SlideShare a Scribd company logo
1 of 40
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC HUẾ
TRƯỜNG ĐẠI HỌC SƯ PHẠM
TÔN NỮ SINH NHÃ
MẶT CỰC TIỂU KIỂU ĐỒ THỊ
TRONG KHÔNG GIAN R ×ω R2
LUẬN VĂN THẠC SĨ TOÁN HỌC
Huế, Năm 2016
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC HUẾ
TRƯỜNG ĐẠI HỌC SƯ PHẠM
TÔN NỮ SINH NHÃ
MẶT CỰC TIỂU KIỂU ĐỒ THỊ
TRONG KHÔNG GIAN R ×ω R2
LUẬN VĂN THẠC SĨ TOÁN HỌC
CHUYÊN NGÀNH HÌNH HỌC TÔ PÔ
Mã số: 60.46.01.05
NGƯỜI HƯỚNG DẪN KHOA HỌC
PGS.TS. ĐOÀN THẾ HIẾU
Huế, Năm 2016
Lời cảm ơn
Được sự hướng dẫn tận tâm, nhiệt tình và đầy kiên nhẫn của thầy giáo, PGS.TS
Đoàn Thế Hiếu, tôi đã có thể hoàn thành được luận văn này. Lời đầu tiên, tôi xin gửi
đến Thầy lòng tôn kính và tri ân sâu sắc vì những điều tâm huyết mà Thầy đã truyền
dạy trong thời gian qua.
Tôi xin trân trọng tỏ lòng biết ơn đến quý thầy cô đã tham gia giảng dạy cho thế hệ
cao học viên K23, chuyên ngành Toán học, trường ĐHSP Huế vì đã tận tình truyền đạt
những kiến thức quý báu trong suốt thời gian của khóa học.
Bên cạnh đó, tôi xin được gửi lời cảm ơn đến Ban Giám Hiệu, Khoa Toán và Phòng
Đào tạo Sau đại học, trường Đại Học Sư Phạm Huế đã hỗ trợ và tạo điều kiện học tập
thuận lợi, đảm bảo hiệu quả để chúng tôi có thể hoàn thành khóa học của mình một cách
tốt đẹp.
Tôi xin được gửi lời cảm ơn chân thành cùng lòng kính trọng đến mẹ của mình
vì tất cả những yêu thương, quan tâm mà tôi đã được đón nhận; gửi lòng tri ân đến gia
đình đã luôn ủng hộ và dành lời động viên cho tôi trong suốt cả chặng đường dài không
ít khó khăn vừa qua.
Và một lời nữa, tôi xin dành cho bạn bè, nhất là các thành viên của lớp Hình Học
Tô-pô K23 niên khóa 2014-2016 cũng như các anh chị trong nhóm Seminar Hình Học ở
Huế sự biết ơn thật nhiều vì đã nhiệt tình giúp đỡ tôi trong suốt quá trình học và thực
hiện đề tài luận văn của mình.
Tp.Huế, ngày 10 tháng 10 năm 2016
Tôn Nữ Sinh Nhã
Lời cam đoan
Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, các số liệu và kết quả
trong luận văn là trung thực và được các đồng tác giả cho phép sử dụng.
Tp.Huế, ngày 10 tháng 10 năm 2016
Tôn Nữ Sinh Nhã
Mục lục
Lời nói đầu 5
1 Mặt cực tiểu kiểu đồ thị trong R3
. 6
1.1 Kiến thức chuẩn bị. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Mặt chính quy-Dạng cơ bản thứ nhất. . . . . . . . . . . . . . . . 6
1.1.2 Mặt định hướng. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Ánh xạ Gauss và dạng cơ bản thứ hai. . . . . . . . . . . . . . . . 7
1.2 Bài toán Plateau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Nhát cắt chuẩn tắc. Độ cong Gauss, độ cong trung bình. Các ví dụ. . . . 9
1.3.1 Độ cong pháp. Nhát cắt chuẩn tắc. Độ cong chính. Công thức Euler. 9
1.3.2 Độ cong Gauss - Độ cong trung bình. . . . . . . . . . . . . . . . . 11
1.3.3 Các ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Mặt cực tiểu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Mặt cực tiểu kiểu đồ thị. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.1 Phương trình Lagrange. . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.2 Tính cực tiểu diện tích. . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.3 Định lý Bernstein. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2
. 24
2.1 Không gian tích cong R ×ω R2
. . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.1 Định nghĩa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Các phép toán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Mặt cực tiểu kiểu đồ thị trong không gian tích cong R ×ω R2
. . . . . . . 27
2.2.1 Mặt kiểu đồ thị . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Bài toán biến phân. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Diện tích. Biến phân thứ nhất của phiếm hàm diện tích. . . . . . 29
2.2.4 Độ cong trung bình. Mặt cực tiểu. . . . . . . . . . . . . . . . . . . 30
2.2.5 Phương trình Lagrange. . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 Một số ví dụ điển hình: . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.7 Độ cong của các thớ. . . . . . . . . . . . . . . . . . . . . . . . . . 34
Kết luận 35
Phụ lục 36
4
Lời nói đầu
Trong khi nghiên cứu các đối tượng hình học, người ta dành nhiều sự quan tâm đến
việc khảo sát cũng như tìm kiếm lớp các mặt cực tiểu. R3
là không gian khá quen thuộc
và gắn liền với nhiều ứng dụng trong thực tế, do đó, người ta mong muốn biểu diễn các
đối tượng hình học trong không gian này để từ đó, dựa vào các công cụ giải tích, ta có
thể khảo sát và tính toán dễ dàng hơn.
Không gian R ×ω R2
là không gian tích R × R2
, trên đó được trang bị tích vô hướng
được xác định dựa trên các tích vô hướng trên R và trên R2
cùng một hàm dương ω trên
R thông qua biểu thức được viết ngắn gọn như sau: g = gR + ω2
gR2 .
Với một không gian được định nghĩa như vậy, vấn đề đặt ra ở đây là liệu các khái
niệm, kết quả mà ta có được khi khảo sát trong không gian R3
giờ đây sẽ thay đổi như
thế nào và có còn đảm bảo tính đúng đắn? Cụ thể là việc khảo sát mặt cực tiểu trong
không gian này như thế nào?
Xuất phát từ mong muốn được tìm hiểu và làm rõ những vấn đề trên, dưới sự hướng
dẫn của Thầy giáo, PGS. TS. Đoàn Thế Hiếu, tôi nhận làm về đề tài: “Mặt cực tiểu
kiểu đồ thị trong không gian R ×ω R2
” trong luận văn của mình.
Đề tài góp phần làm rõ các khái niệm, kết quả liên quan đến mặt cực tiểu kiểu đồ
thị trong không gian R ×ω R2
trên cơ sở đối chiếu với các đối tượng tương đương trong
không gian R3
, từ đó có thể giúp cho những ai vừa tìm hiểu về không gian R ×ω R2
có
được cái nhìn tổng quan và gần gũi hơn.
Luận văn được trình bày theo bốn phần:
• Lời nói đầu: Giới thiệu nội dung nghiên cứu của luận văn.
• Phần nội dung.
• Phần kết luận: Tổng kết các kết quả đạt được, đồng thời nêu một số vấn đề chưa
giải quyết được trong luận văn.
• Phần phụ lục: Bổ sung các chứng minh chi tiết của một số kết quả có tính dẫn dắt
và phục vụ cho việc đưa ra các kết luận ở phần nội dung chính.
Phần nội dung của luận văn bao gồm hai chương:
Chương 1: Mặt cực tiểu kiểu đồ thị trong R3
.
Chương 2: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2
.
5
Chương 1
Mặt cực tiểu kiểu đồ thị trong R3.
1.1 Kiến thức chuẩn bị.
Trong phần này, ta sẽ củng cố lại một vài khái niệm nhằm hỗ trợ cho việc tiếp cận các
kiến thức thuộc về nội dung chính của chương được dễ dàng và đạt hiệu quả hơn.
1.1.1 Mặt chính quy-Dạng cơ bản thứ nhất.
Định nghĩa 1.1.1. Một tập con S ⊂ R3
được gọi là một mặt chính quy nếu ∀p ∈ S tồn
tại lân cận V ⊂ R3
của p, tập con mở U ⊂ R2
cùng với ánh xạ X : U −→ V ∩ S sao cho:
1. X(u, v) = (x(u, v), y(u, v), z(u, v)); (u, v) ∈ S, với các x, y, z là các hàm có đạo hàm
riêng tại mọi cấp. Khi đó, ta nói X là ánh xạ khả vi.
2. X là một đồng phôi từ U vào V ∩ S. Điều này có nghĩa X là song ánh liên tục, có
ánh xạ ngược X−1
: V ∩S −→ U liên tục. Hay, có thể hiểu X−1
là hạn chế của một
ánh xạ liên tục F : Ω ⊂ R3
−→ R2
, với (V ∩ S) ⊂ Ω.
3. (Tính chính quy) Với mọi p, đạo hàm dXp : R2
−→ R3
là một đơn ánh.
Khi đó, X được gọi là tham số hóa địa phương của S; cặp (U, V ) gọi là hệ tọa độ địa
phương hoặc bản đồ của S; V ∩ S là lân cận của p trong S và được gọi là lân cận tọa độ.
Định nghĩa 1.1.2. Một mặt tham số là một cặp (X, S) với X : R2
⊃ U −→ R3
là một
ánh xạ khả vi xác định trên U mở và S = X(U). Khi đó:
S được gọi là vết của mặt tham số; X được gọi là tham số hóa của mặt.
Định nghĩa 1.1.3. Trong R3
, xét mặt S được cho bởi hàm vector sau:
X : Ω −→ R3
(u, v) → X(u, v) := (u, v, f(u, v)).
Trong đó, f là hàm hai biến lớp C; f : Ω ⊂ R2
−→ R, và Ω là một miền mở liên
thông với bao đóng compact có biên trơn trong R2
.
Khi đó, S chính là đồ thị của hàm f trong R3
, đồ thị này có dạng là một mặt trong
không gian ba chiều. Mặt S được gọi là mặt kiểu đồ thị.
6
Định nghĩa 1.1.4. Một vector tiếp xúc của mặt chính quy S tại điểm p ∈ S là vector
tiếp xúc của một cung tham số khả vi có vết nằm trên S
α : (− ; ) −→ S
sao cho α(0) = p.
Tập gồm tất cả các vector tiếp xúc của S tại p được gọi là không gian tiếp xúc của S đặt
tại p và được ký hiệu là TpS.
Ta có thể thấy rằng mỗi không gian tiếp xúc TpS là một không gian vector 2-chiều.
Với điểm q(u, v) ∈ Ω, ta có X(q) = p ∈ S, ta có thể kiểm chứng được rằng hệ
{Xu(q), Xv(q)} gồm các vector tiếp xúc với các đường tọa độ qua p chính là một cơ sở
của TpS. Do vậy, TpS làm không gian chỉ phương cho mặt phẳng tiếp xúc của S tại p.
Khi không quan tâm đến điểm tiếp xúc, ta có thể đồng nhất không gian tiếp xúc và mặt
phẳng tiếp xúc. Ta đưa ra định nghĩa sau:
Định nghĩa 1.1.5. Xét q(u, v) ∈ Ω, ta có X(q) = p ∈ S. Khi đó, mặt phẳng đi qua p
nhận Xu(q), Xv(q) làm cặp vector chỉ phương được gọi là mặt phẳng tiếp xúc của S tại
p.
Định nghĩa 1.1.6. Cho S ⊂ R3
là một mặt chính quy. Tích vô hướng trên mỗi mặt
phẳng tiếp xúc TpS cảm sinh từ tích vô hướng trên R3
được xác định như sau:
ω1, ω2 p
= ω1.ω2, ∀ω1, ω2 ∈ TpS.
Khi đó, với mỗi mặt phẳng tiếp xúc TpS, dạng toàn phương Ip(ω) = ω, ω p
= |ω|2
, với ω ∈
TpS được gọi là dạng cơ bản thứ nhất của mặt S tại điểm p.
1.1.2 Mặt định hướng.
Trong phần này, cho S là một mặt chính quy và V ⊂ S là một tập mở.
Định nghĩa 1.1.7. Một trường vector trên V được định nghĩa là ánh xạ F : V −→ R3
.
Trường vector này được gọi là liên tục, khả vi nếu ánh xạ ánh xạ F có các tính chất đó.
Ta nói F là trường vector tiếp xúc trên V nếu ∀p ∈ V, F(p) ∈ TpS.
