' 3
log , log log2
2 '
i q
i
v v
f
m r T r f f N r m r
f f
f re f q
d m r q
f af re



 


   
        
   
 
    
 

   
2 2
0 0
1 1
log log '
2 2
i i
f re d f re d
 
 
 
 
  
   
1 1
, , , , '
'
N r N r f N r N r f
f f
    
       
    
.
Vậy:
         
1
, , 2 , , log 0
q
v
v
m r m r a T r f N r f f

    
     
     
1 1
, log ' 0 , ,
1
log 0 , , ' log ' 0
'
N r S r f N r N r f
f f
f N r N r f f
f
   
       
   
 
    
 
       
     1
1
2 , , 2 , , '
'
2 , ,
T r f N r N r f N r f S r
f
T r f N r S r
  
      
  
  
trong đó,      1
1
, 2 , , '
'
N r N r N r f N r f
f
 
   
 
.
Định lý được chứng minh.
(*) Nhận xét:
Có thể chỉ ra rằng  1 0N r  . Thật vậy, giả sử b là một cực điểm cấp k
của hàm  f z trong đĩa  z r .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn16
Khi đó đại lượng log
r
b
được tính k lần trong tổng  ,N r f . Mặt khác, b là
cực điểm cấp  1k  của đạo hàm  'f z . Do đó, đại lượng log
r
b
được tính
 1k  lần trong tổng  , 'N r f . Từ đó suy ra:    2 , , ' 0N r f N r f 
Từ bất đẳng thức cơ bản ta có Định lý cơ bản thứ hai của Nevanlinna.
1.3.4. Định lý
Giả sử r là một số thực dương,  f z là hàm phân hình trong ;
1,..., qa a là các số phức phân biệt. Khi đó ta có:
           1
1
1 , , ,
q
v
v
q T r f N r a N r N r S r

      ,
trong đó:
     
    
1
1
, 2 , , ' .
'
log , log .
N r N r N r f N r f
f
S r o T r f r
 
   
 
 
Chứng minh.
Từ bất đẳng thức cơ bản ta có:
         1
1
, , 2 ,
q
v
v
m r m r a T r f N r S r

     .
Cộng vào hai vế đại lượng    
1
, ,
q
v
v
N r N r a

   ta có:
       
         
1
1
, , , ,
2 , , ,
q
v v
v
q
v
v
N r m r m r a N r a
T r f N r N r a N r S r


         
     


Từ Định lý cơ bản thứ nhất, ta thấy với mọi 1,2,...,v q ;
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn17
       , , , 1v vm r a N r a T r f O   .
Từ đó suy ra:
             1
1
1 , 2 , , ,
q
v
v
q T r f T r f N r a N r N r S r

       .
Tức là:
           1
1
1 , , ,
q
v
v
q T r f N r a N r N r S r

      .
1.3.5. Định nghĩa
Giả sử  f z là hàm phân hình trên mặt phẳng phức  , a , ta đặt.
   
 
 
 
 
, ,
, lim 1 lim
, ,
m r a N r a
a a f
T r f T r f
     .
 , log
r
N r f
b
  ; tổng lấy theo mọi cực điểm b của hàm, b r ; đồng thời
mỗi cực điểm chỉ được tính một lần.
   
 
 
,
, 1 lim
,
N r a
a a f
T r f
     .
   
   
 
, ,
, lim
,
N r a N r a
a a f
T r f
 

  .
 a được gọi là số khuyết của giá trị a.
 a được gọi là chỉ số bội của giá trị a.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn18
1.3.6. Định lý (Quan hệ số khuyết)
Giả sử  f z là hàm phân hình trên  , khi đó tập hợp các giá trị a mà
  0a  cùng lắm là đếm được, đồng thời ta có:
    
   
  2
a a
a a a 
     
     
.
Chứng minh.
Từ định nghĩa suy ra rằng:      a a a    .
Chọn dãy  ,n nr r  sao cho     log ,n nS r O T r f .
Từ Định lý cơ bản thứ hai, với mọi tập hợp gồm q số phức phân biệt
1 2, ,..., qa a a ta có:
            1
1
1 , , , log ,
q
n n v n n n
v
q T r f N r a N r N r O T r f

     
          
1
1
, , 2 , , ' , log ,
'
q
n v n n n n n
v
N r a N r N r N r f N r O T r f
f
 
        
 

        '
1
1
, , , ' , log ,
q
n v n n n n
v
N r a N r f N r f N r O T r f
f
 
     
 
 .
Bất đẳng thức trên có thể viết lại như sau:
         
1
1
1 1 , , , ' , ,
q
n v n n n
v
q O T r f N r a N r f N r f N r
f
 
         
 
 .
Nếu b là một cực điểm cấp k của hàm  f z trong  nz r thì đại lượng
log nr
b
tham gia k lần trong công thức tính  ,nN r  , đồng thời do b là cực
điểm của  'f z cấp  1k  nên đại lượng đó tham gia  1k  lần trong công
thức tính  , 'nN r f . Từ đó, suy ra:
     , ' , ,n n nN r f N r N r    .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn19
Mặt khác, giả sử b là nghiệm bội k của phương trình:   vf z a với v nào đó
1 v q  .
Khi đó, đại lượng log nr
b
tham gia k lần trong công thức tính tổng
 
1
,
q
n v
v
N r a

 .
Vì b là không điểm cấp  1k  của hàm  'f z nên nó là cực điểm cấp  1k 
của hàm
1
'f
. Do đó, tham gia  1k  lần vào công thức tính tổng
1
,
'
N r
f
 
 
 
.
Từ đó, ta có:
     0
1 1
1
, , , '
'
q q
n v n n v
v v
N r a N r N r a N f
f 
 
   
 
  ,
với  0 'N f là tổng có dạng log nr
b
 lấy theo mọi không điểm b của 'f mà
không là nghiệm của bất kỳ phương trình   vf z a nào, 1 v q  .
Suy ra,    
1 1
1
, , ,
'
q q
n v n n v
v v
N r a N r N r a
f 
 
  
 
  .
Ta có:
       
1
1 1 , , ,
q
n n v n
v
q O T r f N r a N r

         .
Chia hai vế cho  ,nT r f ta được:
 
 
 
 
 1
, ,
1 1
, ,
q
n v n
v n n
N r a N r
q O
T r f T r f

    .
Cho n  ta suy ra:
    1
1 1 1
q
v
v
q a

            .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn20
Tức là:    
1
2
q
v
v
a

     .
Ta cần chứng minh tồn tại tập hợp các giá trị a sao cho   0a  , cùng lắm là
đếm được, đồng thời
 
  2
a
a
  
 
.
    
1
1
0
n
A a a a a
n


 
      
 
 .
Tập hợp  
1
a a
n
 
  
 
có không quá 2n phần tử.
Suy ra, A cùng lắm là đếm được.
Vậy
 
  2
a
a
  
 
.
Định lý được chứng minh.
1.3.7. Định lý
Giả sử ,f g là các hàm phân hình khác hằng số sao cho tồn tại 5 điểm
1 2 3 4 5, , , ,a a a a a để    1 1
; 1,5j jf a g a j 
  . Khi đó, f g hoặc ,f g là
hằng số.
(*) Nhận xét: Số 5 không thể giảm.
Ví dụ:
1 2 3 4; ; 0; 1; 1;z z
f e g e a a a a
       ,
   1 1
j jf a g a 
 nhưng f g .
Chứng minh.
Giả sử tồn tại 1 2 3 4 5, , , ,a a a a a ,
     , 1,5j jz f z a z g z a j    .
Đặt     1 1
, , , , .j j
j j
N r N r f a N r N r
f a g a
   
            
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn21
Mà
1
, log
j
r
N r
f a b
 
   
 .
(b là nghiệm của phương trình  f z a chỉ tính một lần).
Theo giả thiết:     jf z a g z a   .
Suy ra,
1 1
, ,
j j
N r N r
f a g a
   
          
.
Định lý cơ bản thứ 2, áp dụng cho 1 2 3 4 5; , , , , .f a a a a a
           
     
    
           
       
1
1
1
5
1
5
1
1 , , , ,
1
, 2 , , ' ,
'
, .
1
4 , , , , 2 , ,
'
1
, , , ' , .
'
q
v
v
j
j
j
j
q T r f N r a N r N r S r
N r N r N r f N r f
f
S r O T r f
T r f N r a N r N r N r f N r f S r
f
N r a N r N r f N r f S r
f



     
 
   
 

 
       
 
 
     
 



Xét  
5
1
1
, ,
'
j
j
N r a N r
f
 
  
 
 ,
 
5
1
, j
j
N r a

 chứa các số dạng log
r
b
, trong đó b là một trong các nghiệm của
phương trình jf a .
Giả sử, b là nghiệm bội k của phương trình jf a với j nào đó.
Suy ra, tham gia  1k  lần trong
1
, log
'
r
N r
f b
 
 
 
tham gia một lần.
     
5 5
0
1 1
1
, , , ' ,
'
j j
j j
N r a N r N r a N f
f 
 
    
 
 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn22
trong đó  0 'N f là tổng tính theo các nghiệm của ' 0f  mà không là
nghiệm của jf a .
     
5 5 5
1 1 1
1
, , , .
'
j j j
j j j
N r a N r N r a N r
f  
 
    
 
  
Xét    , ' ,N r f N r f : Mỗi cực điểm cấp k của f là cực điểm cấp 1k  của
'f . Suy ra:
     
       
     
      
        
5
1
5
1
5
1
5
1
, ' , , .
4 , ,
,
, , .
3 1 , . *
j
j
j
j
j
j
j
j
N r f N r f N r f
T r f N r N r f S r
N r T r f S r
N r T r f O T r f
O T r f N r




 
   
  
  
 




Tương tự với hàm g, ta cũng có:
        
5
1
3 1 , . **j
j
O T r g N r

  
Giả sử
1
f g
f g
 

là hàm phân hình.
Theo định lý cơ bản thứ nhất, ta có:
   
     
1
, , 1
, , 1 .
T r T r f g O
f g
T r f T r g O
 
    
  
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn23
Mặt khác:
 
5
1
1 1
, , j
j
T r N r N r
f g f g 
   
        
 ,
( vì nếu số hạng log
r
b
được tính trong  jN r thì   jf b a với j nào đó.
Theo giả thiết,       0 logj
r
g b a f b g b
b
     được tính trong
1
,N r
f g
 
  
).
       
5
1
1
, , , 1 .j
j
N r T r T r f T r g O
f g
 
      

Từ (*),(**) suy ra:
       
5
1
2
, ,
3
j
j
T r f T r g N r S r

   .
Kết hợp, ta được:
     
5 5
1 1
2
3
j j
j j
N r N r S r
 
   . (vô lý)
Vậy, suy ra f g .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn24
Chương 2
Phân phối giá trị của hàm phân hình và đạo hàm của nó.
2.1. Sự phân phối giá trị của các hàm phân hình.
2.1.1. Định nghĩa
Giả sử  f z là hàm phân hình khác hằng số trên C.
Ta định nghĩa  ,S r f là một đại lượng xác định thỏa mãn
    , ,S r f T r f khi r  ; có thể trừ đi một tập E của r có độ đo hữu
hạn.
Giả sử,      0 1, , ,...a z a z a z là các hàm nhỏ của f, tức là các hàm thỏa mãn:
    , ,T r a z S r f khi r  .
2.1.2. Định lý (Milloux)
Cho l là một số nguyên, f là hàm phân hình khác hằng số trên 
và:
     
 
0
l
v
v
v
z a z f z

  ,
khi đó:
 
 
 , ,
z
m r S r f
f z
 
 
 
, (1.4)
và:        , 1 , ,T r l T r f S r f    (1.5)
Chứng minh.
Xét trường hợp    
 l
z f z  , chứng minh bằng phép quy nạp với l .
Nếu   'z f  thì  
'
, ,
f
m r S r f
f
 
 
 
.
Giả sử, ta có:
 
 , ,
l
f
m r S r f
f
 
  
 
, với l nào đó.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn25
Khi đó:  
 
 
     , , , , ,
l
l f
m r f m r m r f m r f S r f
f
 
     
 
. (*)
Nếu  f z có cực điểm tại 0z cấp k, thì  
 l
f z có cực điểm tại 0z cấp k l
và  1k l l k   .
Do đó:  
     , 1 ,
l
N r f l N r f  . (**)
Cộng các bất đẳng thức (*), (**) ta được:
 
   
   
         
     
, , , , 1 , ,
1 , , .
l l l
T r f m r f N r f m r f l N r f S r f
l T r f S r f
     
  
Như vậy trong trường hợp này (1.5) được chứng minh.
Ta kết luận rằng
 
 
 