Nếu ∀p ∈ V, F(p)⊥TpS thì F được gọi là trường vector pháp trên V .
Nếu |F(p)| = 1, ∀p ∈ V , F được gọi là trường vector đơn vị trên V .
Định nghĩa 1.1.8. Xét một mặt chính quy S, nếu có một trường pháp vector đơn vị
liên tục N xác định trên toàn bộ mặt thì mặt đó được gọi là định hướng được. Khi đó,
trường pháp vector N được gọi là một định hướng của S. Một mặt chính quy định hướng
là mặt chính quy định hướng được cùng hướng xác định N.
1.1.3 Ánh xạ Gauss và dạng cơ bản thứ hai.
Cho (S, N) là một mặt chính quy định hướng. Ở đây, ta giả thiết rằng định hướng N
của mặt là khả vi. Do |Np| = 1, ∀p ∈ S nên ta có thể coi N là ánh xạ khả vi đi từ mặt
chính quy S vào mặt cầu đơn vị S2
, biến mỗi điểm p trên mặt S thành điểm ngọn của
vector pháp Np thuộc mặt S2
.
7
Định nghĩa 1.1.9 (Ánh xạ Gauss). Ánh xạ N : S −→ S2
như mô tả ở trên được gọi
là ánh xạ Gauss của mặt định hướng S.
Ta có ánh xạ Gauss khả vi và đạo hàm của nó tại p ∈ S là một ánh xạ tuyến tính:
dNp : TpS −→ TNp S2
.
Vì TpS⊥Np, TNp S2
⊥Np, ∀p ∈ S, nên ta thường đồng nhất TpS và TNp S2
tại mọi p ∈ S.
Nói cách khác, dNp là một tự đồng cấu tuyến tính của TpS.
Mệnh đề sau đây nêu lên một tính chất quan trọng của ánh xạ dNp.
Mệnh đề 1.1.10. Ánh xạ dNp : TpS −→ TpS tự liên hợp, tức là:
∀α, β ∈ TpS, dNp(α), β = α, dNp(β) (1.1)
Chứng minh. Việc chứng minh của mệnh đề này có thể xem ở phần phụ lục (2.2.10).
Định nghĩa 1.1.11 (Dạng cơ bản thứ hai). Dạng toàn phương IIp(α) := − dNp(α), α
gọi là dạng cơ bản thứ hai của mặt S tại điểm p.
1.2 Bài toán Plateau.
Bài toán này đặt ra câu hỏi liệu có hay không sự tồn tại của mặt cực tiểu diện tích
trong một họ mặt cùng biên cho trước. Mặc dù bài toán đã được đưa ra bởi Joseph-Louis
Lagrange vào năm 1760 nhưng vẫn thường được gọi là bài toán Joseph Plateau, hay ngắn
gọn là bài toán Plateau, lấy theo tên của người đã miệt mài quan sát những thí nghiệm
màng xà phòng và rút ra những quy luật để từ đó có thể đưa ra các phát biểu liên quan
đến bài toán. Cũng vì lẽ đó mà bài toán này còn được biết đến như bài toán bong bóng
xà phòng.
Bài toán Plateau được xem là một mảng nghiên cứu của Phép tính biến phân. Các
vấn đề liên quan đến việc chỉ ra sự tồn tại và tính chính quy được lấy từ Lý thuyết độ đo
hình học.
Có thể hình dung bài toán này thông qua hiện tượng thực tế như sau:
Ta có một màng xà phòng với biên cố định. Ban đầu, nó ở trạng thái có thể được
xem là mặt phẳng. Thổi nhẹ vào màng xà phòng này khiến nó dao động; quá trình này
làm cho mặt phẳng ban đầu có hình thù biến dạng liên tục tạo ra một họ các mặt mà
ta có thể xem như một biến phân của mặt ban đầu theo thời gian t chạy trong khoảng
(−ε; ε). Tại mỗi thời điểm, ta có một màng xà phòng với một diện tích tương ứng. Điều
này có nghĩa là diện tích của các mặt cũng biến đổi theo thời gian t nói trên, dẫn tới việc
ta cũng thu được một biến phân theo thời gian t của hàm diện tích.
Ta có ánh xạ
A : (−ε; ε) −→ R
t → A(t)
Trong quá trình đi tìm mặt cực tiểu diện tích (Area Minimal Surface-AMS) trong họ
các màng xà phòng nói trên, ta thu được lớp các mặt cực tiểu (Minimal Surface-MS) là
8
những mặt thỏa điều kiện A (t) = 0 và lớp các mặt cực tiểu diện tích địa phương còn gọi
là các mặt ổn định (Stable Minimal Surface-SMS) thỏa điều kiện A (t) ≥ 0. Mục tiêu
của bài toán Plateau chính là khảo sát sự tồn tại và chỉ ra AMS tức là mặt cực tiểu diện
tích xét trên toàn cục.
Một số trường hợp đặc biệt của bài toán đã có được lời giải nhưng phải đến năm
1930, nghiệm tổng quát của bài toán mới được tìm thấy bởi hai nhà toán học nghiên cứu
độc lập là Jesse Douglas và Tibor Radó.
Trong khi công trình của Tibor Radó được phát triển trên cơ sở kế thừa nghiên cứu
của René Garnier và chỉ áp dụng đối với trường hợp đường cong đơn đóng hiệu chỉnh
được, thì Jesse Douglas lại giải quyết bài toán theo một hướng hoàn toàn mới mẻ và
lời giải đưa ra đúng với đường cong đơn đóng bất kỳ. Douglas trở thành một trong hai
người đã đoạt được giải thưởng Field đầu tiên vào năm 1936, cho những cống hiến của ông.
Bài toán sau đó được mở rộng lên không gian nhiều chiều (cụ thể là xét mặt k-chiều
trong không gian n chiều) nhưng quả thật không đơn giản để nghiên cứu. Trong khi
nghiệm tìm được cho bài toán cổ điển có tính chính quy thì người ta chỉ ra được rằng lời
giải cho bài toán mở rộng lại xuất hiện trường hợp kỳ dị nếu k ≤ n − 2 và trong trường
hợp khảo sát siêu mặt có số chiều k = n − 1 thì nghiệm kỳ dị chỉ xảy ra khi n ≥ 8.
Để giải bài toán mở rộng trong một số trường hợp đặc biệt, Lý thuyết chu vi (De
Giorgi) áp dụng cho đối chiều 1 cũng như Lý thuyết dòng hiệu chỉnh (Federer và Flem-
ing) cho đối chiều cao hơn đã và đang được phát triển.
Bài toán Plateau nhiều chiều trong lớp các mặt phổ (các mặt được tham số hóa bởi
phổ của các đa tạp có biên cố định) đã được giải quyết vào năm 1969 bởi A. T. Fomenko.
1.3 Nhát cắt chuẩn tắc. Độ cong Gauss, độ cong
trung bình. Các ví dụ.
1.3.1 Độ cong pháp. Nhát cắt chuẩn tắc. Độ cong chính. Công
thức Euler.
Định nghĩa 1.3.1 (Độ cong pháp của đường cong). Xét C là một đường cong chính
quy trên mặt S, đi qua p. Khi đó, np là pháp vector (đơn vị) của đường cong C tại p, Np
là pháp vector (đơn vị) của mặt S tại p. Gọi k(p) là độ cong của C tại p. Lúc này, ta có:
kn(p) = k(p). np, Np ,
số này được gọi là độ cong pháp của đường cong C tại p.
Có thể thấy rằng độ cong pháp chính là độ dài hình chiếu của k(p)np lên pháp tuyến
của mặt S. Dấu của nó phụ thuộc vào hướng của pháp vector Np.
k(p)np được gọi là vector độ cong trung bình của đường cong C tại p.
Giả sử ω ∈ TpS, |ω| = 1. Gọi α là đường tham số (với tham số hóa độ dài cung)
α : (− ; ) −→ S
9
α(0) = p và α (0) = ω. Ký hiệu N(s) là hạn chế của ánh xạ Gauss lên đường tham số α.
Vì N, α = 0, dẫn đến:
N(s), α (s) = − N (s), α (s) .
Do vậy
IIp(α (0)) = − dNp(α (0)), α (0)
= − N (0), α (0)
= N(0), α (0)
= N, kn (p) = kn(p).
Điều này đưa đến các nhận xét sau đây:
Nhận xét 1.3.2. • Giá trị nhận được của dạng cơ bản thứ hai IIp đối với vector đơn
vị ω ∈ TpS cũng chính là độ cong pháp của một đường cong chính quy đi qua điểm
p đồng thời nhận vector ω làm vector tiếp xúc.
• Độ cong pháp kn(p) chỉ phụ thuộc vào vector tiếp xúc chứ không phụ thuộc vào
đường cong hay chiều của đường cong.
• Trong trường hợp xét vector ω ∈ TpS bất kỳ, không bắt buộc phải là vector đơn vị,
ta có công thức sau:
kn(p) =
IIp(ω)
Ip(ω)
.
Chứng minh. Đặt v = ω
|ω|
, ta có v là vector đơn vị. Khi đó,
kn(p) = IIp(v) = IIp
ω
|ω|
=
IIp(ω)
Ip(ω)
.
Từ những nhận xét này đưa đến định lý sau:
Định lý 1.3.3 (Định lý Meusnier). Tất cả các đường cong nằm trên mặt cùng đi qua
một điểm p và có các tiếp tuyến tại điểm này trùng nhau thì sẽ có độ cong pháp tại đó
giống nhau.
Theo đó, ta có các định nghĩa sau:
Định nghĩa 1.3.4 (Độ cong pháp của mặt). Độ cong pháp của mặt S tại điểm p ∈ S
theo hướng của vector ω được định nghĩa là độ cong của một đường chính quy trên mặt
S, đi qua p, đồng thời có vector tiếp xúc tại p chính là ω.
Định nghĩa 1.3.5 (Nhát cắt chuẩn tắc). Ta xét mặt phẳng P chứa p, nhận ω và N
làm cặp vector chỉ phương. Khi đó, giao của P và S được gọi là nhát cắt chuẩn tắc của
S tại p dọc theo ω.
Ta có thể thấy rằng, trong một lân cận của p, nhát cắt chuẩn tắc này chính là một
đường cong phẳng, đồng thời có pháp vector là ±Np.
Ta có một số kết quả liên quan như sau:
10
Mệnh đề 1.3.6. Giá trị tuyệt đối của độ cong pháp của mặt S tại một điểm p theo
vector v bằng độ cong của nhát cắt chuẩn tắc của S tại p dọc theo v.
Vì ánh xạ tuyến tính dNp liên hợp, tồn tại cơ sở trực chuẩn {e1, e2} để
dNp(e1) = −k1e1, dNp(e2) = −k2e2.
Nghĩa là, −k1, −k2 là các giá trị riêng, còn e1, e2 là các vector riêng đơn vị lần lượt tương
ứng với các giá trị riêng đó của ánh xạ dNp. Ta có thể giả thiết rằng k1 ≤ k2.
Định nghĩa 1.3.7 (Độ cong chính- Phương chính). Các giá trị k1, k2 được gọi là
các độ cong chính. Các phương được xác định bởi các vector riêng e1, e2 được gọi là các
phương chính của mặt S tại p. Do vậy, có thể gọi e1, e2 là các vector chỉ phương chính.
Trong một vài trường hợp, ta đồng nhất e1, e2 với các phương chính được xác định bởi
chúng để thuận tiện hơn trong khi phát biểu.
Định nghĩa 1.3.8 (Công thức Euler). Giả sử {e1, e2} là một cơ sở trực chuẩn của
TpS, gồm các vector riêng của ánh xạ dNp. Xét ω ∈ TpS, |ω| = 1, ω = cos ηe1 + sin ηe2.
Ta có:
IIp(ω) = − dNp(ω), ω
= − dNp(cos ηe1 + sin ηe2), cos ηe1 + sin ηe2
= k1 cos ηe1 + k2 sin ηe2, cos ηe1 + sin ηe2
= k1 cos2
ηe1 + k2 sin2
ηe2 = kn(p, ω).
Đến đây, ta thu được công thức Euler như sau:
kn(p, ω) = k1 cos2
ηe1 + k2 sin2
ηe2. (1.2)
Nhận xét 1.3.9. Theo (1.2), xét trên đường tròn đơn vị trong mặt phẳng TpS, ta nhận
thấy các độ cong chính k1, k2 lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của dạng cơ
bản IIp, nghĩa là giá trị nhỏ nhất và giá trị lớn nhất của độ cong pháp tại điểm p.
Ta có thể nhìn nhận điều này như sau, khi cho ω đổi hướng (tức là ω quay quanh p theo
các góc từ 0o
đến 360o
), thì cứ ứng với mỗi ω như thế ta lại có span (N, ω) (không gian
sinh bởi N và ω) thay đổi. Một cách tương ứng, độ cong pháp của đường cong C theo
hướng ω đối với vector pháp N, ký hiệu là kn(p, ω), cũng thay đổi.
Vì phạm vi biến đổi của ω là một tập compact nên miền giá trị nhận được của các kn(p, ω)
tồn tại k1(p) = min kn(p, ω) và k2(p) = max kn(p, ω). Hai giá trị k1(p), k2(p) (nếu không
có gì nhầm lẫn, ta có thể viết lần lượt là k1, k2) là các độ cong chính của S tại p ứng với
vector pháp N.
1.3.2 Độ cong Gauss - Độ cong trung bình.
Định nghĩa 1.3.10. Cho mặt chính quy định hướng (S, N), p ∈ S, dNp là ánh xạ đạo
hàm của ánh xạ Gauss tại điểm p. Khi đó, ta có các khái niệm sau:
• Độ cong Gauss của S tại điểm p được định nghĩa là định thức của dNp. Ký hiệu
K(p).
• Một nửa vết của −dNp được gọi là độ cong trung bình của S tại p. Ký hiệu H(p).
11
Từ định nghĩa này, ta có thể nhận thấy:
a.
K = k1.k2. (1.3)
H =
k1 + k2
2
. (1.4)
b. Khi định hướng của mặt thay đổi sẽ làm đổi dấu độ cong trung bình nhưng không
làm thay đổi độ cong Gauss.
Theo đó, ta xây dựng công thức tính toán cụ thể của các độ cong này như sau:
Với (S, N) là mặt chính quy định hướng và có tham số hóa địa phương tại điểm p ∈ S là
X : U −→ S. Giả sử rằng hướng của N tương thích với X, tức là:
N =
Xu ∧ Xv
|Xu ∧ Xv|
Ta có N, N = 1, suy ra N, Nu = 0, N, Nv = 0. Do đó, Nu, Nv ∈ TpS.
Mà TpS có cơ sở {Xu, Xv}, nên:
Nu = aXu + bXv,
Nv = cXu + dXv.
Vậy, ma trận của dNp theo cơ sở {Xu, Xv} là:
a b
c d
.
Tiếp theo, ta đi tìm ma trận của dạng cơ bản IIp:
IIp(Xu) = − dNp(Xu), Xu = − Nu, Xu = N, Xuu := e,
− dNp(Xu), Xv = − Nu, Xv = N, Xuv := f,
IIp(Xv) = − dNp(Xv), Xv = − Nv, Xv = N, Xvv := g.
Vậy, ma trận của IIp theo cơ sở {Xu, Xv} là:
e f
f g
.
Khi đó, với:
Xu, Xu = E; Xu, Xv = Xv, Xv = F; Xv, Xv = G.
−e = Nu, Xu = aXu + bXv, Xu = aE + bF,
−g = Nv, Xv = cXu + dXv, Xv = cG + dF,
−f = Nu, Xv = aXu + bXv, Xv = aF + bG,
= Nv, Xu = cXu + dXv, Xu = cE + dF,
12
hay
−
e f
f g
=
a b
c d
E F
F G
.
Suy ra
a b
c d
= −
e f
f g
E F
F G
−1
.
Trong đó,
E F
F G
−1
=
1
EG − F2
G −F
−F E
.
Ta thu được:
a =
fF − eG
EG − F2
; b =
eF − fE
EG − F2
; c =
gF − fG
EG − F2
; d =
fF − gE
EG − F2
.
Như vậy, với các định nghĩa độ cong nêu trên và thông qua tính toán, ta có:
• Độ cong trung bình:
H(N) =
eG − 2fF + gE
2(EG − F2)
.
• Độ cong Gauss:
K(N) =
eg − f2
EG − F2
.
1.3.3 Các ví dụ.
Từ công thức tính độ cong Gauss (1.3), độ cong trung bình (1.4), công thức Euler (1.2)
và mối quan hệ giữa độ cong chính với độ cong của nhát cắt chuẩn tắc thuộc mặt S tại
p, dọc theo phương ω, ta có thể tính toán nhanh độ cong của một số mặt phổ biến dưới
đây.
1. Mặt phẳng: (P)
Tại mỗi điểm p ∈ (P), Tp(P) ≡ (P).
Np là vector pháp của (P) tại p.
Với mỗi ω ∈ Tp(P), ta đều có span (Np, ω) ∩ (P) = ∆, ∆ là đường thẳng. Tức là
tất cả các nhát cắt chuẩn tắc của mặt đều là đường thẳng, có độ cong bằng 0. Vậy
các độ cong chính k1 = k2 = 0. Do đó:
H(p) =
k1 + k2
2
= 0;
K(p) = k1k2 = 0.
13
2. Mặt trụ: (C) có bán kính đáy là R
Tại mỗi điểm p ∈ (C), Tp(C) là một mặt phẳng.
Np là vector pháp của (C) tại p. (Lưu ý rằng, Np có hai khả năng hoặc là hướng
ra ngoài, hoặc là hướng vào trong; ở đây ta xét trường hợp Np hướng ra ngoài mặt
trụ.)
Xét các vector ωi đặt gốc tại p, sai lệch nhau bởi các góc quay từ 0o
đến 360o
. Khi
đó span (Np, ωi) ∩ (C) sẽ cho ra ba dạng đường cong sau:
– đường thẳng có độ cong k = 0;
– đường tròn (vector pháp Np hướng ra ngoài) có độ cong k = 1
R
;
– các đường elip có độ cong 0 < k < 1
R
.
Vậy, hai độ cong chính là k1 = 0 và k2 = 1
R
. Do đó:
H(p) =
k1 + k2
2
=
1
2R
;
K(p) = k1k2 = 0.
3. Mặt cầu: (S) có bán kính là R
Tại mỗi điểm p ∈ (S), Tp(S) là một mặt phẳng.
Np là vector pháp của (S) tại p. (Ở đây, ta xét trường hợp Np hướng ra ngoài mặt
cầu)
Xét các vector ωi đặt gốc tại p, sai lệch nhau bởi các góc quay từ 0o
đến 360o
. Khi
đó span (Np, ωi) ∩ (S) sẽ cho ra các đường tròn có tâm chính là tâm của mặt cầu.
Các đường tròn này (với vector pháp Np hướng ra ngoài) có độ cong k = 1
R
.
Vậy, hai độ cong chính là k1 = k2 = 1
R
. Do đó:
H(p) =
k1 + k2
2
=
1
R
;
K(p) = k1k2 =
1
R2
.
1.4 Mặt cực tiểu.
Định nghĩa 1.4.1 (Vector độ cong trung bình). Như ta đã nêu ở phần trước, độ
cong trung bình của S tại p, ứng với pháp vector N được xác định bởi công thức:
H(N) =
eG − 2fF + gE
2(EG − F2)
.
Ta có:
TpS⊥
−→ R
N → H(N)
14
H tuyến tính theo N.
Khi đó, tồn tại duy nhất H sao cho: H(N) = H.N, ∀N ∈ TpS⊥
.
Vector H như trên được gọi là vector độ cong trung bình của S tại p. Vector này không
phụ thuộc vào N và có vai trò được xem như là ma trận của ánh xạ H(.) đối với một cơ
sở nào đó.
Định nghĩa 1.4.2 (Mặt cực tiểu). Mặt M là một mặt cực tiểu nếu vector độ cong
trung bình của nó triệt tiêu tại mọi điểm. Mà ta có H(N) = H.N, theo đó thì mặt M là
một mặt cực tiểu nếu độ cong trung bình của nó bằng 0 tại mọi điểm. Dưới đây, ta có
phương trình của mặt cực tiểu:
H(N) = 0 ⇔ eG − 2fF + gE = 0.
Ví dụ 1.4.1.
• Mặt Catenoid:
Mặt này nhận được bằng cách quay đường dây xích (Catenary) x = a cosh(z−b
a
),
với a = 0; a, b ∈ R quanh trục Oz. Nếu ta xét b = 0 thì phương trình của mặt có
dạng:
X(u, v) = (a cosh v cos u; a cosh v sin u; av)
Với − ∞ < v < +∞; 0 < u < 2π
Hình 1.1: Mặt Catenoid.
• Mặt Helicoid:
Phương trình:
X(u, v) = (a sinh v sin u; −a sinh v cos u; au)
Với − ∞ < v < +∞; 0 < u < 2π
15
Hình 1.2: Mặt Helicoid.
• Mặt Enneper:
Phương trình:
X(u, v) = (u −
u3
3
+ uv2
; −v +
v3
3
− v2
u; u2
− v2
)
Hình 1.3: Mặt Enneper.
Đặc biệt, với mỗi t ∈ (−π; π), ta xét
X(u, v, t) = cos t(sinh v sin u; − sinh v cos u; u) + sin t(cosh v cos u; cosh v sin u; u).
Khi đó:
X(u, v, 0) = (sinh v sin u; − sinh v cos u; u) : có dạng của mặt Helicoid,
X(u, v,
π
2
) = (cosh v cos u; cosh v sin u; u) : có dạng của mặt Catenoid.
16
Nhận xét 1.4.3. cos tX(u, v, 0) + sin tX(u, v, π
2
) = X(u, v, t), khi ta cho t chạy từ 0 đến
π
2
, ta thu được một họ mặt biến dạng từ Helicoid sang Catenoid.
Một điều thú vị nữa là, mỗi X(u, v, t) trong họ mặt này đều là mặt cực tiểu. Thật vậy,
bằng tính toán, ta sẽ thu được:
E = cosh2
v, F = 0, G = cosh2
v
e = − sin t, f = cos t, g = sin t.
Khi đó:
H =
eG − 2fF + gE
2(EG − F2)
= 0.
1.5 Mặt cực tiểu kiểu đồ thị.
1.5.1 Phương trình Lagrange.
Trong R3
, xét mặt cực tiểu S được tham số hóa kiểu đồ thị:
X : Ω −→ R3
(u, v) → X(u, v) := (u, v, f(u, v)).
Bằng tính toán, ta thu được:
Xu = (1, 0, fu); Xv = (0, 1, fv)
Xuu = (0, 0, fuu); Xuv = (0, 0, fuv); Xvv = (0, 0, fvv)
N =
Xu ∧ Xv
|Xu ∧ Xv|
=
1
f2
u + f2
v + 1
(−fu, −fv, 1).
Các hệ số của dạng cơ bản I:
E = Xu, Xu = 1 + f2
u
F = Xu, Xv = Xv, Xu = fufv
G = Xv, Xv = 1 + f2
v .
Các hệ số của dạng cơ bản II:
e = Xuu, N =
fuu
f2
u + f2
v + 1
f = Xuv, N = Xvu, N =
fuv
f2
u + f2
v + 1
g = Xvv, N =
fvv
f2
u + f2
v + 1
.
17
S là mặt cực tiểu, tức là:
H =
eG − 2fF + gE
2(EG − F2)
= 0
⇔ eG − 2fF + gE = 0
⇔
fuu
f2
u + f2
v + 1
(1 + f2
v ) − 2
fuv
f2
u + f2
v + 1
fufv +
fvv
f2
u + f2
v + 1
(1 + f2
u) = 0
⇔ fuu(1 + f2
v ) − 2fuvfuv + fvv(1 + f2
u) = 0.
Đây chính là phương trình của mặt cực tiểu kiểu đồ thị và được gọi là phương trình
Lagrange nhằm tưởng nhớ công lao phát hiện ra đầu tiên bởi nhà toán học này.
1.5.2 Tính cực tiểu diện tích.
Cho một mặt tham số hóa X : Ω −→ R3
. Tham số hóa này được gọi là trực giao nếu
E = G và F = 0.
Về mặt địa phương, ta luôn có thể biểu thị một mặt cực tiểu bằng một tham số hóa trực
giao. Điều này được khẳng định trong định lý dưới đây:
Định lý 1.5.1. Mỗi mặt tham số cực tiểu X đều có tham số hóa trực giao địa phương.
Chứng minh. Với S có tham số hóa kiểu đồ thị, giả sử rằng X(x, y) = (x, y, f(x, y)).
Xét p ∈ S, p = X(x0, y0), trong đó (x0, y0) ∈ Ω. Lưu ý rằng, các phép biến đổi đẳng cự
sẽ không gây ảnh hưởng đến các hệ số của dạng cơ bản I và II, do vậy chúng không làm
thay đổi tính cực tiểu của mặt. Vậy nên, ta có thể xét p trùng với gốc tọa độ O, mặt
phẳng tiếp xúc là TpS ≡ Oxy.
Giả thiết đưa ra ban đầu là S cực tiểu, nghĩa là f thỏa mãn phương trình Lagrange. Lúc
này, theo như Bài toán (2.2.9) (phần phụ lục), ta thu được các kết quả:
1) Ma trận của dạng cơ bản I:
G =
1 + (fx1 )2
fx1 fx2
fx1 fx2 1 + (fx2 )2 .
2)
detG = [1 + (fx1 )2
].[1 + (fx2 )2
] − (fx1 )2
.(fx2 )2
= 1 + (fx1 )2
+ (fx2 )2
.
hay để cho thuận tiện khi tính toán về sau, ta có thể viết lại: detG = 1 + f2
x1
+ f2
x2
.
3)
1 + f2
x2
√
detG x1
=
fx1 fx2
√
detG x2
;
fx1 fx2
√
detG x1
=
1 + f2
x1
√
detG x2
. (1.5)
Suy ra sự tồn tại của các hàm g và h sao cho:
gx1 =
1 + f2
x1
√
detG
; gx2 =
fx1 , fx2
√
detG
; hx1 =
fx1 , fx2
√
detG
; hx2 =
1 + f2
x2
√
detG
. (1.6)
18
Xét hàm:
T : Ω −→ R2
(x, y) → T(x, y) = (x + g(x, y), y + h(x, y)).
Khi đó, ma trận Jacobi của T:
dT =
1 + gx gy
hx 1 + hy
=
1 + 1+f2
x√
detG
fxfy
√
detG
fxfy
√
detG
1 +
1+f2
y
√
detG
.
Định thức |dT| = (1+
√
detG)2
√
detG
> 0, áp dụng định lý hàm ngược, tồn tại hàm
T−1
(u, v) = (x, y).
Khi đó,
d(T−1
) = (dT)−1
=
1
detdT
1 +
1+f2
y
√
detG
− fxfy
√
detG
− fxfy
√
detG
1 + 1+f2
x√
detG
=
1
(1 +
√
detG)2
√
detG + 1 + f2
y −fxfy
−fxfy
√
detG + 1 + f2
x
=
xu xv
yu yv
.
Ta tiến hành kiểm chứng tham số sau là trực giao: X(u, v) = (x(u, v); y(u, v); f(x(u, v), y(u, v))).
Thật vậy,
Xu =
1
(1 +
√
detG)2
.(
√
detG + 1 + f2
y ; −fxfy; (
√
detG + 1 + f2
y )fx + fy(−fxfy)),
Xv =
1
(1 +
√
detG)2
.(−fxfy;
√
detG + 1 + f2
x ; (
√
detG + 1 + f2
x )fy + fx(−fxfy)).
Theo đó, bằng tính toán, ta thu được:
E = G =
detG
(1 +
√
detG)2
,
đồng thời
F = 0.
Định lý 1.5.2. Tham số hóa X(u, v) là trực giao thì
∆X = Xuu + Xvv = (2EH).N
Chứng minh. Ta có {Xu, Xv, N} là một trường mục tiêu trên mặt, ta có thể biểu diễn
Xuu và Xvv qua trường mục tiêu này. Cụ thể ∃ a, b, c, m, n, p sao cho:
Xuu = aXu + bXv + cN, (1.7)
Xvv = mXu + nXv + pN. (1.8)
Trong đó, a, b, c, m, n, p đều là các hàm khả vi xác định trên mặt. Ta tiến hành tính toán
cụ thể để tìm các hàm này như sau:
19
• Khi nhân (1.7) với lần lượt Xu, Xv, N, ta được:
a Xu, Xu = Xuu, Xu =
∂
2∂u
Xu, Xu =
Eu
2
b Xv, Xv = Xuu, Xv = − Xu, Xuv = −
∂
2∂v
Xu, Xu = −
Ev
2
c = Xuu, N = e.
• Khi nhân (1.8) với lần lượt Xu, Xv, N, ta được:
m Xu, Xu = Xvv, Xu = − Xv, Xuv = −
∂
2∂u
Xv, Xv = −
Gu
2
n Xv, Xv = Xvv, Xv =
∂
2∂v
Xv, Xv =
Gv
2
p = Xvv, N = g.
Tóm lại, ta có:
a =
Eu
2E
, b = −
Ev
2G
, c = e,
m = −
Gu
2E
, n =
Gv
2G
, p = g.
Thay vào (1.7) và (1.8), ta được:
Xuu + Xvv =
Eu
2E
Xu −
Ev
2G
Xv + eN + −
Gu
2E
Xu +
Gv
2G
Xv + gN
= (e + g)N +
Eu
2E
−
Gu
2E
Xu +
Gv
2G
−
Ev
2G
Xv
= (e + g)N = 2E
e + g
2E
N = (2EH)N.
Điều sau đây được xem như một hệ quả trực tiếp của định lý trên và được dùng như
một trong những công cụ để kiểm tra tính cực tiểu của một mặt:
Hệ quả 1.5.3. Mỗi mặt tham số trực giao X(u, v) = (x(u, v), y(u, v), z(u, v)) là mặt cực
tiểu khi và chỉ khi các hàm x, y, z là những hàm điều hòa, hay ∆X = 0.
1.5.3 Định lý Bernstein.
Theo như nhận định của nhà toán học Osserman thì đây là định lý mang tính chất phổ
quát và đáng để người ta tìm hiểu. Hai lý do chính được đưa ra cho nhận xét này, một
là người ta có thể sử dụng các kết quả sơ cấp để chứng minh nó và điều thứ hai là dựa
vào nó, người ta phát hiện thêm một loạt các kết quả đáng lưu tâm khác. Để dẫn dắt
cho người đọc tiện theo dõi, ta bắt đầu từ những kết quả có tính sơ cấp dưới đây:
20
Bổ đề 1.5.4. Cho hàm số F(x1, x2) thuộc lớp C2
, được xác định trên một miền lồi D,
ma trận Hessian
Fx1x1 Fx1x2
Fx2x1 Fx2x2
được giả thiết rằng xác định dương. Xét ánh xạ:
(x1, x2) → (u1, u2), với ui = Fxi
. (1.9)
Khi đó, nếu a, b là hai điểm phân biệt trong D và u, v lần lượt là ảnh của chúng qua ánh
xạ (1.9) thì ta có:
(v − u).(b − a) > 0 .
Chứng minh. Để cho thuận tiện trong việc tính toán, với a = (a1, a2), ta có thể viết
F(a1, a2) = F(a).
Vì D lồi nên với a = (a1, a2); b = (b1, b2) ∈ D, ta có [tb + (1 − t)a] ∈ D, với 0 ≤ t ≤ 1.
Khi đó, ta đặt α(t) = F(tb + (1 − t)a).
α (t) = (b − a).F (tb + (1 − t)a)
=
2
i=1
[Fxi
(tb + (1 − t)a)](bi − ai),
với lưu ý rằng, ta ký hiệu Fxi
(.) là đạo hàm theo biến thứ i của hàm F(.).
Từ đó, ta có:
α (t) =
2
i,j=1
[Fxixj
(tb + (1 − t)a)](bi − ai)(bj − aj).
Theo giả thiết, α (t) > 0, ∀t ∈ [0, 1], do vậy α là một hàm tăng. Suy ra α (0) < α (1).
Cụ thể, nếu ta đặt y = (y1, y2) = tb + (1 − t)a, 0 ≤ t ≤ 1, với ánh xạ (1.9), ta xác định
được v = (v1, v2) là ảnh của y, vi = Fxi
(y).
Vậy
α =
2
i=1
[Fxi
(tb + (1 − t)a)](bi − ai) (1.10)
=
2
i=1
vi(bi − ai). (1.11)
Khi đó, xét 0 ≤ t1 < t2 ≤ 1, ta xác định được hai điểm phân biệt trên D là t1b+(1−t1)a
và t2b + (1 − t2)a, ảnh của chúng qua ánh xạ (1.9) lần lượt là u(u1, u2) và w(w1, w2).
α là hàm tăng trên [0; 1] nên α (t1) < α (t2).
Áp dụng sự phân tích ở (1.11), ta được:
2
i=1
ui(bi − ai) <
2
i=1
wi(bi − ai)
⇔
2
i=1
(wi − ui).(bi − ai) > 0
⇔ (w − u).(b − a) > 0
⇔ (w − u).(t2 − t1).(b − a) > 0
⇔ (w − u).[(t2b + (1 − t2)a) − (t1b + (1 − t1)a)] > 0.
21
Đây chính là điều ta cần chứng minh.
Bổ đề 1.5.5. Cũng với giả thiết như trong Bổ đề (1.5.4), nếu chúng ta xét hàm:
G(x1, x2) = (ξ1, ξ2) := (x1 + Fx1 , x2 + Fx2 )
thì với hai điểm phân biệt a, b trong D, ảnh ξ và η của chúng sẽ thỏa mãn bất đẳng thức
sau:
|η − ξ| > |b − a|. (1.12)
Chứng minh. Với v = (v1, v2) = (Fb1 , Fb2 ); u = (u1, u2) = (Fa1 , Fa2 ).
η − ξ = (η1; η2) − (ξ1; ξ2)
= (b1 + Fb1 ; b2 + Fb2 ) − (a1 + Fa1 ; a2 + Fa2 )
= (b1 + v1; b2 + v2) − (a1 + u1; a2 + u2)
= (b − a) + (v − u).
Theo Bổ đề (1.5.4), ta suy ra:
(η − ξ).(b − a) > (b − a)2
. (1.13)
Theo bất đẳng thức Cauchy Schwatz, ta có:
|η − ξ|.|b − a| ≥ |(η − ξ).(b − a)| > |b − a|2
⇒ |η − ξ| > |b − a|.
Bổ đề 1.5.6. Nếu D = {(x1, x2)|x2
1 +x2
2 < r2
}, thì ánh xạ G được đề cập ở Bổ đề (1.5.5)
là một vi phôi đi từ D lên một miền mở chứa một đĩa có tâm là G(0, 0), bán kính r.
Chứng minh. Ta có F thuộc lớp C2
nên G thuộc lớp C1
.
Giả sử α(t) là một đường cong khả vi trong miền D và β(t) là ảnh của nó qua ánh xạ G.
Khi đó, dựa theo Bổ đề (1.5.5), ta thu được:
|α (t)| < |β (t)|.
Do đó, Jacobian của G lớn hơn 1 tại mọi điểm. Theo định lý hàm ngược, hàm G là vi
phôi địa phương. Mặt khác, dựa vào bất đẳng thức (1.12), ta thấy G : 1 − 1. Vậy nên G
là một vi phôi toàn cục vào một miền mở V , ta lần lượt xét hai trường hợp sau:
• V ≡ R2
, hiển nhiên đảm bảo điều cần chứng minh là đúng.
• V = R2
⇒ R2
 V = ∅. Do đó, tồn tại điểm µ sao cho:
d(µ; G(0)) ≤ d(ν; G(0)), ∀ν ∈ R2
 V.
(Lưu ý rằng, để gọn và thuận tiện khi tính toán, ta viết G(0) để thay cho G(0; 0))
Xét dãy (µn)n với µn ∈ V, µn −→ µ. Khi đó sẽ có tương ứng dãy (xn)n ⊂ D, dãy
này không thể có điểm tụ ở trong D vì ảnh của nó sẽ là µ. Vậy, |xn| −→ r.
Theo bất đẳng thức (1.12), ta có |µn − G(0)| > |xn| kéo theo |µn − G(0)| ≥ r.
Tóm lại, các điểm thuộc R2
 V thì sẽ có khoảng cách đến G(0) đều lớn hơn hoặc
bằng r, điều này đồng nghĩa với các điểm có khoảng cách đến G(0) nhỏ hơn r thì
đều nằm trong V .
22
Bổ đề 1.5.7. Cho f(x1, x2) xác định trên D = {(x1, x2)|x2
1 + x2
2 < r2
} thỏa mãn phương
trình mặt cực tiểu:
(1 + |fx1 |2
).fx1x1 − 2fx1 fx2 fx1x2 + (1 + |fx2 |2
) = 0.
Với hai hàm g và h được xác định như ở Bài toán (2.2.9) (phần phụ lục), ta xét hàm:
G(x1, x2) = (ξ1, ξ2) = (x1 + g(x1 , x2), x2 + h(x1, x2)).
Ta có G là một vi phôi vào miền mở U chứa một đĩa tâm G(0, 0), bán kính r, (để thuận
tiện, nếu không có gì nhầm lẫn, ta có thể viết G(0, 0) = G(0)).
Chứng minh. Theo Bài toán (2.2.9), ta chỉ ra tồn tại hàm E thỏa mãn:
Ex1 = g, Ex2 = h.
Khi đó, hàm E thuộc lớp C2
, đồng thời:
Ex1x1 = gx1 =
1 + f2
x1
√
detG
; Ex1x2 =
∂(g, h)
∂(x1, x2)
= 1 .
Do vậy, ta dễ dàng nhận thấy E thỏa mãn các điều kiện được nêu trong các Bổ đề (1.5.4),
(1.5.5), (1.5.6), từ đấy dẫn đến điều cần phải chứng minh.
Bổ đề 1.5.8. Cho hàm f(x1, x2) là hàm thuộc lớp C1
nhận giá trị thực, được xác định
trên một miền mở U. điều kiện cần và đủ để mặt X(x1, x2) = (x1, x2, f(x1, x2)) nằm trên
một mặt phẳng là tồn tại một phép biến đổi tuyến tính biến (u1, u2) thành (x1, x2) được
gọi là phép biến đổi tham số sao cho đảm bảo hai điều kiện sau:
• Phép biến đổi này phải không suy biến.
• X(u, u) là tham số hóa trực giao của mặt X.
Chứng minh. Giả sử tồn tại tham số (u1, u2) thỏa mãn điều kiện nêu trên. Ta đặt:
ϕk
(z) = (xk)u1 − i(xk)u2 , k = 1, 2, 3
với x3 = f(x1, x2)
Vì x1, x2 là các hàm tuyến tính theo u1 và u2 nên (xk)uj
, j = 1, 2; k = 1, 2 là các hàm
hằng, do vậy ϕ1
, ϕ2
cũng là các hàm hằng.
Mặt khác, vì (u1, u2) là tham số hóa trực giao nên ϕ3
là hàm hằng. Điều này có nghĩa
là hàm x3 = f có gradient hằng nên f(x1, x2) = Ax1 + Bx2 + C (có đồ thị biểu diễn là
một mặt phẳng). Ngược lại, nếu f(x1, x2) = Ax1 + Bx2 + C, ta hoàn toàn có thể đặt
x1 = λAu1 + Bu2, x2 = λBu1 − Au2, với λ2
= 1
1+A2+B2 .
Hệ quả 1.5.9 (Định lý Bernstein). Mặt tham số cực tiểu kiểu đồ thị xác định trên
toàn bộ mặt phẳng là mặt phẳng.
Chứng minh. Điều này được suy ra trực tiếp từ Bổ đề (1.5.8).
23
Chương 2
Mặt cực tiểu kiểu đồ thị trong
không gian R ×ω R2.
2.1 Không gian tích cong R ×ω R2
.
2.1.1 Định nghĩa.
Cho B và F là hai đa tạp Riemann cùng với các metric Riemann tương ứng lần lượt là
gB và gF .
Cho ω là một hàm trơn, dương trên B.
Xét đa tạp tích B × F với các phép chiếu:
π : B × F −→ B
σ : B × F −→ F.
Khi đó, đa tạp tích cong M = B ×ω F được định nghĩa là đa tạp B × F và trên đó
được trang bị metric:
g = π∗
(gB) + (ω ◦ π)2
σ∗
(gF )
Với mọi vector X ∈ T(p,q)M, ta có:
g(X, X) = gB(dπ(X), dπ(X)) + ω2
(π(p, q)).gF (dσ(X), dσ(X))
g(X, X) = gB(dπ(X), dπ(X)) + ω2
(p). gF (dσ(X), dσ(X)).
và ta có thể viết gọn lại là:
g = gB + ω2
gF .
Hàm ω được nêu trên gọi là hàm tích cong (warp product). Ta có thể thấy rằng,
metric trong không gian này sẽ không chỉ còn đơn thuần phụ thuộc vào vector X mà còn
bị chi phối bởi vị trí điểm đặt (p, q).
Trong trường hợp ω = 1 thì B ×ω F chính là đa tạp tích Riemann thông thường.
B được gọi là nền (base) và F được gọi là thớ (fiber) của đa tạp tích cong M.
Tại mỗi điểm (p, q) ∈ M, ta có các đa tạp semi-Riemann con của M:
p × F = π−1
(p) được gọi là các fiber,
24
B × q = σ−1
(q) được gọi là các leaf.
Theo đó, R ×ω R2
chính là một đa tạp tích cong được cho bởi base là R và fiber là R2
.
2.1.2 Các phép toán.
1. Tích vô hướng.
Không gian tích cong R ×ω R2
là không gian tích R × R2
với tích vô hướng được
cho bởi:
g(x, y) = x1y1 + ω2
(p)(x2y2 + x3y3),
với x = (x1, x2, x3) và y = (y1, y2, y3) tùy ý thuộc T(p,q)R × R2
.
Theo đó thì metric tương ứng được xác định:
g(x, x) = x1x1 + ω2
(p)(x2x2 + x3x3)
= x2
1 + ω2
(x2
2 + x2
3)
= dx2
1 + ω2
(dx2
2 + dx2
3).
Ví dụ 2.1.1. Xét R, R2
với metric thông thường, M = R ×ω R2
với
ω : R −→ R+
, ω(x) = x2
+ 1.
Khi đó, tại mỗi điểm (p, q) ∈ M, với vector X(x, y, z) ∈ T(p,q)M tùy ý, ta có:
g|(p,q)
(X, X) = gR|p (dπ(X), dπ(X)) + ω2
(p)gR2|q
(dσ(X), dσ(X))
= x2
+ ω2
(p).(y2
+ z2
) = x2
+ (p2
+ 1)2
.(y2
+ z2
).
Ta thường dùng ký hiệu <, >ω để thay cho g(, ) khi thực hiện các tính toán liên
quan đến tích vô hướng này trong các phần tiếp theo của luận văn. Theo đó, ta có
x ω được dùng để ký hiệu cho chuẩn của vector x được tính theo tích vô hướng
trên.
2. Tích trong. Trong không gian R ×ω R2
, xét hai vector x = (x1, x2, x3) và