   
     
1
, , , ,
l
l l
l
f
m r S r f T r f T r f
f
 

 
    
 
,
khi r , trừ một tập hợp E của r có độ đo hữu hạn.
Khi đó:
   
 
 
 
1 1
, , , ,
l l l
l
f f f
m r m r m r S r f
f ff
 
     
            
     
.
Vậy định lý được chứng minh cho trường hợp    
 l
z f z  .
Trường hợp tổng quát, ta chú ý rằng:
 
 
   
    
  
 
 
 
     
0
0
0
, , log 1
, , log 1
, 1 , .
l
v
v
v
vl
v
v
l
v
z
m r m r a z f z l
f z
f z
m r a z m r l
f
S r f O S r f




 
   
 
  
         
  



Vậy (1.4) được chứng minh.
Hơn nữa ta có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn26
       , , , , ,m r m r m r f m r f S r f
f


 
    
 
.
Nếu  f z có cực điểm cấp p tại 0z và  va z có cực điểm cấp không quá q tại
0z thì  z có cực điểm tại 0z cấp không vượt quá p l q  và
 1p l q l p q     khi đó:
        
     
0
, 1 , ,
1 , , .
l
v
v
N r l N r f N r a z
l N r f S r f


  
  

Vậy:
     
         
     
, , ,
, , 1 , ,
1 , , .
T r m r N r
m r f S r f l N r f S r f
l T r f S r f
   
    
  
Vậy Định lý được chứng minh.
Từ định lý trên ta có một số kết quả sau.
2.1.3. Định lý
Giả sử  f z là hàm phân hình khác hằng số trên  và  z (khác
hằng số) là hàm cho bởi ở định lý (2.1.2). Khi đó:
     0
1 1 1
, , , , , ,
1 '
T r f N r f N r N r N r S r f
f  
     
             
,
trong đó 0
1
,
'
N r

 
 
 
là hàm đếm các không điểm của  ' z mà không phải là
các không điểm của   1z  .
Chứng minh.
Theo định lý cơ bản thứ hai cho hàm    z f z  tại 3 điểm 0,1, ta
có:
       1
1 1
, , , 2 , , ,
1
m r m r m r T r N r S r   
 
   
          
. (1.6)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn27
Mặt khác, ta có:
       
     
     
1
1
1 1
2 , , , , , ,
1 1
1
, 2 , , ' 1
'
1
, , , 1 ,
1
T r N r m r m r N r N r
N r N r N r O
T r T r N r O
   
 
 

 

   
           
 
    
 
 
     
(1.7)
     1
1
, , 2 , , '
'
N r N r N r N r  

 
   
 
.
Ngoài ra, tại một cực điểm của  z cấp l ,  ' z cấp 1l  , các cực điểm
này chỉ xuất hiện tại cực điểm của  f z hoặc của  va z .
Do đó:
          
   
1
, ' , , , ,
, , .
l
v
v
N r N r N r N r f N r a z
N r f S r f
  

   
 

Hơn nữa , tại một không điểm của   1z  cấp l ,  ' z có không điểm cấp
1l  , vì vậy:
0
1 1 1 1
, , , ,
1 ' 1 '
N r N r N r N r
   
       
                 
.
Ta có:        , , ,S r T r T r f     , trừ ra một tập hợp E của r có độ đo
hữu hạn.
Do vậy,    , ,S r S r f  .
Do đó, cùng với (1.6), (1.7) suy ra:
     
1 1 1 1
, , , , , , ,
1 1 1
m r m r m r m r m r N r N r  
   
       
                     
     
1
, 2 , , ' 1
'
N r N r N r O 

 
    
 
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn28
      
     0
1 1 1
, , ' , , , 1
1 '
1 1
, , , , . 1.8
1 '
     
               
   
         
m r N r N r N r N r O
N r f N r N r S r f
 
  
 
Ta có:
   
 
 
1 1
, , , 1
1 1
, , , 1
1 1
, , , ,
T r f m r N r O
f f
m r m r N r O
f f
m r N r S r f
f



   
     
   
    
       
     
  
    
   
cùng với (1.8) suy ra:
     0
1 1 1
, , , , , , .
1 '
T r f N r f N r N r N r S r f
f  
     
             
Vậy định lý được chứng minh.
2.1.4. Định lý
Giả sử  f z là hàm phân hình và siêu việt trên  .
Khi đó:
     
1 1 2 1
, 2 , 2 , ,
1
l
T r f N r N r S r f
l f l f
     
         
      
, khi r .
(*) Để chứng minh định lý ta chứng minh bổ đề sau:
2.1.5. Bổ đề:
Nếu    
  0
1
; ,
'
l
z f z N r

 
  
 
xác định trong định lý 2.1.3 và
   1 2, , ,N r f N r f được ký hiệu là hàm N tương ứng cực điểm đơn và cực
điểm bội, mỗi cực điểm chỉ tính duy nhất một lần, thì ta có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn29
   
   
 2 0
1 1
, , , , ,
1 '
lN r f N r f N r N r S r f
z z 
   
      
   
.
Chứng minh.
Ta xét hàm  
 
  
 
  
  
  
1
11
2 2
'
11
l
ll
l l
l
f z z
g z
zf z




 
 

.
Khi đó tại một cực điểm đơn 0z của  f z , ta có:
   
0
1 ; 0
a
f z O a
z z
  

.
Lấy vi phân hai vế l lần ta được kết quả:
   
 
 
 
 
 
 
  
1
1
0
1
1
01
0
1 !
1 1 1
1 !
1 .
l
l
l
l
l
l
al
z f z O
z z
al
O z z
z z







    


  

Lấy vi phân tiếp 2 vế ta thu được:
 
   
 
  
1
21
02
0
1 1 !
1
l
ll
l
a l
f z O z z
z z



 
  

.
Do đó
 
   
  
1 1
1
0
1 1
1
!
l l
ll
g z O z z
al
 
 
   .
Vì vậy,  0 0,g z  . Nhưng  'g z có không điểm tại 0z cấp ít nhất là l .
Sử dụng công thức Poisson-Jensen cho
 
 
'g z
g z
ta có:
 
' '
, , , , 1
' '
g g g g
N r N r m r m r O
g g g g
       
          
       
,
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn30
vế trái đẳng thức trên là :
     
 0
1 1 1 1
, , , ' , , , ,
' '
1 1
, , , ,
'
N r g N r N r g N r N r N r N r g
g g g g
N r N r N r g
g g
       
            
       
   
     
   
với 0
1
,
'
N r
g
 
 
 
là hàm đếm các không điểm của 'g mà không phải là các
không điểm của g.
Từ các kết quả trên ta có :
     1 0
1 1 '
, , , , , 1
'
g
lN r f N r N r N r g m r O
g g g
     
         
     
. (1.9)
Các không điểm và cực điểm của  g z chỉ có thể xuất hiện tại các cực điểm
bội của  f z , hoặc các không điểm của   1z  , hoặc các không điểm của
 ' z khác với không điểm của   1z  . Do đó :
 
 
 2 0
1 1 1
, , , , ,
1 '
N r N r g N r N r f N r
g z 
    
            
. (1.10)
Ngoài ra, theo định lý 2.1.2 ta có:
    
    
  
      
1'
, , , ,1
, , . 1.11
          
 
l lg
m r T r g T r f T r f z
g
T r f S r f
  

Từ (1.9), (1.10), (1.11) suy ra điều phải chứng minh.
(*) Chứng minh định lý 2.1.4
Sử dụng định lý 2.1.3 với    
 l
z f z  và trong  ,N r f các cực
điểm bội được tính ít nhất 2 lần, ta có:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn31
         
 
1 2
0
1
, 2 , , , , ,
1 1
, , , .
1 '
N r f N r f N r f T r f N r f N r
f
N r N r S r f
 
 
      
 
   
        
Vì      1 2, , ,N r f N r f N r f  , ta có :
   2 0
1 1 1
, , , , ,
1 '
N r f N r N r N r S r f
f  
     
            
,
kết hợp với bổ đề 2.1.5 ta có kết quả :
     
 
1 2 0
1 1
, , , , ,
1 '
1 1
, 2 , , .
1
lN r f N r f N r N r S r f
N r N r S r f
f
 

   
         
   
       
Suy ra :
   1
1 1 2 1
, , , ,
1
N r f N r N r S r f
l f l 
   
       
.
Ta có :
     
 
 
1 2, , ,
1 1 1 1 2 1
, , , , ,
1 1
1 1 2 1
1 , 1 , , .
1
N r f N r f N r f
N r N r N r N r S r f
f l f l
N r N r S r f
l f l
 

 
      
                 
      
                
Thế bất đẳng thức này vào định lý 2.1.3 ta được bất đẳng thức của định lý
2.1.4.
Bây giờ, ta giả sử 1 2w ,w là các số phức, thỏa mãn 2w 0 .
Ta xét  
  1
2
w
w
f z
F z

 . Khi đó, ta có:
         , , 1 , , ,T r F T r f O S r F S r f   .
Sử dụng định lý 2.1.4 cho  F z ta thu được :
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn32
         
   
1 2
1 1 2 1
, , 1 2 , 2 , ,
1
1 1 2 1
2 , 2 , , .
w w
l
l
T r f T r F O N r N r S r F
l F l F
N r N r S r f
l f l f
       
             
       
     
         
       
Nếu phương trình    
 1 2w , w
l
f z f z  chỉ có hữu hạn nghiệm thì :
      1 1 , logO T r f O r  khi r .
Vì vậy  f z là hàm hữu tỉ, mâu thuẫn giả thiết.
Suy ra, định lý được chứng minh.
2.2. Phân phối giá trị của hàm phân hình và đạo hàm của nó
2.2.1. Định lý (xem [ 5 ], Hayman)
Nếu n ( 3 ) là một số nguyên thì 'n
f f  có tất cả các giá trị khác
không.
(*) Tuy nhiên vấn đề đặt ra là giá trị phân phối của  'ff a khi a a z  là một
hằng số khác không thỏa mãn điều kiện:    , ,T r a S r f .
Ta gọi hàm phân hình  a a z là một hàm nhỏ của f nếu    , ,T r a S r f .
2.2.2. Định lý ( xem {[ 12 ] và [ 11 ]}, Zhang )
Nếu  
7
;
9
f   thì 'ff a là vô cùng khi  0,a   là hàm nhỏ của f .
2.2.3. Định lý ( xem {[ 12 ] và [ 11 ]}, Zhang ).
Nếu    2 0; ; 1f f    thì 'ff a là vô cùng khi  0,a   là hàm
nhỏ của f .
(*) Nhận xét:
Tuy vậy, trong định lý C điều kiện    2 0; ; 1f f    có thể dễ
dàng thay thế bởi điều kiện yếu hơn:    2 0; ; 1f f     .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn33
2.2.4. Định lý (xem [ 2 ], Bergweiler)
Nếu f là đa thức và f hạn chế bậc thì 'ff a là vô cùng.
2.2.5. Định lý (xem [ 11 ], Yu).
Nếu  0,a   là một hàm nhỏ của f thì ít nhất một 'ff a và 'ff a
là vô cùng.
2.2.6. Định nghĩa:
Cho m là một số nguyên dương. Ta ký hiệu  , ; ,N r a f m
 , ;N r a f m là hàm đếm các a điểm của f .
Định nghĩa tương tự với  , ;N r a f m ,  , ;N r a f m ,  , ; ,N r a f m và
 , ;N r a f m .
Ta có:    , ; , ;N r a f N r a f   ,
và    , ; , ; .N r a f N r a f  
2.2.7. Bổ đề
Nếu  
 ,0; 0
k
N r f f  là các hàm đếm các không điểm của  k
f , mà
không phải là các không điểm của f, trong đó mỗi không điểm của  k
f được
tính theo số bội của nó thì:
 
     
   
,0; 0 , ; ,0;
,0; , .
k
N r f f kN r f N r f k
kN r f k S r f
    
  
Chứng minh.
Từ định lý cơ bản thứ nhất và định lý Milloux ta có:
 
 
 
,0; 0 ,0;
 
    
 
k
k f
N r f f N r
f
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn34
   
 
   
   
, , 1
, ; ,0;
, ; , .
   