y = (y1, y2, y3) cùng đặt tại điểm (p, q). Khi đó, tích trong của x và y được tính
toán bằng định thức mang tính hình thức sau:
x ∧ω y :=
ω2
(p)e1 e2 e3
x1 x2 x3
y1 y2 y3
. (2.1)
Cần lưu ý vì ta đang giữ nguyên thứ tự các trục, base B = R vẫn để là trục Ox
nên ω2
(p) được nhân vào e1.
Nếu như ở đây ta chọn lại base B = R là trục Oz thì ω2
(p) sẽ được nhân vào e3.
Ta sẽ kiểm tra được công thức này thỏa mãn các tính chất của tích vector:
Xét x = (x1, x2, x3); y = (y1, y2, y3) cùng đặt tại điểm (p, q), khi đó:
1) x ∧ω y, x ω
= 0; x ∧ω y, y ω
= 0.
2) det(x, y, x ∧ω y) ≥ 0.
3) x ∧ω y 2
ω + x, y
2
ω
= x 2
ω. y 2
ω.
25
Chứng minh.
1.
x ∧ω y =
ω2
(p)e1 e2 e3
x1 x2 x3
y1 y2 y3
=
ω2
(p) 0 0
x1 x2 x3
y1 y2 y3
;
0 1 0
x1 x2 x3
y1 y2 y3
;
0 0 1
x1 x2 x3
y1 y2 y3
= ω2
(p)(x2y3 − x3y2); x3y1 − x1y3; x1y2 − x2y1 .
Từ đó, suy ra:
x ∧ω y, x ω
= ω2
(p)x1.(x2y3 − x3y2) + ω2
(p).(x2x3y1 − x1x2y3 + x1x3y2 − x2x3y1)
= ω2
(p).(x1x2y3 − x1x3y2) + ω2
(p).(x1x3y2 − x1x2y3) = 0.
Hoàn toàn tương tự, ta có x ∧ω y, y ω
= 0.
2.
det(x, y, x ∧ω y) =
x1 y1 ω2
(p).(x2y3 − x3y2)
x2 y2 x3y1 − x1y3
x3 y3 x1y2 − x2y1
= x1y2(x1y2 − x2y1) + x3y1(x3y1 − x1y3) + x2y3ω2
(p).(x2y3 − x3y2)
− x3y2ω2
(p).(x2y3 − x3y2) − x2y1(x1y2 − x2y1) − x1y3(x3y1 − x1y3)
= (x1y2 − x2y1)2
+ (x3y1 − x1y3)2
+ ω2
(p).(x2y3 − x3y2)2
≥ 0.
Vậy, ta vừa chứng minh được det(x, y, x ∧ω y) ≥ 0.
3. Ta có:
x, y ω
= x1y1 + ω2
(p).(x2y2 + x3y3);
x ∧ω y = ω2
(p).(x2y3 − x3y2); x3y1 − x1y3; x1y2 − x2y1 .
Suy ra:
x, y
2
ω
= [x1y1 + ω2
(p).(x2y2 + x3y3)]2
= (x1y1)2
+ ω4
(p).(x2
2y2
2 + x2
3y2
3 + 2x2y2x3y3) + 2ω2
(p).(x1y1x2y2 + x1y1x3y3).
x ∧ω y 2
ω = x ∧ω y; x ∧ω y ω
= ω4
(p).(x2y3 − x3y2)2
+ ω2
(p).[( x3y1 − x1y3)2
+ ( x1y2 − x2y1)2
]
= ω4
(p).(x2
2y2
3 + x2
3y2
2 − 2x2y3x3y2)
+ ω2
(p).[x2
3y2
1 + x2
1y2
3 + x2
1y2
2 + x2
2y2
1 − 2x3y1x1y3 − 2x1y2x2y1].
x 2
ω = x, x ω
= x2
1 + ω2
(p).(x2
2 + x2
3);
26
y 2
ω = y, y ω
= y2
1 + ω2
(p).(y2
2 + y2
3);
Từ đó, dẫn đến:
x 2
ω. y 2
ω = x2
1.y2
1 +ω2
(p).[x2
1(y2
2 +y2
3)+y2
1(x2
2 +x2
3)]+ω4
(p).(x2
2 +x2
3).(y2
2 +y2
3).
Tiến hành so sánh, đối chiếu giữa các kết quả liên quan đã tính trên, ta thu
được x ∧ω y 2
ω + x, y
2
ω
= x 2
ω. y 2
ω.
2.2 Mặt cực tiểu kiểu đồ thị trong không gian tích
cong R ×ω R2
.
2.2.1 Mặt kiểu đồ thị .
Trong không gian R ×ω R2
, xét mặt tham số hóa X(y, z) = (u(y, z), y, z), có dạng đồ thị
biểu diễn trong không gian là Γu = {(u(y, z), y, z)|(y, z) ∈ R2
}.
Ta có:
Xy = (uy, 1, 0); Xz = (uz, 0, 1);
Xyy = (uyy, 0, 0); Xyz = (uyz, 0, 0); Xzz = (uzz, 0, 0).
Khi đó:
Xy ∧ω Xz = (ω2
, −uy, −uz).
Suy ra
N =
Xy ∧ω Xz
Xy ∧ω Xz ω
=
(ω2
, −uy, −uz)
ω4 + ω2(u2
y + u2
z)
.
Chú ý 2.2.1. Khi khảo sát các mặt kiểu đồ thị, thông thường ta chọn các trục x, y, z
sao cho z = u(x, y). Khi đó trong không gian R ×ω R2
có base B = R sẽ là trục z, fiber
F = R2
sẽ là mặt phẳng Oxy. Metric tương ứng được viết lại là:
g = ω2
(p)(dx2
+ dy2
) + dz2
, ∀X = (x, y, z) ∈ T(p,q)R ×ω R2
.
Như vậy đảm bảo được đúng định nghĩa hàm ω : B −→ R và ω2
đóng vai trò là trọng
số cho metric trên F. Khác với không gian tích cong R2
×ω R thì metric tương ứng là:
g = (dx2
+ dy2
) + ω2
(p)dz2
, ∀X = (x, y, z) ∈ T(p,q)R2
×ω R.
Sau đây, để khỏi đổi trục, ta sẽ vẫn giữ nguyên thứ tự các trục và đồ thị sẽ được biểu
diễn dưới dạng đồ thị của hàm x = u(y, z). Metric lúc này là:
g(X, X) = dx2
+ ω2
(p).(dy2
+ dz2
), ∀X = (x, y, z) ∈ T(p,q)R ×ω R2
.
2.2.2 Bài toán biến phân.
Xét u = u(x, y) là một hàm khả vi theo hai biến x và y. Hàm L = L(x, y, u, ux, uy) gọi là
hàm Lagrange được giả thiết là hàm khả vi đến cấp cần thiết. Khi đó, ta xét hàm được
cho bởi:
J[u] =
Ω
L(x, y, u, ux, uy)dxdy.
27
Hàm này có dạng tích phân hai lớp của hàm L lấy trên một miền cho trước Ω ⊂ R2
.
Ta cần phải tìm được hàm u∗
sao cho trong lớp các hàm thỏa cùng điều kiện biên
u(x, y) = f(x, y), ∀(x, y) ∈ ∂Ω, thì u∗
= u∗
(x, y) sẽ làm cực tiểu hàm J[u].
Hàm biến phân v(x, y) của u(x, y) thỏa mãn điều kiện biên v(x, y) = 0, ∀(x, y) ∈ ∂Ω.
Với ∈ R, ta đặt:
h( ) = J[u + v] =
Ω
L(x, y, u + v, ux + vx, uy + vy)dxdy.
gọi là biến phân của hàm J[u].
Khi đó, nếu u∗
là một nghiệm cực tiểu của J[u] thì hàm h( ) sẽ đạt cực tiểu tại = 0,
tức là h (0) = 0.
Để thuận tiện trong việc tính toán, ta ký hiệu: ux = p, uy = q, ∂L
∂p
= ω1, ∂L
∂q
= ω2, khi đó:
h( ) =
Ω
L(x, y, u + v, ux + vx, uy + vy)dxdy :=
Ω
L dxdy.
h ( ) =
d
d Ω
L dxdy
=
Ω
v
∂L
∂u
+ vx
∂L
∂p
+ vy
∂L
∂q
dxdy.
h (0) =
d
d
J[u + v]| =0
=
Ω
v
∂L
∂u
+ vx
∂L
∂p
+ vy
∂L
∂q
dxdy
=
Ω
v
∂L
∂u
+ vx.ω1 + vy.ω2 dxdy.
Ta có:
d(v.ω2dx) + d(v.ω1dy) = vy.ω2 + v.
∂ω2
∂y
dydx + vx.ω1 + v.
∂ω1
∂x
dxdy
= vx.ω1 − vy.ω2 + v.
∂ω1
∂x
− v.
∂ω2
∂y
dxdy
⇒ d(−v.ω2dx) + d(v.ω1dy) = vx.ω1 + vy.ω2 + v.
∂ω1
∂x
+ v.
∂ω2
∂y
dxdy
⇒ vx.ω1 + vy.ω2 dxdy = d(−v.ω2dx) + d(v.ω1dy) − v.
∂ω1
∂x
+ v.
∂ω2
∂y
dxdy
⇒
Ω
vx.ω1 + vy.ω2 dxdy =
Ω
d(−v.ω2dx + v.ω1dy) −
Ω
v
∂ω1
∂x
+
∂ω2
∂y
dxdy.
Ta cần lưu ý, vì v(x, y) = 0, ∀(x, y) ∈ ∂Ω, nên ∂Ω
v(−ω2dx + ω1dy) = 0.
Theo định lý Stoke:
Ω
d(−v.ω2dx + v.ω1dy) =
∂Ω
v(−ω2dx + ω1dy) = 0.
28
Do đó:
Ω
vx.ω1 + vy.ω2 dxdy = −
Ω
v
∂ω1
∂x
+
∂ω2
∂y
dxdy.
Vậy
h (0) =
Ω
v
∂L
∂u
+ vx.ω1 + vy.ω2 dxdy
=
Ω
v
∂L
∂u
− v
∂ω1
∂x
+
∂ω2
∂y
dxdy
=
Ω
v
∂L
∂u
−
∂ω1
∂x
−
∂ω2
∂y
dxdy
=
Ω
v
∂L
∂u
−
∂
∂x
∂L
∂p
−
∂
∂y
∂L
∂q
dxdy.
Như phân tích trước đó, nếu u∗
là một nghiệm cực tiểu của J[u] thì h (0) = 0.
Suy ra, nghiệm cực tiểu u∗
(x, y) của J[u] phải thỏa mãn phương trình sau:
∂L
∂u
−
∂
∂x
∂L
∂p
−
∂
∂y
∂L
∂q
= 0. (2.2)
2.2.3 Diện tích. Biến phân thứ nhất của phiếm hàm diện tích.
Định nghĩa 2.2.2. Trong không gian R ×ω R2
, cho S là một mặt chính quy. Xét R ⊂ S
là một miền bị chặn chứa trong lân cận tọa độ xác định bởi tham số hóa
X : U −→ S, U ⊂ R2
(y, z) → X(y, z).
Số dương
A(R) :=
Q
Xy ∧ω Xz ω, Q = X−1
(R) (2.3)
gọi là diện tích của R.
Do
Xy ∧ω Xz
2
ω + Xy, Xz
2
ω
= Xy
2
ω. Xz
2
ω
nên
Xy ∧ω Xz ω = Xy
2
ω. Xz
2
ω − Xy, Xz
2
.
Hơn nữa, ta lại có:
Xy ∧ω Xz = (ω2
, −uy, −uz),
nên
Xy ∧ω Xz
2
ω = ω4
+ ω2
(u2
y + u2
z).
Từ đó, công thức tính diện tích (2.3) được viết lại:
A(R) =
Q
Xy
2
ω. Xz
2
ω − Xy, Xz
2
dydz =
Q
ω4 + ω2(u2
y + u2
z)dydz. (2.4)
29
Xy
2
ω. Xz
2
ω − Xy, Xz
2
được gọi là phần tử diện tích của mặt tham số S xét trong
không gian R ×ω R2
. Áp dụng bài toán biến phân với hàm
L(y, z, u, uy, uz) = ω4 + ω2(u2
y + u2
z) = ω ω2 + (u2
y + u2
z).
Khi đó, ta gọi J[u] là phiếm hàm diện tích, h( ) là biến phân của J[u] và h (0) là biến
phân thứ nhất của phiếm hàm diện tích.
2.2.4 Độ cong trung bình. Mặt cực tiểu.
Định nghĩa 2.2.3. Khi ta xét bài toán biến phân cho phiếm hàm diện tích J[u] như
vừa đề cập ở trên, ta có
h (0) =
Ω
v
∂L
∂u
−
∂
∂y
∂L
∂p
−
∂
∂z
∂L
∂q
dydz.
với uy = p, uz = q.
Khi đó
h (0) =
Ω
2vHdydz.
với H là độ cong trung bình của mặt tham số kiểu đồ thị X(y, z) = (u(y, z), y, z).
Như vậy
H =
1
2
∂L
∂u
−
∂
∂y
∂L
∂p
−
∂
∂z
∂L
∂q
.
Cũng tương tự như đã nêu ở Chương 1, ta có định nghĩa của mặt cực tiểu như sau.
Định nghĩa 2.2.4. Mặt M là một mặt cực tiểu nếu vector độ cong trung bình của nó
bằng 0 (triệt tiêu) tại mọi điểm. Ta có H(N) = H.N nên mặt M là một mặt cực tiểu
nếu độ cong trung bình bằng 0 tại mọi điểm. Theo đó, phương trình mặt cực tiểu được
cho bởi:
∂L
∂u
−
∂
∂y
∂L
∂p
−
∂
∂z
∂L
∂q
= 0. (2.5)
với L = L(y, z, u, uy, uz) = ω4 + ω2(u2
y + u2
z) = ω ω2 + (u2
y + u2
z).
2.2.5 Phương trình Lagrange.
Trong không gian R ×ω R2
, xét mặt tham số hóa X(y, z) = (u(y, z), y, z), có dạng đồ thị
biểu diễn trong không gian là Γu = {(u(y, z), y, z)|(y, z) ∈ R2
}.
Ta tiến hành tính toán cụ thể đối với phương trình (2.5)
∂L
∂u
=
∂
∂u
ω ω2 + (u2
y + u2
z)
= ωu ω2 + (u2
y + u2
z) + ω
ω.ωu
ω2 + (u2
y + u2
z)
=
ωu. ω2
+ (u2
y + u2
z) + ω2
ωu
ω2 + (u2
y + u2
z)
=
2ω2
ωu + ωu(u2
y + u2
z)
ω2 + u2
y + u2
z
.
30
∂L
∂p
=
ω.uy
ω2 + u2
y + u2
z
.
∂
∂y
∂L
∂p
=
∂
∂y
ω.uy
ω2 + u2
y + u2
z
=
(ωuu2
y + ωuyy) ω2 + u2
y + u2
z − ωuy
ωωuuy+uyuyy+uzuyz
√
ω2+u2
y+u2
z
ω2 + u2
y + u2
z
=
(ωuu2
y + ωuyy)(ω2
+ u2
y + u2
z) − ω2
ωuu2
y − ωu2
yuyy − ωuyuzuzy
ω2 + u2
y + u2
z
3 .
Tính toán tương tự, ta có
∂
∂z
∂L
∂q
=
(ωuu2
z + ωuzz)(ω2
+ u2
y + u2
z) − ω2
ωuu2
z − ωu2
zuzz − ωuzuyuyz
ω2 + u2
y + u2
z
3 .
Thay vào (2.5), ta đươc:
1
ω2 + u2
y + u2
z
3 ω2
ωu.(2ω2
+ 3u2
y + 3u2
z) − ωuyy(ω2
+ u2
z) − ωuzz(ω2
+ u2
y) + 2ωuyuzuyz = 0
⇔
ω
ω2 + u2
y + u2
z
3 − (ω2
+ u2
z)uyy − (ω2
+ u2
y)uzz + ωωu(3u2
y + 3u2
z + 2ω2
) + 2uyuzuyz = 0
⇔ (ω2
+ u2
z)uyy + (ω2
+ u2
y)uzz − ωωu(3u2
y + 3u2
z + 2ω2
) − 2uyuzuyz = 0.
Phương trình thu được cuối cùng của quá trình tính toán trên được gọi là phương trình
Lagrange của mặt tham số kiểu đồ thị trong không gian R ×ω R2
.
Hơn nữa, mặt tham số thỏa mãn phương trình Lagrange chính là một mặt cực tiểu.
Theo đó, trong không gian R ×ω R2
, độ cong trung bình của mặt tham số kiểu đồ thị
X(y, z) = (u(y, z), y, z) được cho bởi:
H =
1
2
∂L
∂u
−
∂
∂y
∂L
∂p
−
∂
∂z
∂L
∂q
(2.6)
=
ω
ω2 + u2
y + u2
z
3 − (ω2
+ u2
z)uyy − (ω2
+ u2
y)uzz + ωωu(3u2
y + 3u2
z + 2ω2
) + 2uyuzuyz .
(2.7)
2.2.6 Một số ví dụ điển hình:
Trong phần này, ta sẽ tiến hành tìm hiểu về tính cực tiểu diện tích của một số mặt kiểu
đồ thị, xét với trường hợp hàm warp được cho ở dạng một hàm hằng.
Khi ω = a = const với a = 0, ta thu được phương trình Lagrange tương ứng như sau:
(a2
+ u2
z)uyy + (a2
+ u2
y)uzz − 2uyuzuyz = 0. (2.8)
31
1. Mặt phẳng:
Định lý 2.2.5. Trong không gian R×ω R2
, với hàm ω = a = const = 0, mặt phẳng
là mặt cực tiểu.
Chứng minh. Mặt phẳng được cho bởi tham số kiểu đồ thị
X(y, z) = (αy + βz; y; z).
Ta có: u(y, z) = αy + βz nên uyy = uzz = uyz = 0.
Do đó, mặt phẳng thỏa mãn phương trình Lagrange. Theo như nhận xét trên, ta
có mặt phẳng là mặt cực tiểu.
2. Mặt Catenoid:
Định lý 2.2.6. Trong không gian R ×ω R2
, với hàm ω = a = const = 0, mặt
Catenoid được cho bởi tham số hóa kiểu đồ thị
X(y, z) = u(y, z), y, z = b cosh−1
y2 + z2; y; z
là mặt cực tiểu khi b = a.
Chứng minh. Xét mặt X(y, z) = u(y, z), y, z = b cosh−1
y2 + z2; y; z . Ta có:
u(y, z) = b cosh−1
y2 + z2 = b ln y2 + z2 + y2 + z2 − 1 .
Khi đó:
uy =
by
y2 + z2 y2 + z2 − 1
; uyy =
b(z4
− y4
− z2
)
y2 + z2 y2 + z2 − 1
3 ;
uz =
bz
y2 + z2 y2 + z2 − 1
; uzz =
b(y4
− z4
− y2
)
y2 + z2 y2 + z2 − 1
3 ;
uyz = −byz
2y2
+ 2z2
− 1
y2 + z2 y2 + z2 − 1
3 .
Từ đó:
(a2
+ u2
z)uyy = a2
+
b2
z2
(y2 + z2).(y2 + z2 − 1)
.
b(z4
− y4
− z2
)
y2 + z2 y2 + z2 − 1
3
(a2
+ u2
y)uzz = a2
+
b2
y2
(y2 + z2).(y2 + z2 − 1)
.
b(y4
− z4
− y2
)
y2 + z2 y2 + z2 − 1
3
−2uyuzuyz = 2
by
y2 + z2 y2 + z2 − 1
.
bz
y2 + z2 y2 + z2 − 1
.
byz.(2y2
+ 2z2
− 1)
y2 + z2 y2 + z2 − 1
3
32
Tiến hành cộng vế theo vế, ta thu được vế trái của (2.8) trở thành:
(a2
+ u2
z)uyy + (a2
+ u2
y)uzz − 2uyuzuyz
=
1
y2 + z2 y2 + z2 − 1
5 a2
(y2
+ z2
)(y2
+ z2
− 1) + b2
z2
. b(z4
− y4
− z2
)
+ a2
(y2
+ z2
)(y2
+ z2
− 1) + b2
y2
. b(y4
− z4
− y2
)
+ 2b3
y2
z2
2(y2
+ z2
) − 1
=
− a2
b(y2
+ z2
)2
(y2
+ z2
− 1) + b3
(y6
+ z6
) + 3y2
z2
(y2
+ z2
) − (y4
+ z4
) − 2y2
z2
y2 + z2 y2 + z2 − 1
5
=
− a2
b(y2
+ z2
)2
(y2
+ z2
− 1) + b3
(y2
+ z2
)(y4
+ z4
+ 2y2
z2
) − (y4
+ z4
+ 2y2
z2
)
y2 + z2 y2 + z2 − 1
5
=
−a2
b (y2
+ z2
)2
(y2
+ z2
− 1) + b3
(y2
+ z2
)2
(y2
+ z2
− 1)
y2 + z2 y2 + z2 − 1
5
=
(−a2
b + b3
). (y2
+ z2
)2
(y2
+ z2
− 1)
y2 + z2 y2 + z2 − 1
5 .
Theo đó, dấu bằng trong phương trình Lagrange (2.8) xảy ra khi và chỉ khi a = b.
Ta có điều cần chứng minh.
3. Mặt Helicoid:
Định lý 2.2.7. Trong không gian R ×ω R2
, với hàm ω = a = const = 0, mặt
Helicoid được cho bởi tham số hóa kiểu đồ thị
X(y, z) = u(y, z), y, z = tan−1
(
z
y
); y; z
là mặt cực tiểu.
Chứng minh. Xét mặt Helicoid cho bởi: X(y, z) = u(y, z), y, z = tan−1
(z
y
); y; z ,
ta có:
u(y, z) = tan−1
(
z
y
) = arctan(
z
y
).
Khi đó:
uy =
−z
y2 + z2
; uyy =
2yz
(y2 + z2)2
;
uz =
y
y2 + z2
; uzz =
−2yz
(y2 + z2)2
;
33
uyz =
z2
− y2
(y2 + z2)2
.
Thay vào vế trái của phương trình Lagrange (2.8), ta có:
(a2
+ u2
z)uyy + (a2
+ u2
y)uzz − 2uyuzuyz
= a2
+
y2
(y2 + z2)2
.
2yz
(y2 + z2)2
+ a2
+
z2
(y2 + z2)2
.
−2yz
(y2 + z2)2
+
2yz.(z2
− y2
)
(y2 + z2)4
=
2yza2
(y2
+ z2
)2
− 2yza2
(y2
+ z2
)2
+ 2yz(z2
− y2
) − 2yz(z2
− y2
)
(y2 + z2)4
= 0.
Vậy, mặt Helicoid được cho trên thỏa mãn phương trình Lagrange (2.8) nên là mặt
cực tiểu.
2.2.7 Độ cong của các thớ.
Trong không gian R ×ω R2
, các thớ (fibers) tại mỗi điểm (p, q) được cho bởi
p × R2
= π−1
(p).
Ta có thể xem chúng như là các mặt tham số kiểu đồ thị
X(y, z) = u(y, z), y, z = (p, y, z)
tức là u(y, z) được xem như hàm hằng. Lúc này, áp dụng công thức tính độ cong (2.7),
ta có:
H = ω(p).ωu(p). (2.9)
chính là công thức tính độ cong của thớ p × R2
= π−1
(p).
Nhận xét 2.2.8. • Tại mỗi điểm (p, q) ∈ R ×ω R2
, ta có ω(p) = const, ωu(p) = const,
nên H = const. Nghĩa là, trong không gian R ×ω R2
, các fiber là những mặt có độ
cong hằng.
• Khi ω = a = const = 0, các thớ đều là mặt cực tiểu.
34
Kết luận
Thông qua luận văn này, tôi trình bày một số nội dung mà bản thân đã tìm hiểu cũng
như học hỏi được từ các buổi thảo luận với Thầy giáo hướng dẫn và các thành viên trong
nhóm Hình Học ở Huế, có thể tóm tắt như sau:
• Trình bày một số kiến thức về mặt, mặt cực tiểu trong không gian R3
. Đồng thời,
dẫn dắt quá trình xây dựng một số công thức tính toán độ cong trên cơ sở liên hệ
với khái niệm “nhát cắt chuẩn tắc”, theo đó, ta có thể áp dụng để tính nhanh độ
cong của một số mặt quen thuộc.
• Giới thiệu tổng quan về không gian R ×ω R2
, kèm theo một số ví dụ.
• Làm rõ một số khái niệm, kết quả liên quan đến mặt cực tiểu kiểu đồ thị trong
không gian R×ω R2
trên cơ sở đối chiếu với các đối tượng tương đương trong không
gian R3
. Chẳng hạn như Độ cong trung bình, Phương trình Lagrange, Mặt cực tiểu
kiểu đồ thị,....
• Tính toán và thu được một số kết quả cụ thể với trường hợp hàm tích cong là hàm
hằng.
Do sự hạn định về mặt thời gian cũng như năng lực bản thân còn nhiều thiếu sót, nên
thành quả thu được qua luận văn vẫn còn hạn chế. Cụ thể như việc khảo sát một vài ví
dụ điển hình cho không gian R ×ω R2
, tôi chỉ có thể làm cho trường hợp hàm warp là
hằng mà chưa thể tiến hành tính toán cho trường hợp có tính tổng quát hơn. Hay, tôi
chưa đi sâu khảo sát thêm về tính cực tiểu diện tích của các mặt cực tiểu kiểu đồ thị,
hoặc tìm hiểu về định lý Bernstein trong không gian này.
Bên cạnh đó, dù đã cố gắng nhưng không thể tránh khỏi những sai sót về mặt trình bày,
lỗi đánh máy... Rất mong nhận được sự góp ý từ quý thầy cô và bạn đọc nhằm hoàn
thiện luận văn hơn nữa.
Kính chân thành cảm ơn !
35
Phụ lục
Bài toán 2.2.9. Xét mặt X(x1, x2) = (x1, x2, f(x1, x2)), với hàm f(x1, x2) thỏa mãn
phương trình mặt cực tiểu:
(1 + |fx1 |2
).fx1x1 − 2fx1 fx2 fx1x2 + (1 + |fx2 |2
) = 0.
Khi đó, ta thu được:
1) Ma trận của dạng cơ bản I:
G =
1 + (fx1 )2
fx1 fx2
fx1 fx2 1 + (fx2 )2 .
2)
detG = [1 + (fx1 )2
].[1 + (fx2 )2
] − (fx1 )2
.(fx2 )2
= 1 + (fx1 )2
+ (fx2 )2
.
hay để cho thuận tiện khi tính toán về sau, ta có thể viết lại: detG = 1 + f2
x1
+ f2
x2
.
3)
1 + f2
x2
√
detG x1
=
fx1 fx2
√
detG x2
;
fx1 fx2
√
detG x1
=
1 + f2
x1
√
detG x2
. (2.10)
Suy ra sự tồn tại của các hàm g và h sao cho:
gx1 =
1 + f2
x1
√
detG
; gx2 =
fx1 , fx2
√
detG
; hx1 =
fx1 , fx2
√
detG
; hx2 =
1 + f2
x2
√
detG
. (2.11)
Chứng minh. Bằng tính toán đơn giản, ta có ngay 1) và 2).
Để làm rõ 3), đối với (2.10), ta chỉ tiến hành tính toán cụ thể đối với phương trình đầu
tiên, phần còn lại hoàn toàn tương tự.
1 + f2
x2
√
detG x1
=
fx1 fx2
√
detG x2
.
36
Thật vậy, xét vế trái:
1 + f2
x2
√
detG x1
=
1 + f2
x2
1 + f2
x1
+ f2
x2
x1
=
1 + f2
x2 x1
. 1 + f2
x1
+ f2
x2
− 1 + f2
x1
+ f2
x2 x1
. 1 + f2
x2
1 + f2
x1
+ f2
x2
=
2fx2 fx1x2 . 1 + f2
x1
+ f2
x2
−
2fx2 fx1x2 +2fx1 fx1x1
2
√
1+f2
x1
+f2
x2
.(1 + f2
x2
)
1 + f2
x1
+ f2
x2
=
2fx2 fx1x2 .(1 + f2
x1
+ f2
x2
) − (fx2 fx1x2 + fx1 fx1x1 )(1 + f2
x2
)
(1 + f2
x1
+ f2
x2
). 1 + f2
x1
+ f2
x2
=
fx2 fx1x2 + f3
x2
fx1x2 + 2fx2 fx1x2 f2
x1
− fx1 fx1x1 − f2
x2
fx1 fx1x1
(1 + f2
x1
+ f2
x2
). 1 + f2
x1
+ f2
x2
.
Xét vế phải:
fx1 fx2
√
detG x2
=
fx1 fx2 x2
1 + f2
x1
+ f2
x2
− 1 + f2
x1
+ f2
x2 x2
. fx1 fx2
1 + f2
x1
+ f2
x2
=
(fx1x2 fx2 + fx1 fx2x2 ). 1 + f2
x1
+ f2
x2
−
2fx2 fx2x2 +2fx1 fx1x2
2.
√
1+f2
x1
+f2
x2
fx1 fx2
1 + f2
x1
+ f2
x2
=
fx1x2 fx2 + fx1 fx2x2 . 1 + f2
x1
+ f2
x2
− fx2 fx2x2 + fx1 fx1x2 .fx1 fx2
1 + f2
x1
+ f2
x2
. 1 + f2
x1
+ f2
x2
=
fx1x2 fx2 .(1 + f2
x2
) + f2
x1
fx1x2 fx2 + fx1 fx2x2 + fx1 f2
x2
fx2x2 + f3
x1
fx2x2 − fx1 f2
x2
fx2x2 − f2
x1
fx2 fx1x2
1 + f2
x1
+ f2
x2
. 1 + f2
x1
+ f2
x2
=
fx2 fx1x2 .(1 + f2
x2
) + fx1 fx2x2 .(1 + f2
x1
)
1 + f2
x1
+ f2
x2
. 1 + f2
x1
+ f2
x2
.
Vậy, ta có:
1 + f2
x2
√
detG x1
−
fx1 fx2
√
detG x2
=
2fx2 fx1x2 f2
x1
− fx1 fx1x1 .(1 + f2
x2
) − fx1 fx2x2 .(1 + f2
x1
)
1 + f2
x1
+ f2
x2
. 1 + f2
x1
+ f2
x2
=
−fx1 fx1x1 .(1 + f2
x2
) − 2fx2 fx1 fx1x2 + fx2x2 .(1 + f2
x1
)
1 + f2
x1
+ f2
x2
. 1 + f2
x1
+ f2
x2
= 0 .
Từ đây, xác định được hai trường vector:
V =
1 + f2
x1
√
detG
;
fx1 fx2
√
detG
; W =
fx1 fx2
√
detG
;
1 + f2
x2
√
detG
.
37
Theo công thức Green, với miền D liên thông đơn:
∂D
V =
D
fx1 fx2
√
detG x1
−
1 + f2
x1
√
detG x2
= 0
∂D
W =
D
1 + f2
x2
√
detG x1
−
fx1 fx2
√
detG x2
= 0 .
Theo đó, V và W có các hàm thế vị, tức là tồn tại các hàm g và h sao cho g = V và
h = W, ta có:
gx1 =
1 + f2
x1
√
detG
; gx2 =
fx1 , fx2
√
detG
; hx1 =
fx1 , fx2
√
detG
; hx2 =
1 + f2
x2
√
detG
.
Chứng minh 2.2.10. Xét X(u, v) là mặt tham số hóa của mặt S tại p, {Xu, Xv} là một
cơ sở của TpS. Ta có:
N ◦ X =
Xu ∧ Xv
|Xu ∧ Xv|
.
dNp(Xu) =
∂
∂u
(N ◦ X) = Nu; dNp(Xv) =
∂
∂v
(N ◦ X) = Nv.
Vậy, với α, β ∈ TpS, nghĩa là α = mXu + nXv; β = sXu + tXv ta có:
dNp(α), β = mNu + nNv, sXu + tXv
= ms Nu, Xu + mt Nu, Xv + ns Nv, Xu + nt Nv, Xv ;
và tương tự:
α, dNp(β) = mXu + nXv, sNu + tNv
= ms Xu, Nu + mt Xu, Nv + ns Xv, Nu + nt Xv, Nv .
Mà N, Xu = 0 và N, Xv = 0 nên:
Nv, Xu + N, Xuv = 0. (2.12)
Nu, Xv + N, Xuv = 0. (2.13)
Từ (2.12) và (2.13), suy ra Nv, Xu = Nu, Xv . Thay vào các khai triển của dNp(α), β
và α, dNp(β) , ta thu được:
dNp(α), β = α, dNp(β) .
38
Tài liệu tham khảo
Tiếng Việt
[1] Nguyễn Thị Mỹ Duyên (2016), Không gian tích cong R ×F R2
, Báo cáo gửi hội thảo
khoa học Nghiên cứu sinh, Đại Học Sư Phạm, Đại Học Huế.
[2] Nguyễn Minh Hoàng (2009), Một số tính chất của đường và mặt trong không gian
với mật độ tuyến tính, Khóa luận tốt nghiệp, Đại Học Sư Phạm, Đại Học Huế.
[3] Trương Thị Thùy Trang (2009), Mặt cực tiểu trong không gian tích với một nhân tử
có mật độ Gauss, Khóa luận tốt nghiệp, Đại Học Sư Phạm, Đại học Huế.
Tiếng Anh
[4] do Carmo, Manfredo P., (1976), Differential geometry of curves and surfaces. Trans-
lated from the Portuguese. Prentice- Hall, Inc., Englewood Cliffs, N.J.,
[5] B.O’Neil, (1983), Semi- Riemannian Geometry with Applications to Relativity, Aca-
demic Press, London.
[6] R.Osserman, (2002), A survey of minimal surfaces,Courier Dover Publications,
39