        
   
   
   
k k
f f
N r m r O
f f
kN r f N r f k
kN r f k S r f
2.2.8. Định lý
Cho    
 1
0
nn k
f f  , khi  0 12 ,n n và k là các số nguyên dương,
sao cho:     0 0 0 1 0 11 1 0n n k n n n n      .
Khi đó:
 
    
     0
0 0 0 1
11
1 , , ; ,
1
n kk
T r N r a S r
n k n k n k n
  
 
    
     
,
với mọi hằng số  0,a   .
Chứng minh.
Đầu tiên ta chú ý   . 4,10Cf
       , , , ,T r f S r f CT r S r    ,
và         0 1, 1 , ,T r f n k n T r f S r f    , khi C là hằng số.
Ta thấy rõ rằng, nếu  0,a   là một hàm nhỏ của f thì a cũng là hàm nhỏ
của  và ngược lại. Do đó từ định lý cơ bản của Nevanlinna với ba dãy hàm
  .47 6p ta có :
         , ,0, , , , , ,T r N r N r N r a S r         ,
khi    , ; ,0;N r a N r a   .
Bây giờ, từ bổ đề ta có :
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn35
     
 
     
   
         
,0; ,0; ,0, 0
,0; , ; ,0,
,0, ,
1 ,0; , ; , . 2
k
N r N r f N r f f
N r f kN r f N r f k
kN r f k S r f
k N r f kN r f S r f
   
    
  
    
Ta có:
        
   
0 1
0
,0; ,0; 1 1 ,0; 1
1 ,0; .
N r N r k n n N r f k
n N r f k
       
  
Từ (2) ta có:
       
   
      
0
0 1
,0; 1 ,0; 1 , ;
1
,0; ,0;
1
1 1 ,0; 1 , .
N r k N r f k kN r f
k
N r N r
n
k n n N r f k S r f

 
     

   
      
     
    
   
     
   
 
     
0
0 0
0 1
0
0
0
0 0
1
,0; ,0; , ;
1 1
1 1 1
1 ,0; 1 ,
1
1
,0; , ; , .
1
11
,0; ,0; , ; , . 3
1
n k k
N r N r kN r f
n n
k k n n
k N r f k S r f
n
k
N r kN r f S r f
n
k nk
N r N r N r f S r f
n n k
 

 
 
  
 
    
      
  

   


   
 
Nếu 0z là một phần tử của ,f p và 0z là phần tử của  , với
   0 1 0 11n p p k n n k n     thì:
      0 1, ; 1 , ; .N r n k n N r      (4)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn36
Vì    , ; , ;N r N r f   và    , ,S r S r f  , từ (1), (3) và (4) ta có:
   
 
 
   
 
 
    
 
   
0
0 0
0
0 0 0 1
11
, ,0; 1 , ;
, ; ,
11
,0; , ;
1
, ; , .
k nk
T r N r N r f
n k n k
N r a S r
n kk
N r N r
n k n k n k n
N r a S r
 
 
 
 
 
    
  
 

  
   
 
Vậy:
 
    
     0
0 0 0 1
11
1 , , ; ,
1
n kk
T r N r a S r
n k n k n k n
  
 
    
     
.
Định lý được chứng minh.
(*) Dưới đây, ta chứng minh định lý 2.2.5 khi định lý được phát biểu lại như
sau :
2.2.9. Định lý
Cho  k
F ff , với k là một số nguyên dương, thì với mọi hàm nhỏ a của f
   
 
2
2
; ; 2
2
a F a F
k
     

.
Chứng minh.
Ta có, 2
a cũng là một hằng số nhỏ của f , ta thấy 0 1 2n n  .
  
 
     2 2 2
2
1 3
1 , , ; , .
2
  
   
  
k k
T r F N r a F S r F
k
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn37
  
 
       2
1 3
2 1 , , ; , ; , .
2
  
     
  
k k
T r F N r a F N r a F S r F
k
Điều đó cho thấy:
   
  
   
2 2
2 1 3 2
; ; 2
2 2
k k
a F a F
k k
 
      
 
.
Định lý được chứng minh.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn38
KẾT LUẬN
*******
Nội dung của luận văn là nghiên cứu‘‘ Phân phối giá trị của hàm phân
hình và đạo hàm của nó ’’.
Luận văn đã trình bày được các vấn đề sau:
- Trình bày một cách hệ thống hai định lý cơ bản của R.Nevanlinna.
- Trình bày một số kết quả của Milloux.
- Trình bày hệ thống với chứng minh chi tiết một số kết quả gần đây
trong lĩnh vực nghiên cứu.
- Chứng minh định lý :
Cho    
 1
0
nn k
f f  , khi  0 12 ,n n và k là các số nguyên dương,
sao cho:     0 0 0 1 0 11 1 0n n k n n n n      .
Khi đó:
 
    
     0
0 0 0 1
11
1 , , ; ,
1
n kk
T r N r a S r
n k n k n k n
  
 
    
     
,
với mọi hằng số  0,a   .
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn39
TÀI LIỆU THAM KHẢO
[1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a
meromorphic function of finite order, Rev. Iberoamericana, 11 (1995), 355-
373.
[2] W.Bergweiler, On the product of a meromorphic function and its
derivative, Bull. Hong Kong Math. Soc., 1 (1997), 97-101.
[3] Hà Huy Khoái. Bài giảng lý thuyết Nevanlinna.
[4] H.H. Chen and M.L. Fang, The value distribution of 'n
f f , Sci. China Ser.
A, 38 (1995), 789-798.
[5] W. Doeringer, Exceptional values of differential polynomials, Pacific J.
Math., 98 (1982), 55-62.
[6] W. K. Hayman, Picard values of meromorphic functions and their
derivatives, Ann. of Math. (2), 70 (1959), 9-42.
[7] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr.,
Clarendon Press, Oxford, 1964.
[8] W. K. Hayman, Research Problems in Function Theory, The Athlone
Press University of London, London, 1967.
[9] I. Lahiri and S. Dewan, Value distribution of the product of a
meromorphic function and its derivative, Kodai Math. J. 26 (2003), 95 – 100.
[10] I. Lahiri, Value distribution of certain differential polynomials, Int. J.
Math. Math. Sci., 28 (2001), 83-91.
[11] E. Mues, Uber ein Problem von Hayman, Math. Z., 164 (1979), 239-259.
[12] A. P. Singh, On order of homogeneous differential polynomials, Indian
J. Pure Appl. Math., 16 (1985),791-795.

More Related Content

What's hot

K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)
K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)
K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)Antonio Krista
 
(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...
(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...
(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...schoolantoreecom
 
Luận văn thạc sĩ toán học
Luận văn thạc sĩ toán họcLuận văn thạc sĩ toán học
Luận văn thạc sĩ toán họcDang Van Ly
 
Sơ đồ ăn điểm hệ phương trình - Megabook.vn
Sơ đồ ăn điểm hệ phương trình - Megabook.vnSơ đồ ăn điểm hệ phương trình - Megabook.vn
Sơ đồ ăn điểm hệ phương trình - Megabook.vnMegabook
 
Cac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-libreCac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-librenguyen khiem
 
GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...
GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...
GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...nataliej4
 
Bai3cautrucdieukhien 130622085309-phpapp02
Bai3cautrucdieukhien 130622085309-phpapp02Bai3cautrucdieukhien 130622085309-phpapp02
Bai3cautrucdieukhien 130622085309-phpapp02Tiểu Sương Lãnh
 
Luận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao
Luận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc caoLuận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao
Luận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc caoViết thuê trọn gói ZALO 0934573149
 
Hệ thống hóa về HC
Hệ thống hóa về HCHệ thống hóa về HC
Hệ thống hóa về HCLong Vu
 

What's hot (20)

DCCTHP Tcca2
DCCTHP Tcca2DCCTHP Tcca2
DCCTHP Tcca2
 
Luận văn: Tính artin của các môđun đối đồng điều địa phương, HAY
Luận văn: Tính artin của các môđun đối đồng điều địa phương, HAYLuận văn: Tính artin của các môđun đối đồng điều địa phương, HAY
Luận văn: Tính artin của các môđun đối đồng điều địa phương, HAY
 
Luận văn: Phương pháp giải bài toán cực trị và ứng dụng, HAY
Luận văn: Phương pháp giải bài toán cực trị và ứng dụng, HAYLuận văn: Phương pháp giải bài toán cực trị và ứng dụng, HAY
Luận văn: Phương pháp giải bài toán cực trị và ứng dụng, HAY
 
K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)
K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)
K2pi.net.vn --skkn-toan-thpt dang thuc hua(pkc) (1)
 
Đề tài: Phương trình vi phân với toán tử khả nghịch phải, HOT, 9đ
Đề tài: Phương trình vi phân với toán tử khả nghịch phải, HOT, 9đĐề tài: Phương trình vi phân với toán tử khả nghịch phải, HOT, 9đ
Đề tài: Phương trình vi phân với toán tử khả nghịch phải, HOT, 9đ
 
Luận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đ
Luận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đLuận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đ
Luận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đ
 
(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...
(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...
(School.antoree.com) Đề thi thử Đại học môn Toán chuyên Vĩnh Phúc lần...
 
Toan a2 bai giang
Toan a2   bai giangToan a2   bai giang
Toan a2 bai giang
 
Luận văn: Hàm đơn diệp và một số tính chất của hàm đơn diệp, HAY
Luận văn: Hàm đơn diệp và một số tính chất của hàm đơn diệp, HAYLuận văn: Hàm đơn diệp và một số tính chất của hàm đơn diệp, HAY
Luận văn: Hàm đơn diệp và một số tính chất của hàm đơn diệp, HAY
 
Luận văn thạc sĩ toán học
Luận văn thạc sĩ toán họcLuận văn thạc sĩ toán học
Luận văn thạc sĩ toán học
 
Luận văn: Giải gần đúng phương trình phi tuyến và phương trình vi phân trên m...
Luận văn: Giải gần đúng phương trình phi tuyến và phương trình vi phân trên m...Luận văn: Giải gần đúng phương trình phi tuyến và phương trình vi phân trên m...
Luận văn: Giải gần đúng phương trình phi tuyến và phương trình vi phân trên m...
 
Sơ đồ ăn điểm hệ phương trình - Megabook.vn
Sơ đồ ăn điểm hệ phương trình - Megabook.vnSơ đồ ăn điểm hệ phương trình - Megabook.vn
Sơ đồ ăn điểm hệ phương trình - Megabook.vn
 
Cac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-libreCac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-libre
 
GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...
GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...
GIÁO ÁN HỌC PHẦN: Nhập môn Lý thuyết xác suất và thống kê Toán LỚP DẠY: Đại h...
 
Bai3cautrucdieukhien 130622085309-phpapp02
Bai3cautrucdieukhien 130622085309-phpapp02Bai3cautrucdieukhien 130622085309-phpapp02
Bai3cautrucdieukhien 130622085309-phpapp02
 
Luận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao
Luận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc caoLuận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao
Luận văn: Bài toán biên tuần hoàn cho phương trình vi phân hàm bậc cao
 
Hệ thống hóa về HC
Hệ thống hóa về HCHệ thống hóa về HC
Hệ thống hóa về HC
 
Luận văn: Phương trình tích phân abel tổng quát trên trục thực, 9đ
Luận văn: Phương trình tích phân abel tổng quát trên trục thực, 9đLuận văn: Phương trình tích phân abel tổng quát trên trục thực, 9đ
Luận văn: Phương trình tích phân abel tổng quát trên trục thực, 9đ
 
Test
TestTest
Test
 
Một số tính chất của vành giao hoán artin
Một số tính chất của vành giao hoán artinMột số tính chất của vành giao hoán artin
Một số tính chất của vành giao hoán artin
 

Viewers also liked

Tailieu.vncty.com giai phap nang cao hieu qua su dung von
Tailieu.vncty.com   giai phap nang cao hieu qua su dung vonTailieu.vncty.com   giai phap nang cao hieu qua su dung von
Tailieu.vncty.com giai phap nang cao hieu qua su dung vonTrần Đức Anh
 
Tailieu.vncty.com luan van ths nang luc canh tranh ngan hang 2008 2255
Tailieu.vncty.com   luan van ths nang luc canh tranh ngan hang 2008 2255Tailieu.vncty.com   luan van ths nang luc canh tranh ngan hang 2008 2255
Tailieu.vncty.com luan van ths nang luc canh tranh ngan hang 2008 2255Trần Đức Anh
 
Tailieu.vncty.com bo de thi tuyen sinh dai hoc mon tieng anh
Tailieu.vncty.com   bo de thi tuyen sinh dai hoc mon tieng anhTailieu.vncty.com   bo de thi tuyen sinh dai hoc mon tieng anh
Tailieu.vncty.com bo de thi tuyen sinh dai hoc mon tieng anhTrần Đức Anh
 
Tailieu.vncty.com th s-11(1)
Tailieu.vncty.com th s-11(1)Tailieu.vncty.com th s-11(1)
Tailieu.vncty.com th s-11(1)Trần Đức Anh
 