More Related Content

What's hot

Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1
Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1
Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1Minh Đức
 
chuong 5. do thi (phan 1)
chuong 5. do thi (phan 1)chuong 5. do thi (phan 1)
chuong 5. do thi (phan 1)kikihoho
 
Tom tat bai giang ly thuyet do thi - nguyen ngoc trung
Tom tat bai giang   ly thuyet do thi - nguyen ngoc trungTom tat bai giang   ly thuyet do thi - nguyen ngoc trung
Tom tat bai giang ly thuyet do thi - nguyen ngoc trungkikihoho
 
Bai 4 bieu dien do thi va thuat toan tim kiem
Bai 4   bieu dien do thi va thuat toan tim kiemBai 4   bieu dien do thi va thuat toan tim kiem
Bai 4 bieu dien do thi va thuat toan tim kiemDuy Vọng
 

What's hot (14)

Luận văn: Phương trình tích phân ngẫu nhiên, HOT, 9đ
Luận văn: Phương trình tích phân ngẫu nhiên, HOT, 9đLuận văn: Phương trình tích phân ngẫu nhiên, HOT, 9đ
Luận văn: Phương trình tích phân ngẫu nhiên, HOT, 9đ
 
Luận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đ
Luận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đLuận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đ
Luận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đ
 
Luận án: Phương pháp lặp giải bất đẳng thức biến phân, HAY
Luận án: Phương pháp lặp giải bất đẳng thức biến phân, HAYLuận án: Phương pháp lặp giải bất đẳng thức biến phân, HAY
Luận án: Phương pháp lặp giải bất đẳng thức biến phân, HAY
 
Toan a2 bai giang
Toan a2   bai giangToan a2   bai giang
Toan a2 bai giang
 
Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1
Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1
Xuctu.com tuyen tap-de-thi-olympic-52-de-thi-va-giai-tap-1
 
Luận văn: Định lý bézout và chiều ngược lại, HAY, 9đ
Luận văn: Định lý bézout và chiều ngược lại, HAY, 9đLuận văn: Định lý bézout và chiều ngược lại, HAY, 9đ
Luận văn: Định lý bézout và chiều ngược lại, HAY, 9đ
 
Luận văn: Giá trị lớn nhất và giá trị nhỏ nhất trong toán phổ thông
Luận văn: Giá trị lớn nhất và giá trị nhỏ nhất trong toán phổ thôngLuận văn: Giá trị lớn nhất và giá trị nhỏ nhất trong toán phổ thông
Luận văn: Giá trị lớn nhất và giá trị nhỏ nhất trong toán phổ thông
 
chuong 5. do thi (phan 1)
chuong 5. do thi (phan 1)chuong 5. do thi (phan 1)
chuong 5. do thi (phan 1)
 
Luận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đ
Luận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đLuận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đ
Luận văn: Tích phân ngẫu nhiên đối với martingale, HAY, 9đ
 
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HAY, 9đ
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HAY, 9đLuận văn: Lý thuyết đồ thị với các bài toán phổ thông, HAY, 9đ
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HAY, 9đ
 
Tom tat bai giang ly thuyet do thi - nguyen ngoc trung
Tom tat bai giang   ly thuyet do thi - nguyen ngoc trungTom tat bai giang   ly thuyet do thi - nguyen ngoc trung
Tom tat bai giang ly thuyet do thi - nguyen ngoc trung
 
Bai 4 bieu dien do thi va thuat toan tim kiem
Bai 4   bieu dien do thi va thuat toan tim kiemBai 4   bieu dien do thi va thuat toan tim kiem
Bai 4 bieu dien do thi va thuat toan tim kiem
 
Luanvan
LuanvanLuanvan
Luanvan
 
Ltdt
LtdtLtdt
Ltdt
 

Similar to Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY

Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...Dịch vụ viết bài trọn gói ZALO: 0909232620
 
Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...
Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...
Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...Dịch vụ viết bài trọn gói ZALO: 0909232620
 

Similar to Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY (20)

Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đLuận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
 
Luận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đ
Luận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đLuận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đ
Luận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đ
 
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đLuận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
 
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyếnLuận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
 
Luận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vành
Luận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vànhLuận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vành
Luận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vành
 
Luận án: Giải bất đẳng thức biến phân trên tập điểm bất động, HAY
Luận án: Giải bất đẳng thức biến phân trên tập điểm bất động, HAYLuận án: Giải bất đẳng thức biến phân trên tập điểm bất động, HAY
Luận án: Giải bất đẳng thức biến phân trên tập điểm bất động, HAY
 
Đề tài: Phương pháp tính khoảng cách và góc trong hình học
Đề tài: Phương pháp tính khoảng cách và góc trong hình họcĐề tài: Phương pháp tính khoảng cách và góc trong hình học
Đề tài: Phương pháp tính khoảng cách và góc trong hình học
 
Đề tài: Tính tồn tại nghiệm của hệ phản ứng các chất Xúc tác-Ức chế
Đề tài: Tính tồn tại nghiệm của hệ phản ứng các chất Xúc tác-Ức chếĐề tài: Tính tồn tại nghiệm của hệ phản ứng các chất Xúc tác-Ức chế
Đề tài: Tính tồn tại nghiệm của hệ phản ứng các chất Xúc tác-Ức chế
 
Luận văn: Tính chất của môđun đối đồng điều địa phương, HOT
Luận văn: Tính chất của môđun đối đồng điều địa phương, HOTLuận văn: Tính chất của môđun đối đồng điều địa phương, HOT
Luận văn: Tính chất của môđun đối đồng điều địa phương, HOT
 
Luận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAY
Luận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAYLuận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAY
Luận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAY
 
Ước lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đ
Ước lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đƯớc lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đ
Ước lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đ
 
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-RiemannLuận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
 
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...
Luận văn: Lý thuyết đồ thị với các bài toán phổ thông, HOT - Gửi miễn phí qua...
 
Luận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ
Luận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạLuận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ
Luận văn: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ
 
Luận văn thạc sĩ: Về phức koszul, HAY, 9đ
Luận văn thạc sĩ: Về phức koszul, HAY, 9đLuận văn thạc sĩ: Về phức koszul, HAY, 9đ
Luận văn thạc sĩ: Về phức koszul, HAY, 9đ
 
Luận văn: Phương trình liên hợp và ứng dụng, HAY, 9đ
Luận văn: Phương trình liên hợp và ứng dụng, HAY, 9đLuận văn: Phương trình liên hợp và ứng dụng, HAY, 9đ
Luận văn: Phương trình liên hợp và ứng dụng, HAY, 9đ
 
Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...
Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...
Luận văn: Phương trình liên hợp và ứng dụng của nó, HOT - Gửi miễn phí qua za...
 
Luận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đ
Luận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đLuận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đ
Luận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đ
 
Đề tài: Về môđun giả BUCHSBAUM, HAY
Đề tài: Về môđun giả BUCHSBAUM, HAYĐề tài: Về môđun giả BUCHSBAUM, HAY
Đề tài: Về môđun giả BUCHSBAUM, HAY
 
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đLuận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
 

More from Dịch vụ viết thuê Luận Văn - ZALO 0932091562

Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...
Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...
Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...
Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...
Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...
Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...
Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...
Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...
Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...
Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...
Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 
Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...
Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...
Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...Dịch vụ viết thuê Luận Văn - ZALO 0932091562
 

More from Dịch vụ viết thuê Luận Văn - ZALO 0932091562 (20)

Nghiên Cứu Thu Nhận Pectin Từ Một Số Nguồn Thực Vật Và Sản Xuất Màng Pectin S...
Nghiên Cứu Thu Nhận Pectin Từ Một Số Nguồn Thực Vật Và Sản Xuất Màng Pectin S...Nghiên Cứu Thu Nhận Pectin Từ Một Số Nguồn Thực Vật Và Sản Xuất Màng Pectin S...
Nghiên Cứu Thu Nhận Pectin Từ Một Số Nguồn Thực Vật Và Sản Xuất Màng Pectin S...
 
Phát Triển Cho Vay Hộ Kinh Doanh Tại Ngân Hàng Nông Nghiệp Và Phát Triển Nông...
Phát Triển Cho Vay Hộ Kinh Doanh Tại Ngân Hàng Nông Nghiệp Và Phát Triển Nông...Phát Triển Cho Vay Hộ Kinh Doanh Tại Ngân Hàng Nông Nghiệp Và Phát Triển Nông...
Phát Triển Cho Vay Hộ Kinh Doanh Tại Ngân Hàng Nông Nghiệp Và Phát Triển Nông...
 