Tailieu.vncty.com copy of-tieuluangis_683
Tailieu.vncty.com copy of-tieuluangis_683Tailieu.vncty.com copy of-tieuluangis_683
Tailieu.vncty.com copy of-tieuluangis_683Trần Đức Anh
 
Tailieu.vncty.com giao trinh-lt[1].hdt
Tailieu.vncty.com giao trinh-lt[1].hdtTailieu.vncty.com giao trinh-lt[1].hdt
Tailieu.vncty.com giao trinh-lt[1].hdtTrần Đức Anh
 
Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443
Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443
Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443Trần Đức Anh
 
Bài nộp thầy đã sửa
Bài nộp thầy đã sửaBài nộp thầy đã sửa
Bài nộp thầy đã sửaTrần Đức Anh
 
Tailieu.vncty.com de thi thu chuyen nguyen trai - hai duong
Tailieu.vncty.com   de thi thu chuyen nguyen trai - hai duongTailieu.vncty.com   de thi thu chuyen nguyen trai - hai duong
Tailieu.vncty.com de thi thu chuyen nguyen trai - hai duongTrần Đức Anh
 
Tailieu.vncty.com mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...
Tailieu.vncty.com   mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...Tailieu.vncty.com   mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...
Tailieu.vncty.com mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...Trần Đức Anh
 
Tailieu.vncty.com co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...
Tailieu.vncty.com   co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...Tailieu.vncty.com   co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...
Tailieu.vncty.com co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...Trần Đức Anh
 
Tailieu.vncty.com bao cao thuc tap tai cong ty xay dung cau 75
Tailieu.vncty.com   bao cao thuc tap tai cong ty xay dung cau 75Tailieu.vncty.com   bao cao thuc tap tai cong ty xay dung cau 75
Tailieu.vncty.com bao cao thuc tap tai cong ty xay dung cau 75Trần Đức Anh
 
Tailieu.vncty.com de thi quoc hoc hue
Tailieu.vncty.com de thi quoc hoc hueTailieu.vncty.com de thi quoc hoc hue
Tailieu.vncty.com de thi quoc hoc hueTrần Đức Anh
 
Tailieu.vncty.com chat ket dinh huu co
Tailieu.vncty.com   chat ket dinh huu coTailieu.vncty.com   chat ket dinh huu co
Tailieu.vncty.com chat ket dinh huu coTrần Đức Anh
 
Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12
Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12
Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12Trần Đức Anh
 

Viewers also liked (20)

Tailieu.vncty.com giai phap nang cao hieu qua su dung von
Tailieu.vncty.com   giai phap nang cao hieu qua su dung vonTailieu.vncty.com   giai phap nang cao hieu qua su dung von
Tailieu.vncty.com giai phap nang cao hieu qua su dung von
 
Tailieu.vncty.com luan van ths nang luc canh tranh ngan hang 2008 2255
Tailieu.vncty.com   luan van ths nang luc canh tranh ngan hang 2008 2255Tailieu.vncty.com   luan van ths nang luc canh tranh ngan hang 2008 2255
Tailieu.vncty.com luan van ths nang luc canh tranh ngan hang 2008 2255
 
Tailieu.vncty.com bo de thi tuyen sinh dai hoc mon tieng anh
Tailieu.vncty.com   bo de thi tuyen sinh dai hoc mon tieng anhTailieu.vncty.com   bo de thi tuyen sinh dai hoc mon tieng anh
Tailieu.vncty.com bo de thi tuyen sinh dai hoc mon tieng anh
 
Tailieu.vncty.com qt001
Tailieu.vncty.com qt001Tailieu.vncty.com qt001
Tailieu.vncty.com qt001
 
Tailieu.vncty.com th s-11(1)
Tailieu.vncty.com th s-11(1)Tailieu.vncty.com th s-11(1)
Tailieu.vncty.com th s-11(1)
 
Tailieu.vncty.com excel2010
Tailieu.vncty.com excel2010Tailieu.vncty.com excel2010
Tailieu.vncty.com excel2010
 
Tailieu.vncty.com qt003
Tailieu.vncty.com   qt003Tailieu.vncty.com   qt003
Tailieu.vncty.com qt003
 
Tailieu.vncty.com copy of-tieuluangis_683
Tailieu.vncty.com copy of-tieuluangis_683Tailieu.vncty.com copy of-tieuluangis_683
Tailieu.vncty.com copy of-tieuluangis_683
 
Tailieu.vncty.com giao trinh-lt[1].hdt
Tailieu.vncty.com giao trinh-lt[1].hdtTailieu.vncty.com giao trinh-lt[1].hdt
Tailieu.vncty.com giao trinh-lt[1].hdt
 
Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443
Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443
Tailieu.vncty.com so sanh-van_hoa_thai_lan_vn_3443
 
Tailieu.vncty.com da8
Tailieu.vncty.com da8Tailieu.vncty.com da8
Tailieu.vncty.com da8
 
Bài nộp thầy đã sửa
Bài nộp thầy đã sửaBài nộp thầy đã sửa
Bài nộp thầy đã sửa
 
Tailieu.vncty.com de thi thu chuyen nguyen trai - hai duong
Tailieu.vncty.com   de thi thu chuyen nguyen trai - hai duongTailieu.vncty.com   de thi thu chuyen nguyen trai - hai duong
Tailieu.vncty.com de thi thu chuyen nguyen trai - hai duong
 
Tailieu.vncty.com mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...
Tailieu.vncty.com   mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...Tailieu.vncty.com   mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...
Tailieu.vncty.com mot so-giai_phap_nham_on_dinh_thi_truong_vang_va_phat_tri...
 
Tailieu.vncty.com co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...
Tailieu.vncty.com   co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...Tailieu.vncty.com   co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...
Tailieu.vncty.com co hoi va thach thuc cac nhtmvn truoc nguong cua hoi nhap...
 
Tailieu.vncty.com bao cao thuc tap tai cong ty xay dung cau 75
Tailieu.vncty.com   bao cao thuc tap tai cong ty xay dung cau 75Tailieu.vncty.com   bao cao thuc tap tai cong ty xay dung cau 75
Tailieu.vncty.com bao cao thuc tap tai cong ty xay dung cau 75
 
Tailieu.vncty.com de thi quoc hoc hue
Tailieu.vncty.com de thi quoc hoc hueTailieu.vncty.com de thi quoc hoc hue
Tailieu.vncty.com de thi quoc hoc hue
 
Tailieu.vncty.com chat ket dinh huu co
Tailieu.vncty.com   chat ket dinh huu coTailieu.vncty.com   chat ket dinh huu co
Tailieu.vncty.com chat ket dinh huu co
 
Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12
Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12
Tailieu.vncty.com tong hop bai tap vat ly theo chuong lop 12
 
Giao trinh ktbt
Giao trinh ktbtGiao trinh ktbt
Giao trinh ktbt
 

Similar to Tailieu.vncty.com lv2010 sp-dinh_thingocminh

Một số vấn đề về không gian Sobolev
Một số vấn đề về không gian SobolevMột số vấn đề về không gian Sobolev
Một số vấn đề về không gian Sobolevnataliej4
 
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAYLuận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAYViết thuê trọn gói ZALO 0934573149
 
Điều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdf
Điều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdfĐiều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdf
Điều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdfMan_Ebook
 
Phương pháp runge kutta giải gần đúng hệ phương trình vi phân đại số
Phương pháp runge kutta giải gần đúng hệ phương trình vi phân đại sốPhương pháp runge kutta giải gần đúng hệ phương trình vi phân đại số
Phương pháp runge kutta giải gần đúng hệ phương trình vi phân đại sốKhu Tiến
 

Similar to Tailieu.vncty.com lv2010 sp-dinh_thingocminh (20)

Luận văn: Phương pháp giải phương trình chứa ẩn dưới dấu căn
Luận văn: Phương pháp giải phương trình chứa ẩn dưới dấu cănLuận văn: Phương pháp giải phương trình chứa ẩn dưới dấu căn
Luận văn: Phương pháp giải phương trình chứa ẩn dưới dấu căn
 
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-RiemannLuận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
 
Phương Pháp Bình Phương Nhỏ Nhất Và Ứng Dụng.doc
Phương Pháp Bình Phương Nhỏ Nhất Và Ứng Dụng.docPhương Pháp Bình Phương Nhỏ Nhất Và Ứng Dụng.doc
Phương Pháp Bình Phương Nhỏ Nhất Và Ứng Dụng.doc
 
Luận văn: Phương pháp giải bài toán cực trị, HAY
Luận văn: Phương pháp giải bài toán cực trị, HAYLuận văn: Phương pháp giải bài toán cực trị, HAY
Luận văn: Phương pháp giải bài toán cực trị, HAY
 
Một số vấn đề về không gian Sobolev
Một số vấn đề về không gian SobolevMột số vấn đề về không gian Sobolev
Một số vấn đề về không gian Sobolev
 
Luận Văn Lý Thuyết Nevanlinna Và Ứng Dụng.
Luận Văn Lý Thuyết Nevanlinna Và Ứng Dụng.Luận Văn Lý Thuyết Nevanlinna Và Ứng Dụng.
Luận Văn Lý Thuyết Nevanlinna Và Ứng Dụng.
 
Toan a2 bai giang
Toan a2   bai giangToan a2   bai giang
Toan a2 bai giang
 
Nghiệm Yếu Của Bài Toán Biên Dirichlet Chứa Toán Tử Laplace Phân Thứ.docx
Nghiệm Yếu Của Bài Toán Biên Dirichlet Chứa Toán Tử Laplace Phân Thứ.docxNghiệm Yếu Của Bài Toán Biên Dirichlet Chứa Toán Tử Laplace Phân Thứ.docx
Nghiệm Yếu Của Bài Toán Biên Dirichlet Chứa Toán Tử Laplace Phân Thứ.docx
 
Đề tài: Một số phương pháp giải hệ phương trình đại số, HAY
Đề tài: Một số phương pháp giải hệ phương trình đại số, HAYĐề tài: Một số phương pháp giải hệ phương trình đại số, HAY
Đề tài: Một số phương pháp giải hệ phương trình đại số, HAY
 
Luận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đ
Luận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đLuận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đ
Luận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đ
 
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyếnLuận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
 
Luận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đ
Luận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đLuận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đ
Luận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đ
 
Luận văn: Phép biến đổi phân tuyến tính, HAY, 9đ
Luận văn: Phép biến đổi phân tuyến tính, HAY, 9đLuận văn: Phép biến đổi phân tuyến tính, HAY, 9đ
Luận văn: Phép biến đổi phân tuyến tính, HAY, 9đ
 
Luận văn: Tích phân ngẫu nhiên đối với Martingale, HOT - Gửi miễn phí qua zal...
Luận văn: Tích phân ngẫu nhiên đối với Martingale, HOT - Gửi miễn phí qua zal...Luận văn: Tích phân ngẫu nhiên đối với Martingale, HOT - Gửi miễn phí qua zal...
Luận văn: Tích phân ngẫu nhiên đối với Martingale, HOT - Gửi miễn phí qua zal...
 
Luận văn: Bài toán Neumann đối với hàm điều hòa, HAY, 9đ
Luận văn: Bài toán Neumann đối với hàm điều hòa, HAY, 9đLuận văn: Bài toán Neumann đối với hàm điều hòa, HAY, 9đ
Luận văn: Bài toán Neumann đối với hàm điều hòa, HAY, 9đ
 
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAYLuận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
 
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAYLuận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
 
Điều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdf
Điều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdfĐiều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdf
Điều khiển H trong thời gian hữu hạn của hệ nơ ron thần kinh phân thứ.pdf
 
Đề tài: Thiết kế và phân tích thuật toán, HAY
Đề tài: Thiết kế và phân tích thuật toán, HAYĐề tài: Thiết kế và phân tích thuật toán, HAY
Đề tài: Thiết kế và phân tích thuật toán, HAY
 
Phương pháp runge kutta giải gần đúng hệ phương trình vi phân đại số
Phương pháp runge kutta giải gần đúng hệ phương trình vi phân đại sốPhương pháp runge kutta giải gần đúng hệ phương trình vi phân đại số
Phương pháp runge kutta giải gần đúng hệ phương trình vi phân đại số
 

More from Trần Đức Anh

Tailieu.vncty.com nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747
Tailieu.vncty.com   nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747Tailieu.vncty.com   nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747
Tailieu.vncty.com nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747Trần Đức Anh
 
Tailieu.vncty.com nhom 6-de_tai_flo_9602
Tailieu.vncty.com   nhom 6-de_tai_flo_9602Tailieu.vncty.com   nhom 6-de_tai_flo_9602
Tailieu.vncty.com nhom 6-de_tai_flo_9602Trần Đức Anh
 
Tailieu.vncty.com lai phan-tu_2413
Tailieu.vncty.com   lai phan-tu_2413Tailieu.vncty.com   lai phan-tu_2413
Tailieu.vncty.com lai phan-tu_2413Trần Đức Anh
 
Tailieu.vncty.com duong hoa-hoc_3666
Tailieu.vncty.com   duong hoa-hoc_3666Tailieu.vncty.com   duong hoa-hoc_3666
Tailieu.vncty.com duong hoa-hoc_3666Trần Đức Anh
 
Tailieu.vncty.com do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562
Tailieu.vncty.com   do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562Tailieu.vncty.com   do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562
Tailieu.vncty.com do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562Trần Đức Anh
 
Tailieu.vncty.com tieu luanc4v-1324
Tailieu.vncty.com   tieu luanc4v-1324Tailieu.vncty.com   tieu luanc4v-1324
Tailieu.vncty.com tieu luanc4v-1324Trần Đức Anh
 
Tailieu.vncty.com do an-cong_nghe_san_xuat_sua_tiet_trung_9366
Tailieu.vncty.com   do an-cong_nghe_san_xuat_sua_tiet_trung_9366Tailieu.vncty.com   do an-cong_nghe_san_xuat_sua_tiet_trung_9366
Tailieu.vncty.com do an-cong_nghe_san_xuat_sua_tiet_trung_9366Trần Đức Anh
 

More from Trần Đức Anh (20)

Tailieu.vncty.com 5275 1261
Tailieu.vncty.com   5275 1261Tailieu.vncty.com   5275 1261
Tailieu.vncty.com 5275 1261
 
Tailieu.vncty.com 5249 5591
Tailieu.vncty.com   5249 5591Tailieu.vncty.com   5249 5591
Tailieu.vncty.com 5249 5591
 
Tailieu.vncty.com 5219 0449
Tailieu.vncty.com   5219 0449Tailieu.vncty.com   5219 0449
Tailieu.vncty.com 5219 0449
 
Tailieu.vncty.com 5208 2542
Tailieu.vncty.com   5208 2542Tailieu.vncty.com   5208 2542
Tailieu.vncty.com 5208 2542
 
Tailieu.vncty.com 5145 0887
Tailieu.vncty.com   5145 0887Tailieu.vncty.com   5145 0887
Tailieu.vncty.com 5145 0887
 
Tailieu.vncty.com 5142 5647
Tailieu.vncty.com   5142 5647Tailieu.vncty.com   5142 5647
Tailieu.vncty.com 5142 5647
 
Tailieu.vncty.com 5138 529
Tailieu.vncty.com   5138 529Tailieu.vncty.com   5138 529
Tailieu.vncty.com 5138 529
 
Tailieu.vncty.com 5125 4608
Tailieu.vncty.com   5125 4608Tailieu.vncty.com   5125 4608
Tailieu.vncty.com 5125 4608
 
Tailieu.vncty.com 5117 1019
Tailieu.vncty.com   5117 1019Tailieu.vncty.com   5117 1019
Tailieu.vncty.com 5117 1019
 
Tailieu.vncty.com 5106 4775
Tailieu.vncty.com   5106 4775Tailieu.vncty.com   5106 4775
Tailieu.vncty.com 5106 4775
 
Tailieu.vncty.com 5089 2417
Tailieu.vncty.com   5089 2417Tailieu.vncty.com   5089 2417
Tailieu.vncty.com 5089 2417
 
Tailieu.vncty.com 5088 8018
Tailieu.vncty.com   5088 8018Tailieu.vncty.com   5088 8018
Tailieu.vncty.com 5088 8018
 
Tailieu.vncty.com 5067 1967
Tailieu.vncty.com   5067 1967Tailieu.vncty.com   5067 1967
Tailieu.vncty.com 5067 1967
 
Tailieu.vncty.com nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747
Tailieu.vncty.com   nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747Tailieu.vncty.com   nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747
Tailieu.vncty.com nst gioi-tinh_va_di_truyen_lien_ket_gioi_tinh_747
 
Tailieu.vncty.com nhom 6-de_tai_flo_9602
Tailieu.vncty.com   nhom 6-de_tai_flo_9602Tailieu.vncty.com   nhom 6-de_tai_flo_9602
Tailieu.vncty.com nhom 6-de_tai_flo_9602
 
Tailieu.vncty.com lai phan-tu_2413
Tailieu.vncty.com   lai phan-tu_2413Tailieu.vncty.com   lai phan-tu_2413
Tailieu.vncty.com lai phan-tu_2413
 
Tailieu.vncty.com duong hoa-hoc_3666
Tailieu.vncty.com   duong hoa-hoc_3666Tailieu.vncty.com   duong hoa-hoc_3666
Tailieu.vncty.com duong hoa-hoc_3666
 
Tailieu.vncty.com do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562
Tailieu.vncty.com   do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562Tailieu.vncty.com   do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562
Tailieu.vncty.com do an-nhan_giong_in_vi_tro_cay_co_ngot_stevia_4562
 
Tailieu.vncty.com tieu luanc4v-1324
Tailieu.vncty.com   tieu luanc4v-1324Tailieu.vncty.com   tieu luanc4v-1324
Tailieu.vncty.com tieu luanc4v-1324
 
Tailieu.vncty.com do an-cong_nghe_san_xuat_sua_tiet_trung_9366
Tailieu.vncty.com   do an-cong_nghe_san_xuat_sua_tiet_trung_9366Tailieu.vncty.com   do an-cong_nghe_san_xuat_sua_tiet_trung_9366
Tailieu.vncty.com do an-cong_nghe_san_xuat_sua_tiet_trung_9366
 

Tailieu.vncty.com lv2010 sp-dinh_thingocminh

  • 1. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ========== ĐINH THỊ NGỌC MINH PHÂN PHỐI GIÁ TRỊ CỦA HÀM PHÂN HÌNH VÀ ĐẠO HÀM CỦA NÓ Chuyên ngành: Toán giải tích Mã số: 60.46.01 LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2010
  • 2. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn MỤC LỤC LỜI NÓI ĐẦU .......................................................................................................1 Chương 1: Hai định lý cơ bản của Nevanlinna.......................................................3 1.1. Công thức Poison – Jensen..............................................................................3 1.1.1. Định lý..........................................................................................................3 1.1.2. Hệ quả...........................................................................................................6 1.2. Hàm đặc trưng – Định lý cơ bản thứ nhất........................................................7 1.2.1. Định nghĩa ....................................................................................................7 1.2.2. Một số tính chất đơn giản của hàm đặc trưng ...............................................9 1.2.3. Định lý cơ bản thứ nhất.................................................................................9 1.3. Định lý cơ bản thứ hai....................................................................................10 1.3.1. Định lý ( Bất đẳng thức cơ bản)..................................................................10 1.3.2. Bổ đề 1........................................................................................................11 1.3.3. Bổ đề 2........................................................................................................12 1.3.4. Định lý........................................................................................................16 1.3.5. Định nghĩa ..................................................................................................17 1.3.6. Định lý (Quan hệ số khuyết).......................................................................18 1.3.7. Định lý........................................................................................................20 Chương 2: Phân phối giá trị của hàm phân hình và đạo hàm của nó. ...................24 2.1. Sự phân phối giá trị của các hàm phân hình...................................................24 2.1.1. Định nghĩa ..................................................................................................24 2.1.2. Định lý (Milloux)........................................................................................24 2.1.3. Định lý........................................................................................................26 2.1.4. Định lý........................................................................................................28 2.1.5. Bổ đề:..........................................................................................................28 2.2. Phân phối giá trị của hàm phân hình và đạo hàm của nó ...............................32 2.2.8. Định lý........................................................................................................34 2.2.9. Định lý........................................................................................................36 KẾT LUẬN..........................................................................................................38 TÀI LIỆU THAM KHẢO....................................................................................39
  • 3. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn1 LỜI NÓI ĐẦU Lý thuyết phân phối giá trị các hàm phân hình (lý thuyết Nevanlinna ) là một trong những hướng nghiên cứu cơ bản của giải tích phức và vẫn đang thu hút được sự quan tâm rộng rãi của các nhà toán học trên thế giới. Đề tài luận văn thuộc hướng nghiên cứu nói trên, với mục đích trình bày một số kết quả gần đây của lý thuyết phân phối giá trị. Phân phối giá trị của hàm phân hình và đạo hàm của nó là vấn đề không những được quan tâm trong giải tích phức mà còn có nhiều ứng dụng trong nghiên cứu các vấn đề khác, chẳng hạn như phương trình vi phân. Sau quá trình nghiên cứu, tôi đã hoàn thành luận văn với đề tài: “Phân phối giá trị của hàm phân hình và đạo hàm của nó”. Luận văn gồm phần mở đầu, hai chương nội dung, phần kết và danh mục tài liệu tham khảo. Chương1: Trình bày định nghĩa các hàm đặc trưng, hai định lý cơ bản của Nevanlinna,... Chương2: Trình bày định nghĩa, định lý, một số kết quả của Milloux và vấn đề chính của luận văn: Phân phối giá trị của hàm phân hình và đạo hàm của nó. Kết quả này có được là nhờ sự hướng dẫn tận tình của GS. TSKH Hà Huy Khoái. Thầy không chỉ tận tình hướng dẫn mà còn động viên tôi trong suốt quá trình nghiên cứu và hoàn thành luận văn. Nhân dịp này em xin gửi lời cảm ơn sâu sắc tới thầy! Đồng thời, em cũng xin chân thành cảm ơn các thầy cô trong hội đồng bảo vệ luận văn thạc sỹ đã tạo điều kiện thuận lợi để em vững tin hơn trong việc chuẩn bị bảo vệ luận văn của mình. Xin chân thành cảm ơn Đại học Thái Nguyên, Đại học Sư phạm, Khoa sau đại học của Đại học Sư phạm, Khoa toán cùng các thầy cô giáo đã tạo
  • 4. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn2 điều kiện tốt nhất cho em học tập cũng như nghiên cứu và hoàn thành luận văn của mình. Xin cảm ơn các anh, chị , các bạn học viên lớp cao học Toán_K16 Đại học Sư phạm Thái Nguyên đã giúp đỡ, chia sẻ kinh nghiệm cùng tôi trong suốt thời gian viết luận văn. Tôi xin chân thành cảm ơn gia đình và bạn bè đã cổ vũ, động viên tôi trong quá trình làm luận văn. Mặc dù đã rất cố gắng nhưng chắc chắn luận văn sẽ không tránh khỏi những thiếu sót, vì vậy rất mong được sự đóng góp ý kiến của thầy cô giáo, các bạn đồng nghiệp, các bạn học viên để luận văn được hoàn chỉnh hơn.
  • 5. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn3 Chương 1 Hai định lý cơ bản của Nevanlinna 1.1. Công thức Poison – Jensen 1.1.1. Định lý Giả sử  f z là hàm phân hình trong hình tròn  z R , 0 R   , có các không điểm  1,2,...,a M   ; các cực điểm  1,2,...,b N   trong hình tròn đó( mỗi không điểm hoặc cực điểm được tính một số lần bằng bội của nó). Khi đó, nếu    ; 0 , 0,i z re r R f z     ; ta có:           2 2 2 2 2 0 2 2 1 1 1 log log 2 2 cos log log . i M N R r f z f Re d R Rr r R z a R z b R a z R b z                            Chứng minh. + Bước 1: Trước tiên, giả sử rằng hàm  f z không có không điểm và cực điểm trong  z R . Ta chứng minh công thức cho trường hợp 0z  . Theo giả thiết  f z chỉnh hình và khác 0 trong  z R nên  log f z là hàm chỉnh hình trong hình tròn đó. Theo định lý Cauchy ta có:       2 0 1 1 log 0 log log Re 2 2 i z R dz f f z f d i z         . Lấy phần thực hai vế ta được:     2 0 1 log 0 log Re 2 i f f d       .
  • 6. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn4 + Bước 2: Xét trường hợp , 0.i z re r   Theo công thức Cauchy ta có:     1 log log . 2 R d f z f i z       Mặt khác, do điểm 2 R z có môđun 2 2 R R R z r   nên điểm đó nằm ngoài hình tròn, do đó:   2 1 log 0. 2 R d f Ri z         Từ đó ta có:            2 22 2 1 1 1 log log 2 1 log . 2 R R f z f d Ri z z R z f d i z R z                                 Thay Re , iRe ,i i d d           2 2 2 Re 2 cos .i R z z R Rr r          Ta được:       2 2 2 2 2 0 1 log log Re . 2 2 cos i R r f z f d R Rr r            Lấy phần thực hai vế ta được công thức cần chứng minh đối với trường hợp hàm  f z chỉnh hình và khác không. + Bước 3: Giả sử  f z không có không điểm và cực điểm trong  R  nhưng có thể có không điểm và cực điểm trên biên R  .
  • 7. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn5 (*) Nhận xét:  f z chỉ có hữu hạn không điểm, cực điểm trên biên. Chứng minh. Giả sử  f z có vô hạn không điểm, cực điểm trên R  . Do R  compact, tồn tại 0 là điểm giới hạn của tập hợp các không điểm suy ra 0f  . (+) Giả sử  f z có vô hạn cực điểm trên  n  0 : 0lim kn k     . Do các kn là các cực điểm. Suy ra 0 là bất thường cốt yếu   f  không phân hình. Giả sử 0 là một không điểm hoặc cực điểm cấp k trong lân cận 0 ;  f  có khai triển:        0 ;f g g      chỉnh hình khác 0 trong lân cận 0 ;   0log logf    trong lân cận 0 . Với mỗi 0 là không điểm, cực điểm, ta vẽ vòng tròn tâm 0 bán kính 0  đủ nhỏ. Xét C : Hợp các cung tròn bán kính  nằm bên trong  R  thay tích phân trên C, R  tại lân cận 0 bởi cung C . Suy ra trên chu tuyến mới  f z không có không điểm, cực điểm. Áp dụng được bước 2. Tích phân trên chu tuyến mới khác tích phân trên  C R  một đại lượng là:     1 1 log 2 0 log 2 2r          , log 0   khi 0  . Vậy cho 0  ta được công thức cần chứng minh. + Bước 4: Trường hợp tổng quát. Với các giả thiết như trong định lý ta đặt:
  • 8. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn6         2 1 2 1 , N M R b R b f R a R a                       dễ thấy   0,    bên trong hình tròn R  , nên ta áp dụng được công thức đã chứng minh trong bước 3. Mặt khác, các hàm trong hai dấu tích chính là các hàm thực hiện ánh xạ hình tròn R  lên hình tròn đơn vị, nên môđun của chúng bằng 1 khi R  . Từ đó, nếu Rei   thì    f   . Ta có:       2 2 2 2 2 0 1 log log Re . 2 2 cos i R r z f d R Rr r             Từ công thức của hàm    ta được công thức Poisson-Jensen cho trường hợp tổng quát. 1.1.2. Hệ quả Trong những giả thiết của Định lý, đồng thời nếu  0 0,f  , ta có:     2 1 10 1 log 0 log Re log log . 2 M N i a b f f d R R              Khi  0 0f  hoặc  công thức trên thay đổi chút ít. Thật vậy, nếu  0 0f  hoặc  0f   hàm  f z có khai triển tại lân cận 0z  dạng:    ...f z C z     . Xét hàm    R f z z z     . Ta thấy  0 0,  , đồng thời khi    Re ,i f      . Từ đó ta có:
  • 9. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn7   2 1 10 1 log log Re log log log 2 M N i a b C f d R R R                 . (*) Nhận xét: Giả sử  f z là hàm phân hình trong một miền G nào đó. Ta gọi cấp của hàm  f z tại điểm 0z G , ký hiệu 0zord f , là số nguyên m sao cho hàm      0 m f z g z z z   chỉnh hình và khác không tại 0z . (*) Ví dụ: (1) 0z là 0 điểm cấp k của  f z   0zord 0f k k  . (2) 0z là cực điểm cấp k của  f z  0zord f k  . (3) Tại 0z hàm  f z chỉnh hình, khác 0  0zord 0f  . Công thức Poisson – Jensen có thể viết dưới dạng:         222 2 2 0 1 log log Re ord log 2 Re i i R z R z f z f f R zz              , trong đó tổng lấy theo mọi  trong hình tròn  R  . 1.2. Hàm đặc trưng – Định lý cơ bản thứ nhất 1.2.1. Định nghĩa Giả sử x là số thực dương, ta định nghĩa:  log ax 0;logxx m  Ta có: 1 log log logx x x     , vì: 1:log 0 log logx x x x     1 1 log 0 log 0 x x     .
  • 10. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn8 0 1:log 0 log 0 1 1 1 log 0 log log log . x x x x x x x             Như vậy, ta có:       2 2 2 0 0 0 1 1 1 1 log Re log Re log 2 2 2 Re i i i f d f d d f                   . Đặt     2 0 1 , log Re 2 i m R f f d        . Giả sử f có các cực điểm  1,vb v n (mỗi cực điểm được tính một số lần bằng bậc của nó), và các không điểm  1,a M   trong    ; ,z R n t f là số cực điểm của f trong  z t . Đặt     1 0 , log , RN v v R dt N R f n t f b t    . Như vậy, 1 0 1 1 , log , RM R dt N R n t f f ta                 . Khi đó công thức Poisson – Jensen được viết dưới dạng:       1 1 log 0 , , , ,f m R f m R N R f N R f f                      1 1 , , , , log 0m R f N R f m R N R f f f                 . Đặt      , , ,T R f m R f N R f  , (1.1) thì     1 , , log 0T R f T R f f        . (1.2)
  • 11. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn9  ,T R f được gọi là hàm đặc trưng Nevanlinna của f. 1.2.2. Một số tính chất đơn giản của hàm đặc trưng Giả sử    1 ,..., nf z f z là các hàm phân hình, ta có các bất đẳng thức sau đây: (1)     1 1 , , log l l k k k k m r f z m r f l            . (2)     11 , , l l k k kk m r f z m r f         . (3)   1 1 , , l l k k k k N r f N r f           . (4)   11 , , l l k k kk N r f N r f         . (5)   1 1 , , log l l k k k k T r f T r f l            . (6)   11 , , l l k k kk T r f T r f         . Đặc biệt, với mọi hàm phân hình  f z và mọi a C ta có:    , , log log2T r f T r f a a     . (1.3) 1.2.3. Định lý cơ bản thứ nhất Giả sử  f z là hàm phân hình trong hình tròn  , 0,z R R a  là số phức tùy ý. Khi đó ta có:       1 1 , , , log 0 , ,m R N R T R f f a a R f a f a                  trong đó  , log log2a R a    . Chứng minh.
  • 12. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn10 Thật vậy, từ (1.1) và (1.2) ta có:     1 1 1 , , , , log 0m R N R T R T R f a f a f a f a f a                         . Từ (1.3) ta nhận được đẳng thức cần chứng minh. (*) Nhận xét : Từ định nghĩa các hàm Nevanlinna ta thấy rõ ý nghĩa của định lý cơ bản thứ nhất. Hàm đếm 1 ,N R f a      được cho bởi công thức : 1 1 , log M R N R f a a        , trong đó a là các nghiệm của phương trình  f z a trong hình tròn z R . Hàm xấp xỉ   2 0 1 1 1 , log 2 Rei m R d f a f a             . Như vậy, nếu f nhận càng nhiều giá trị gần a (tức là  Rei f a  nhỏ) thì hàm m càng lớn. Như vậy có thể nói tổng trong vế trái của định lý cơ bản thứ nhất là hàm ‘‘đo độ lớn của tập hợp nghiệm phương trình  f z a ’’ và ‘‘độ lớn tập hợp tại đó  f z nhận giá trị gần bằng a’’. Trong khi đó vế phải của đẳng thức trong định lý cơ bản có thể xem là không phụ thuộc a. Vì thế định lý cơ bản thứ nhất cho thấy rằng hàm phân hình  f z nhận mỗi giá trị a (và giá trị gần a ) một số lần như nhau. 1.3. Định lý cơ bản thứ hai 1.3.1. Định lý ( Bất đẳng thức cơ bản) Giả sử  f z là hàm phân hình khác hằng số trong hình tròn  z r ; 1,..., ; 2qa a q  , là các số phức phân biệt. Khi đó ta có:
  • 13. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn11          1 1 , , 2 , q v v m r m r a T r f N r S r       , trong đó  1 0N r  , được cho bởi:      1 1 , 2 , , ' ' N r N r N r f N r f f         ,    1 ' 3 1 , log log2 log ' 0 q v v f q S r m r q f a f             , 1 min 0.v v q a a         ( Để đơn giản ta giả thiết:  ' 0 0,f  ). Để chứng minh bất đẳng thức cơ bản trên ta chứng minh một số bổ đề sau. 1.3.2. Bổ đề 1 Giả sử  g z là hàm phân hình trong hình tròn    , 0 0,z r g   khi đó ta có:       2 0 1 1 1 , , log log 0 2 i N r g N r d g g g re              . Chứng minh.       1 1 1 , , , , , ,N r g N r T r g m r g T r m r g g g                                 1 1 , , , ,T r g T r m r g m r g g                               2 2 0 0 1 1 1 1 log log log 0 2 2 i i g re d d g g re                      
  • 14. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn12     2 0 1 1 log log 0 2 i g re d g        . Đặt   1 1q v v F z f a    . 1.3.3. Bổ đề 2 Với các giả thiết của định lý, ta có:     1 1 3 log log log log2. * q q F z q f a            Chứng minh. + Nếu với mọi  , 3 f a q     thì (*) đúng. Thật vậy với mọi  ta có : 1 1 3 1 3 log log q q q q f a f a            .  Vế phải của (*) 0 + Giả sử tồn tại v : 3 vf a q    . Nếu tồn tại  thỏa mãn thì v là duy nhất. Vì nếu ngược lại: ; 3 vf a q    . 3 f a q      2 3 va a q      . (vô lý) Với mọi ; 3 v f a q       , 2 3 3 v vf a a a f a q             .
  • 15. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn13  1 3 1 3 1 1 2 2 2 v q q q f af a      . 13 2 2 3 vf a q qf a       .   1 1 1 1q v vv v F z f a f a f a           = 1 1 1 1 1 1 2 2 v v v v f a q f a f a q f af a                   .   1 1 1 1 log log log2 log log log2 q vv F z f a f a f a                     1 1 3 log 1 log log2 q q q f a            1 1 3 log log log2 q q q f a           . (*) Chứng minh định lý: Lấy 2 0 1 2 d     hai vế ta được:   2 2 10 0 1 1 1 3 log log log log2 2 2 q i q F re d d q f a                    .     1 3 , , log log2 q v v q m r F m r a q       .     1 3 , , log log2 q v v q m r a m r F q       .
  • 16. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn14   1 1 , ; . . '. ' 1 ' , , , . ' q v v f m r F m r f F f f f f m r m r m r f f f a                              1 1 1 , , , 1 1 , log 0 , . m r T r N r f f f T r f N r f f                                  , , , ' ' ' f f f m r T r N r f f f                        0 , log , ' ' 0 ' ff f T r N r f f f                   0' ' , , , log ' ' 0 ff f f m r N r N r f f f f                      . Từ bổ đề một ta có:         2 0 ' 0' 1 , , log log ' 2 0' i i f re ff f N r N r d f f ff re                    .       1 ' , , log 0 , , f m r F T r f f N r m r f f                   1 0' , log ' 0 q v v ff m r f a f                 2 0 ' 01 log log 2 0' i i f re f d ff re       .         1 3 , , , , log log2 q v v q m r m r a m r m r F q          
  • 17. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn15           2 10 1 ' , , log 0 , , 1 ' 3 log , log log2 2 ' i q i v v f m r T r f f N r m r f f f re f q d m r q f af re                                       2 2 0 0 1 1 log log ' 2 2 i i f re d f re d                1 1 , , , , ' ' N r N r f N r N r f f f                   . Vậy:           1 , , 2 , , log 0 q v v m r m r a T r f N r f f                   1 1 , log ' 0 , , 1 log 0 , , ' log ' 0 ' N r S r f N r N r f f f f N r N r f f f                                       1 1 2 , , 2 , , ' ' 2 , , T r f N r N r f N r f S r f T r f N r S r                 trong đó,      1 1 , 2 , , ' ' N r N r N r f N r f f         . Định lý được chứng minh. (*) Nhận xét: Có thể chỉ ra rằng  1 0N r  . Thật vậy, giả sử b là một cực điểm cấp k của hàm  f z trong đĩa  z r .
  • 18. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn16 Khi đó đại lượng log r b được tính k lần trong tổng  ,N r f . Mặt khác, b là cực điểm cấp  1k  của đạo hàm  'f z . Do đó, đại lượng log r b được tính  1k  lần trong tổng  , 'N r f . Từ đó suy ra:    2 , , ' 0N r f N r f  Từ bất đẳng thức cơ bản ta có Định lý cơ bản thứ hai của Nevanlinna. 1.3.4. Định lý Giả sử r là một số thực dương,  f z là hàm phân hình trong ; 1,..., qa a là các số phức phân biệt. Khi đó ta có:            1 1 1 , , , q v v q T r f N r a N r N r S r        , trong đó:            1 1 , 2 , , ' . ' log , log . N r N r N r f N r f f S r o T r f r           Chứng minh. Từ bất đẳng thức cơ bản ta có:          1 1 , , 2 , q v v m r m r a T r f N r S r       . Cộng vào hai vế đại lượng     1 , , q v v N r N r a     ta có:                   1 1 , , , , 2 , , , q v v v q v v N r m r m r a N r a T r f N r N r a N r S r                     Từ Định lý cơ bản thứ nhất, ta thấy với mọi 1,2,...,v q ;
  • 19. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn17        , , , 1v vm r a N r a T r f O   . Từ đó suy ra:              1 1 1 , 2 , , , q v v q T r f T r f N r a N r N r S r         . Tức là:            1 1 1 , , , q v v q T r f N r a N r N r S r        . 1.3.5. Định nghĩa Giả sử  f z là hàm phân hình trên mặt phẳng phức  , a , ta đặt.             , , , lim 1 lim , , m r a N r a a a f T r f T r f      .  , log r N r f b   ; tổng lấy theo mọi cực điểm b của hàm, b r ; đồng thời mỗi cực điểm chỉ được tính một lần.         , , 1 lim , N r a a a f T r f      .           , , , lim , N r a N r a a a f T r f      .  a được gọi là số khuyết của giá trị a.  a được gọi là chỉ số bội của giá trị a.
  • 20. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn18 1.3.6. Định lý (Quan hệ số khuyết) Giả sử  f z là hàm phân hình trên  , khi đó tập hợp các giá trị a mà   0a  cùng lắm là đếm được, đồng thời ta có:            2 a a a a a              . Chứng minh. Từ định nghĩa suy ra rằng:      a a a    . Chọn dãy  ,n nr r  sao cho     log ,n nS r O T r f . Từ Định lý cơ bản thứ hai, với mọi tập hợp gồm q số phức phân biệt 1 2, ,..., qa a a ta có:             1 1 1 , , , log , q n n v n n n v q T r f N r a N r N r O T r f                   1 1 , , 2 , , ' , log , ' q n v n n n n n v N r a N r N r N r f N r O T r f f                       ' 1 1 , , , ' , log , q n v n n n n v N r a N r f N r f N r O T r f f            . Bất đẳng thức trên có thể viết lại như sau:           1 1 1 1 , , , ' , , q n v n n n v q O T r f N r a N r f N r f N r f                . Nếu b là một cực điểm cấp k của hàm  f z trong  nz r thì đại lượng log nr b tham gia k lần trong công thức tính  ,nN r  , đồng thời do b là cực điểm của  'f z cấp  1k  nên đại lượng đó tham gia  1k  lần trong công thức tính  , 'nN r f . Từ đó, suy ra:      , ' , ,n n nN r f N r N r    .
  • 21. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn19 Mặt khác, giả sử b là nghiệm bội k của phương trình:   vf z a với v nào đó 1 v q  . Khi đó, đại lượng log nr b tham gia k lần trong công thức tính tổng   1 , q n v v N r a   . Vì b là không điểm cấp  1k  của hàm  'f z nên nó là cực điểm cấp  1k  của hàm 1 'f . Do đó, tham gia  1k  lần vào công thức tính tổng 1 , ' N r f       . Từ đó, ta có:      0 1 1 1 , , , ' ' q q n v n n v v v N r a N r N r a N f f            , với  0 'N f là tổng có dạng log nr b  lấy theo mọi không điểm b của 'f mà không là nghiệm của bất kỳ phương trình   vf z a nào, 1 v q  . Suy ra,     1 1 1 , , , ' q q n v n n v v v N r a N r N r a f           . Ta có:         1 1 1 , , , q n n v n v q O T r f N r a N r           . Chia hai vế cho  ,nT r f ta được:          1 , , 1 1 , , q n v n v n n N r a N r q O T r f T r f      . Cho n  ta suy ra:     1 1 1 1 q v v q a              .
  • 22. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn20 Tức là:     1 2 q v v a       . Ta cần chứng minh tồn tại tập hợp các giá trị a sao cho   0a  , cùng lắm là đếm được, đồng thời     2 a a      .      1 1 0 n A a a a a n               . Tập hợp   1 a a n        có không quá 2n phần tử. Suy ra, A cùng lắm là đếm được. Vậy     2 a a      . Định lý được chứng minh. 1.3.7. Định lý Giả sử ,f g là các hàm phân hình khác hằng số sao cho tồn tại 5 điểm 1 2 3 4 5, , , ,a a a a a để    1 1 ; 1,5j jf a g a j    . Khi đó, f g hoặc ,f g là hằng số. (*) Nhận xét: Số 5 không thể giảm. Ví dụ: 1 2 3 4; ; 0; 1; 1;z z f e g e a a a a        ,    1 1 j jf a g a   nhưng f g . Chứng minh. Giả sử tồn tại 1 2 3 4 5, , , ,a a a a a ,      , 1,5j jz f z a z g z a j    . Đặt     1 1 , , , , .j j j j N r N r f a N r N r f a g a                 
  • 23. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn21 Mà 1 , log j r N r f a b        . (b là nghiệm của phương trình  f z a chỉ tính một lần). Theo giả thiết:     jf z a g z a   . Suy ra, 1 1 , , j j N r N r f a g a                . Định lý cơ bản thứ 2, áp dụng cho 1 2 3 4 5; , , , , .f a a a a a                                            1 1 1 5 1 5 1 1 , , , , 1 , 2 , , ' , ' , . 1 4 , , , , 2 , , ' 1 , , , ' , . ' q v v j j j j q T r f N r a N r N r S r N r N r N r f N r f f S r O T r f T r f N r a N r N r N r f N r f S r f N r a N r N r f N r f S r f                                            Xét   5 1 1 , , ' j j N r a N r f         ,   5 1 , j j N r a   chứa các số dạng log r b , trong đó b là một trong các nghiệm của phương trình jf a . Giả sử, b là nghiệm bội k của phương trình jf a với j nào đó. Suy ra, tham gia  1k  lần trong 1 , log ' r N r f b       tham gia một lần.       5 5 0 1 1 1 , , , ' , ' j j j j N r a N r N r a N f f            
  • 24. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn22 trong đó  0 'N f là tổng tính theo các nghiệm của ' 0f  mà không là nghiệm của jf a .       5 5 5 1 1 1 1 , , , . ' j j j j j j N r a N r N r a N r f               Xét    , ' ,N r f N r f : Mỗi cực điểm cấp k của f là cực điểm cấp 1k  của 'f . Suy ra:                                     5 1 5 1 5 1 5 1 , ' , , . 4 , , , , , . 3 1 , . * j j j j j j j j N r f N r f N r f T r f N r N r f S r N r T r f S r N r T r f O T r f O T r f N r                       Tương tự với hàm g, ta cũng có:          5 1 3 1 , . **j j O T r g N r     Giả sử 1 f g f g    là hàm phân hình. Theo định lý cơ bản thứ nhất, ta có:           1 , , 1 , , 1 . T r T r f g O f g T r f T r g O          
  • 25. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn23 Mặt khác:   5 1 1 1 , , j j T r N r N r f g f g                , ( vì nếu số hạng log r b được tính trong  jN r thì   jf b a với j nào đó. Theo giả thiết,       0 logj r g b a f b g b b      được tính trong 1 ,N r f g      ).         5 1 1 , , , 1 .j j N r T r T r f T r g O f g           Từ (*),(**) suy ra:         5 1 2 , , 3 j j T r f T r g N r S r     . Kết hợp, ta được:       5 5 1 1 2 3 j j j j N r N r S r      . (vô lý) Vậy, suy ra f g .
  • 26. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn24 Chương 2 Phân phối giá trị của hàm phân hình và đạo hàm của nó. 2.1. Sự phân phối giá trị của các hàm phân hình. 2.1.1. Định nghĩa Giả sử  f z là hàm phân hình khác hằng số trên C. Ta định nghĩa  ,S r f là một đại lượng xác định thỏa mãn     , ,S r f T r f khi r  ; có thể trừ đi một tập E của r có độ đo hữu hạn. Giả sử,      0 1, , ,...a z a z a z là các hàm nhỏ của f, tức là các hàm thỏa mãn:     , ,T r a z S r f khi r  . 2.1.2. Định lý (Milloux) Cho l là một số nguyên, f là hàm phân hình khác hằng số trên  và:         0 l v v v z a z f z    , khi đó:      , , z m r S r f f z       , (1.4) và:        , 1 , ,T r l T r f S r f    (1.5) Chứng minh. Xét trường hợp      l z f z  , chứng minh bằng phép quy nạp với l . Nếu   'z f  thì   ' , , f m r S r f f       . Giả sử, ta có:    , , l f m r S r f f        , với l nào đó.
  • 27. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn25 Khi đó:            , , , , , l l f m r f m r m r f m r f S r f f           . (*) Nếu  f z có cực điểm tại 0z cấp k, thì    l f z có cực điểm tại 0z cấp k l và  1k l l k   . Do đó:        , 1 , l N r f l N r f  . (**) Cộng các bất đẳng thức (*), (**) ta được:                           , , , , 1 , , 1 , , . l l l T r f m r f N r f m r f l N r f S r f l T r f S r f          Như vậy trong trường hợp này (1.5) được chứng minh. Ta kết luận rằng                 1 , , , , l l l l f m r S r f T r f T r f f             , khi r , trừ một tập hợp E của r có độ đo hữu hạn. Khi đó:           1 1 , , , , l l l l f f f m r m r m r S r f f ff                            . Vậy định lý được chứng minh cho trường hợp      l z f z  . Trường hợp tổng quát, ta chú ý rằng:                             0 0 0 , , log 1 , , log 1 , 1 , . l v v v vl v v l v z m r m r a z f z l f z f z m r a z m r l f S r f O S r f                                Vậy (1.4) được chứng minh. Hơn nữa ta có:
  • 28. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn26        , , , , ,m r m r m r f m r f S r f f            . Nếu  f z có cực điểm cấp p tại 0z và  va z có cực điểm cấp không quá q tại 0z thì  z có cực điểm tại 0z cấp không vượt quá p l q  và  1p l q l p q     khi đó:                0 , 1 , , 1 , , . l v v N r l N r f N r a z l N r f S r f          Vậy:                       , , , , , 1 , , 1 , , . T r m r N r m r f S r f l N r f S r f l T r f S r f             Vậy Định lý được chứng minh. Từ định lý trên ta có một số kết quả sau. 2.1.3. Định lý Giả sử  f z là hàm phân hình khác hằng số trên  và  z (khác hằng số) là hàm cho bởi ở định lý (2.1.2). Khi đó:      0 1 1 1 , , , , , , 1 ' T r f N r f N r N r N r S r f f                       , trong đó 0 1 , ' N r        là hàm đếm các không điểm của  ' z mà không phải là các không điểm của   1z  . Chứng minh. Theo định lý cơ bản thứ hai cho hàm    z f z  tại 3 điểm 0,1, ta có:        1 1 1 , , , 2 , , , 1 m r m r m r T r N r S r                     . (1.6)
  • 29. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn27 Mặt khác, ta có:                     1 1 1 1 2 , , , , , , 1 1 1 , 2 , , ' 1 ' 1 , , , 1 , 1 T r N r m r m r N r N r N r N r N r O T r T r N r O                                              (1.7)      1 1 , , 2 , , ' ' N r N r N r N r            . Ngoài ra, tại một cực điểm của  z cấp l ,  ' z cấp 1l  , các cực điểm này chỉ xuất hiện tại cực điểm của  f z hoặc của  va z . Do đó:                1 , ' , , , , , , . l v v N r N r N r N r f N r a z N r f S r f            Hơn nữa , tại một không điểm của   1z  cấp l ,  ' z có không điểm cấp 1l  , vì vậy: 0 1 1 1 1 , , , , 1 ' 1 ' N r N r N r N r                               . Ta có:        , , ,S r T r T r f     , trừ ra một tập hợp E của r có độ đo hữu hạn. Do vậy,    , ,S r S r f  . Do đó, cùng với (1.6), (1.7) suy ra:       1 1 1 1 , , , , , , , 1 1 1 m r m r m r m r m r N r N r                                           1 , 2 , , ' 1 ' N r N r N r O           
  • 30. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn28             0 1 1 1 , , ' , , , 1 1 ' 1 1 , , , , . 1.8 1 '                                     m r N r N r N r N r O N r f N r N r S r f        Ta có:         1 1 , , , 1 1 1 , , , 1 1 1 , , , , T r f m r N r O f f m r m r N r O f f m r N r S r f f                                                 cùng với (1.8) suy ra:      0 1 1 1 , , , , , , . 1 ' T r f N r f N r N r N r S r f f                       Vậy định lý được chứng minh. 2.1.4. Định lý Giả sử  f z là hàm phân hình và siêu việt trên  . Khi đó:       1 1 2 1 , 2 , 2 , , 1 l T r f N r N r S r f l f l f                        , khi r . (*) Để chứng minh định lý ta chứng minh bổ đề sau: 2.1.5. Bổ đề: Nếu       0 1 ; , ' l z f z N r         xác định trong định lý 2.1.3 và    1 2, , ,N r f N r f được ký hiệu là hàm N tương ứng cực điểm đơn và cực điểm bội, mỗi cực điểm chỉ tính duy nhất một lần, thì ta có:
  • 31. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn29          2 0 1 1 , , , , , 1 ' lN r f N r f N r N r S r f z z                 . Chứng minh. Ta xét hàm                   1 11 2 2 ' 11 l ll l l l f z z g z zf z          . Khi đó tại một cực điểm đơn 0z của  f z , ta có:     0 1 ; 0 a f z O a z z     . Lấy vi phân hai vế l lần ta được kết quả:                    1 1 0 1 1 01 0 1 ! 1 1 1 1 ! 1 . l l l l l l al z f z O z z al O z z z z                   Lấy vi phân tiếp 2 vế ta thu được:            1 21 02 0 1 1 ! 1 l ll l a l f z O z z z z          . Do đó          1 1 1 0 1 1 1 ! l l ll g z O z z al        . Vì vậy,  0 0,g z  . Nhưng  'g z có không điểm tại 0z cấp ít nhất là l . Sử dụng công thức Poisson-Jensen cho     'g z g z ta có:   ' ' , , , , 1 ' ' g g g g N r N r m r m r O g g g g                            ,
  • 32. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn30 vế trái đẳng thức trên là :        0 1 1 1 1 , , , ' , , , , ' ' 1 1 , , , , ' N r g N r N r g N r N r N r N r g g g g g N r N r N r g g g                                            với 0 1 , ' N r g       là hàm đếm các không điểm của 'g mà không phải là các không điểm của g. Từ các kết quả trên ta có :      1 0 1 1 ' , , , , , 1 ' g lN r f N r N r N r g m r O g g g                       . (1.9) Các không điểm và cực điểm của  g z chỉ có thể xuất hiện tại các cực điểm bội của  f z , hoặc các không điểm của   1z  , hoặc các không điểm của  ' z khác với không điểm của   1z  . Do đó :      2 0 1 1 1 , , , , , 1 ' N r N r g N r N r f N r g z                    . (1.10) Ngoài ra, theo định lý 2.1.2 ta có:                     1' , , , ,1 , , . 1.11              l lg m r T r g T r f T r f z g T r f S r f     Từ (1.9), (1.10), (1.11) suy ra điều phải chứng minh. (*) Chứng minh định lý 2.1.4 Sử dụng định lý 2.1.3 với      l z f z  và trong  ,N r f các cực điểm bội được tính ít nhất 2 lần, ta có:
  • 33. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn31             1 2 0 1 , 2 , , , , , 1 1 , , , . 1 ' N r f N r f N r f T r f N r f N r f N r N r S r f                           Vì      1 2, , ,N r f N r f N r f  , ta có :    2 0 1 1 1 , , , , , 1 ' N r f N r N r N r S r f f                      , kết hợp với bổ đề 2.1.5 ta có kết quả :         1 2 0 1 1 , , , , , 1 ' 1 1 , 2 , , . 1 lN r f N r f N r N r S r f N r N r S r f f                              Suy ra :    1 1 1 2 1 , , , , 1 N r f N r N r S r f l f l              . Ta có :           1 2, , , 1 1 1 1 2 1 , , , , , 1 1 1 1 2 1 1 , 1 , , . 1 N r f N r f N r f N r N r N r N r S r f f l f l N r N r S r f l f l                                                       Thế bất đẳng thức này vào định lý 2.1.3 ta được bất đẳng thức của định lý 2.1.4. Bây giờ, ta giả sử 1 2w ,w là các số phức, thỏa mãn 2w 0 . Ta xét     1 2 w w f z F z   . Khi đó, ta có:          , , 1 , , ,T r F T r f O S r F S r f   . Sử dụng định lý 2.1.4 cho  F z ta thu được :
  • 34. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn32               1 2 1 1 2 1 , , 1 2 , 2 , , 1 1 1 2 1 2 , 2 , , . w w l l T r f T r F O N r N r S r F l F l F N r N r S r f l f l f                                                       Nếu phương trình      1 2w , w l f z f z  chỉ có hữu hạn nghiệm thì :       1 1 , logO T r f O r  khi r . Vì vậy  f z là hàm hữu tỉ, mâu thuẫn giả thiết. Suy ra, định lý được chứng minh. 2.2. Phân phối giá trị của hàm phân hình và đạo hàm của nó 2.2.1. Định lý (xem [ 5 ], Hayman) Nếu n ( 3 ) là một số nguyên thì 'n f f  có tất cả các giá trị khác không. (*) Tuy nhiên vấn đề đặt ra là giá trị phân phối của  'ff a khi a a z  là một hằng số khác không thỏa mãn điều kiện:    , ,T r a S r f . Ta gọi hàm phân hình  a a z là một hàm nhỏ của f nếu    , ,T r a S r f . 2.2.2. Định lý ( xem {[ 12 ] và [ 11 ]}, Zhang ) Nếu   7 ; 9 f   thì 'ff a là vô cùng khi  0,a   là hàm nhỏ của f . 2.2.3. Định lý ( xem {[ 12 ] và [ 11 ]}, Zhang ). Nếu    2 0; ; 1f f    thì 'ff a là vô cùng khi  0,a   là hàm nhỏ của f . (*) Nhận xét: Tuy vậy, trong định lý C điều kiện    2 0; ; 1f f    có thể dễ dàng thay thế bởi điều kiện yếu hơn:    2 0; ; 1f f     .
  • 35. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn33 2.2.4. Định lý (xem [ 2 ], Bergweiler) Nếu f là đa thức và f hạn chế bậc thì 'ff a là vô cùng. 2.2.5. Định lý (xem [ 11 ], Yu). Nếu  0,a   là một hàm nhỏ của f thì ít nhất một 'ff a và 'ff a là vô cùng. 2.2.6. Định nghĩa: Cho m là một số nguyên dương. Ta ký hiệu  , ; ,N r a f m  , ;N r a f m là hàm đếm các a điểm của f . Định nghĩa tương tự với  , ;N r a f m ,  , ;N r a f m ,  , ; ,N r a f m và  , ;N r a f m . Ta có:    , ; , ;N r a f N r a f   , và    , ; , ; .N r a f N r a f   2.2.7. Bổ đề Nếu    ,0; 0 k N r f f  là các hàm đếm các không điểm của  k f , mà không phải là các không điểm của f, trong đó mỗi không điểm của  k f được tính theo số bội của nó thì:             ,0; 0 , ; ,0; ,0; , . k N r f f kN r f N r f k kN r f k S r f         Chứng minh. Từ định lý cơ bản thứ nhất và định lý Milloux ta có:       ,0; 0 ,0;          k k f N r f f N r f
  • 36. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn34               , , 1 , ; ,0; , ; , .                          k k f f N r m r O f f kN r f N r f k kN r f k S r f 2.2.8. Định lý Cho      1 0 nn k f f  , khi  0 12 ,n n và k là các số nguyên dương, sao cho:     0 0 0 1 0 11 1 0n n k n n n n      . Khi đó:             0 0 0 0 1 11 1 , , ; , 1 n kk T r N r a S r n k n k n k n                 , với mọi hằng số  0,a   . Chứng minh. Đầu tiên ta chú ý   . 4,10Cf        , , , ,T r f S r f CT r S r    , và         0 1, 1 , ,T r f n k n T r f S r f    , khi C là hằng số. Ta thấy rõ rằng, nếu  0,a   là một hàm nhỏ của f thì a cũng là hàm nhỏ của  và ngược lại. Do đó từ định lý cơ bản của Nevanlinna với ba dãy hàm   .47 6p ta có :          , ,0, , , , , ,T r N r N r N r a S r         , khi    , ; ,0;N r a N r a   . Bây giờ, từ bổ đề ta có :
  • 37. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn35                             ,0; ,0; ,0, 0 ,0; , ; ,0, ,0, , 1 ,0; , ; , . 2 k N r N r f N r f f N r f kN r f N r f k kN r f k S r f k N r f kN r f S r f                  Ta có:              0 1 0 ,0; ,0; 1 1 ,0; 1 1 ,0; . N r N r k n n N r f k n N r f k            Từ (2) ta có:                    0 0 1 ,0; 1 ,0; 1 , ; 1 ,0; ,0; 1 1 1 ,0; 1 , . N r k N r f k kN r f k N r N r n k n n N r f k S r f                                                       0 0 0 0 1 0 0 0 0 0 1 ,0; ,0; , ; 1 1 1 1 1 1 ,0; 1 , 1 1 ,0; , ; , . 1 11 ,0; ,0; , ; , . 3 1 n k k N r N r kN r f n n k k n n k N r f k S r f n k N r kN r f S r f n k nk N r N r N r f S r f n n k                                         Nếu 0z là một phần tử của ,f p và 0z là phần tử của  , với    0 1 0 11n p p k n n k n     thì:       0 1, ; 1 , ; .N r n k n N r      (4)
  • 38. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn36 Vì    , ; , ;N r N r f   và    , ,S r S r f  , từ (1), (3) và (4) ta có:                            0 0 0 0 0 0 0 1 11 , ,0; 1 , ; , ; , 11 ,0; , ; 1 , ; , . k nk T r N r N r f n k n k N r a S r n kk N r N r n k n k n k n N r a S r                               Vậy:             0 0 0 0 1 11 1 , , ; , 1 n kk T r N r a S r n k n k n k n                 . Định lý được chứng minh. (*) Dưới đây, ta chứng minh định lý 2.2.5 khi định lý được phát biểu lại như sau : 2.2.9. Định lý Cho  k F ff , với k là một số nguyên dương, thì với mọi hàm nhỏ a của f       2 2 ; ; 2 2 a F a F k        . Chứng minh. Ta có, 2 a cũng là một hằng số nhỏ của f , ta thấy 0 1 2n n  .           2 2 2 2 1 3 1 , , ; , . 2           k k T r F N r a F S r F k
  • 39. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn37             2 1 3 2 1 , , ; , ; , . 2             k k T r F N r a F N r a F S r F k Điều đó cho thấy:            2 2 2 1 3 2 ; ; 2 2 2 k k a F a F k k            . Định lý được chứng minh.
  • 40. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn38 KẾT LUẬN ******* Nội dung của luận văn là nghiên cứu‘‘ Phân phối giá trị của hàm phân hình và đạo hàm của nó ’’. Luận văn đã trình bày được các vấn đề sau: - Trình bày một cách hệ thống hai định lý cơ bản của R.Nevanlinna. - Trình bày một số kết quả của Milloux. - Trình bày hệ thống với chứng minh chi tiết một số kết quả gần đây trong lĩnh vực nghiên cứu. - Chứng minh định lý : Cho      1 0 nn k f f  , khi  0 12 ,n n và k là các số nguyên dương, sao cho:     0 0 0 1 0 11 1 0n n k n n n n      . Khi đó:             0 0 0 0 1 11 1 , , ; , 1 n kk T r N r a S r n k n k n k n                 , với mọi hằng số  0,a   .
  • 41. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn39 TÀI LIỆU THAM KHẢO [1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Iberoamericana, 11 (1995), 355- 373. [2] W.Bergweiler, On the product of a meromorphic function and its derivative, Bull. Hong Kong Math. Soc., 1 (1997), 97-101. [3] Hà Huy Khoái. Bài giảng lý thuyết Nevanlinna. [4] H.H. Chen and M.L. Fang, The value distribution of 'n f f , Sci. China Ser. A, 38 (1995), 789-798. [5] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math., 98 (1982), 55-62. [6] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2), 70 (1959), 9-42. [7] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964. [8] W. K. Hayman, Research Problems in Function Theory, The Athlone Press University of London, London, 1967. [9] I. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J. 26 (2003), 95 – 100. [10] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2001), 83-91. [11] E. Mues, Uber ein Problem von Hayman, Math. Z., 164 (1979), 239-259. [12] A. P. Singh, On order of homogeneous differential polynomials, Indian J. Pure Appl. Math., 16 (1985),791-795.