Nghiên Cứu Nhiễu Loạn Điện Áp Trong Lưới Điện Phân Phối.doc
Nghiên Cứu Nhiễu Loạn Điện Áp Trong Lưới Điện Phân Phối.docNghiên Cứu Nhiễu Loạn Điện Áp Trong Lưới Điện Phân Phối.doc
Nghiên Cứu Nhiễu Loạn Điện Áp Trong Lưới Điện Phân Phối.doc
 
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Kết Quả Kinh Doanh Của Các Công Ty Ngành...
 
Xây Dựng Công Cụ Sinh Dữ Liệu Thử Tự Động Cho Chương Trình Java.doc
Xây Dựng Công Cụ Sinh Dữ Liệu Thử Tự Động Cho Chương Trình Java.docXây Dựng Công Cụ Sinh Dữ Liệu Thử Tự Động Cho Chương Trình Java.doc
Xây Dựng Công Cụ Sinh Dữ Liệu Thử Tự Động Cho Chương Trình Java.doc
 
Phát Triển Công Nghiệp Huyện Điện Bàn Tỉnh Quảng Nam.doc
Phát Triển Công Nghiệp Huyện Điện Bàn Tỉnh Quảng Nam.docPhát Triển Công Nghiệp Huyện Điện Bàn Tỉnh Quảng Nam.doc
Phát Triển Công Nghiệp Huyện Điện Bàn Tỉnh Quảng Nam.doc
 
Phát Triển Kinh Tế Hộ Nông Dân Trên Địa Bàn Huyện Quảng Ninh, Tỉnh Quảng Bình...
Phát Triển Kinh Tế Hộ Nông Dân Trên Địa Bàn Huyện Quảng Ninh, Tỉnh Quảng Bình...Phát Triển Kinh Tế Hộ Nông Dân Trên Địa Bàn Huyện Quảng Ninh, Tỉnh Quảng Bình...
Phát Triển Kinh Tế Hộ Nông Dân Trên Địa Bàn Huyện Quảng Ninh, Tỉnh Quảng Bình...
 
Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...
Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...
Vận Dụng Mô Hình Hồi Quy Ngưỡng Trong Nghiên Cứu Tác Động Của Nợ Lên Giá Trị ...
 
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Cấu Trúc Vốn Của Doanh Nghiệp Ngành Hàng...
 
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...
Nghiên Cứu Các Nhân Tố Ảnh Hưởng Đến Hiệu Quả Kinh Doanh Của Các Doanh Nghiệp...
 
Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...
Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...
Hoàn Thiện Công Tác Thẩm Định Giá Tài Sản Bảo Đảm Trong Hoạt Động Cho Vay Tại...
 
Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...
Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...
Biện Pháp Quản Lý Xây Dựng Ngân Hàng Câu Hỏi Kiểm Tra Đánh Giá Kết Quả Học Tậ...
 
Hoàn Thiện Công Tác Huy Động Vốn Tại Ngân Hàng Tmcp Công Thương Việt Nam Chi ...
Hoàn Thiện Công Tác Huy Động Vốn Tại Ngân Hàng Tmcp Công Thương Việt Nam Chi ...Hoàn Thiện Công Tác Huy Động Vốn Tại Ngân Hàng Tmcp Công Thương Việt Nam Chi ...
Hoàn Thiện Công Tác Huy Động Vốn Tại Ngân Hàng Tmcp Công Thương Việt Nam Chi ...
 
Ánh Xạ Đóng Trong Không Gian Mêtric Suy Rộng.doc
Ánh Xạ Đóng Trong Không Gian Mêtric Suy Rộng.docÁnh Xạ Đóng Trong Không Gian Mêtric Suy Rộng.doc
Ánh Xạ Đóng Trong Không Gian Mêtric Suy Rộng.doc
 
Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...
Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...
Giải Pháp Hạn Chế Nợ Xấu Đối Với Khách Hàng Doanh Nghiệp Tại Ngân Hàng Thương...
 
Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...
Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...
Hoàn Thiện Công Tác Đào Tạo Đội Ngũ Cán Bộ Công Chức Phường Trên Địa Bàn Quận...
 
Giải Pháp Marketing Cho Dịch Vụ Ngân Hàng Điện Tử Tại Ngân Hàng Tmcp Hàng Hải...
Giải Pháp Marketing Cho Dịch Vụ Ngân Hàng Điện Tử Tại Ngân Hàng Tmcp Hàng Hải...Giải Pháp Marketing Cho Dịch Vụ Ngân Hàng Điện Tử Tại Ngân Hàng Tmcp Hàng Hải...
Giải Pháp Marketing Cho Dịch Vụ Ngân Hàng Điện Tử Tại Ngân Hàng Tmcp Hàng Hải...
 
Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...
Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...
Biện Pháp Quản Lý Công Tác Tự Đánh Giá Trong Kiểm Định Chất Lượng Giáo Dục Cá...
 
Kiểm Soát Rủi Ro Tín Dụng Trong Cho Vay Ngành Xây Dựng Tại Nhtmcp Công Thương...
Kiểm Soát Rủi Ro Tín Dụng Trong Cho Vay Ngành Xây Dựng Tại Nhtmcp Công Thương...Kiểm Soát Rủi Ro Tín Dụng Trong Cho Vay Ngành Xây Dựng Tại Nhtmcp Công Thương...
Kiểm Soát Rủi Ro Tín Dụng Trong Cho Vay Ngành Xây Dựng Tại Nhtmcp Công Thương...
 
Diễn Ngôn Lịch Sử Trong Biên Bản Chiến Tranh 1-2 -3- 4.75 Của Trần Mai Hạnh.doc
Diễn Ngôn Lịch Sử Trong Biên Bản Chiến Tranh 1-2 -3- 4.75 Của Trần Mai Hạnh.docDiễn Ngôn Lịch Sử Trong Biên Bản Chiến Tranh 1-2 -3- 4.75 Của Trần Mai Hạnh.doc
Diễn Ngôn Lịch Sử Trong Biên Bản Chiến Tranh 1-2 -3- 4.75 Của Trần Mai Hạnh.doc
 

Recently uploaded

1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docxTHAO316680
 
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...Nguyen Thanh Tu Collection
 
chuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdf
chuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdfchuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdf
chuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdfVyTng986513
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................TrnHoa46
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...Nguyen Thanh Tu Collection
 
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdfChuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdfhoangtuansinh1
 
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfTrnHoa46
 
PHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANG
PHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANGPHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANG
PHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANGhoinnhgtctat
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...Nguyen Thanh Tu Collection
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoámyvh40253
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...Nguyen Thanh Tu Collection
 
sách sinh học đại cương - Textbook.pdf
sách sinh học đại cương   -   Textbook.pdfsách sinh học đại cương   -   Textbook.pdf
sách sinh học đại cương - Textbook.pdfTrnHoa46
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
powerpoint lịch sử đảng cộng sản việt nam.pptx
powerpoint lịch sử đảng cộng sản việt nam.pptxpowerpoint lịch sử đảng cộng sản việt nam.pptx
powerpoint lịch sử đảng cộng sản việt nam.pptxAnAn97022
 
BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
1.DOANNGOCPHUONGTHAO-APDUNGSTEMTHIETKEBTHHHGIUPHSHOCHIEUQUA (1).docx
 
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
 
chuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdf
chuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdfchuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdf
chuong-7-van-de-gia-dinh-trong-thoi-ky-qua-do-len-cnxh.pdf
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
 
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdfChuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
 
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
 
PHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANG
PHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANGPHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANG
PHÁT TRIỂN DU LỊCH BỀN VỮNG Ở TUYÊN QUANG
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
 
sách sinh học đại cương - Textbook.pdf
sách sinh học đại cương   -   Textbook.pdfsách sinh học đại cương   -   Textbook.pdf
sách sinh học đại cương - Textbook.pdf
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
powerpoint lịch sử đảng cộng sản việt nam.pptx
powerpoint lịch sử đảng cộng sản việt nam.pptxpowerpoint lịch sử đảng cộng sản việt nam.pptx
powerpoint lịch sử đảng cộng sản việt nam.pptx
 
1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf
1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf
1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf
 
BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
BỘ ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 

Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY

  • 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC SƯ PHẠM TÔN NỮ SINH NHÃ MẶT CỰC TIỂU KIỂU ĐỒ THỊ TRONG KHÔNG GIAN R ×ω R2 LUẬN VĂN THẠC SĨ TOÁN HỌC Huế, Năm 2016
  • 2. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC SƯ PHẠM TÔN NỮ SINH NHÃ MẶT CỰC TIỂU KIỂU ĐỒ THỊ TRONG KHÔNG GIAN R ×ω R2 LUẬN VĂN THẠC SĨ TOÁN HỌC CHUYÊN NGÀNH HÌNH HỌC TÔ PÔ Mã số: 60.46.01.05 NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. ĐOÀN THẾ HIẾU Huế, Năm 2016
  • 3. Lời cảm ơn Được sự hướng dẫn tận tâm, nhiệt tình và đầy kiên nhẫn của thầy giáo, PGS.TS Đoàn Thế Hiếu, tôi đã có thể hoàn thành được luận văn này. Lời đầu tiên, tôi xin gửi đến Thầy lòng tôn kính và tri ân sâu sắc vì những điều tâm huyết mà Thầy đã truyền dạy trong thời gian qua. Tôi xin trân trọng tỏ lòng biết ơn đến quý thầy cô đã tham gia giảng dạy cho thế hệ cao học viên K23, chuyên ngành Toán học, trường ĐHSP Huế vì đã tận tình truyền đạt những kiến thức quý báu trong suốt thời gian của khóa học. Bên cạnh đó, tôi xin được gửi lời cảm ơn đến Ban Giám Hiệu, Khoa Toán và Phòng Đào tạo Sau đại học, trường Đại Học Sư Phạm Huế đã hỗ trợ và tạo điều kiện học tập thuận lợi, đảm bảo hiệu quả để chúng tôi có thể hoàn thành khóa học của mình một cách tốt đẹp. Tôi xin được gửi lời cảm ơn chân thành cùng lòng kính trọng đến mẹ của mình vì tất cả những yêu thương, quan tâm mà tôi đã được đón nhận; gửi lòng tri ân đến gia đình đã luôn ủng hộ và dành lời động viên cho tôi trong suốt cả chặng đường dài không ít khó khăn vừa qua. Và một lời nữa, tôi xin dành cho bạn bè, nhất là các thành viên của lớp Hình Học Tô-pô K23 niên khóa 2014-2016 cũng như các anh chị trong nhóm Seminar Hình Học ở Huế sự biết ơn thật nhiều vì đã nhiệt tình giúp đỡ tôi trong suốt quá trình học và thực hiện đề tài luận văn của mình. Tp.Huế, ngày 10 tháng 10 năm 2016 Tôn Nữ Sinh Nhã
  • 4. Lời cam đoan Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, các số liệu và kết quả trong luận văn là trung thực và được các đồng tác giả cho phép sử dụng. Tp.Huế, ngày 10 tháng 10 năm 2016 Tôn Nữ Sinh Nhã
  • 5. Mục lục Lời nói đầu 5 1 Mặt cực tiểu kiểu đồ thị trong R3 . 6 1.1 Kiến thức chuẩn bị. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Mặt chính quy-Dạng cơ bản thứ nhất. . . . . . . . . . . . . . . . 6 1.1.2 Mặt định hướng. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 Ánh xạ Gauss và dạng cơ bản thứ hai. . . . . . . . . . . . . . . . 7 1.2 Bài toán Plateau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Nhát cắt chuẩn tắc. Độ cong Gauss, độ cong trung bình. Các ví dụ. . . . 9 1.3.1 Độ cong pháp. Nhát cắt chuẩn tắc. Độ cong chính. Công thức Euler. 9 1.3.2 Độ cong Gauss - Độ cong trung bình. . . . . . . . . . . . . . . . . 11 1.3.3 Các ví dụ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Mặt cực tiểu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Mặt cực tiểu kiểu đồ thị. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.1 Phương trình Lagrange. . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.2 Tính cực tiểu diện tích. . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.3 Định lý Bernstein. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2 . 24 2.1 Không gian tích cong R ×ω R2 . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1 Định nghĩa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Các phép toán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Mặt cực tiểu kiểu đồ thị trong không gian tích cong R ×ω R2 . . . . . . . 27 2.2.1 Mặt kiểu đồ thị . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.2 Bài toán biến phân. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.3 Diện tích. Biến phân thứ nhất của phiếm hàm diện tích. . . . . . 29 2.2.4 Độ cong trung bình. Mặt cực tiểu. . . . . . . . . . . . . . . . . . . 30 2.2.5 Phương trình Lagrange. . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.6 Một số ví dụ điển hình: . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.7 Độ cong của các thớ. . . . . . . . . . . . . . . . . . . . . . . . . . 34 Kết luận 35 Phụ lục 36 4
  • 6. Lời nói đầu Trong khi nghiên cứu các đối tượng hình học, người ta dành nhiều sự quan tâm đến việc khảo sát cũng như tìm kiếm lớp các mặt cực tiểu. R3 là không gian khá quen thuộc và gắn liền với nhiều ứng dụng trong thực tế, do đó, người ta mong muốn biểu diễn các đối tượng hình học trong không gian này để từ đó, dựa vào các công cụ giải tích, ta có thể khảo sát và tính toán dễ dàng hơn. Không gian R ×ω R2 là không gian tích R × R2 , trên đó được trang bị tích vô hướng được xác định dựa trên các tích vô hướng trên R và trên R2 cùng một hàm dương ω trên R thông qua biểu thức được viết ngắn gọn như sau: g = gR + ω2 gR2 . Với một không gian được định nghĩa như vậy, vấn đề đặt ra ở đây là liệu các khái niệm, kết quả mà ta có được khi khảo sát trong không gian R3 giờ đây sẽ thay đổi như thế nào và có còn đảm bảo tính đúng đắn? Cụ thể là việc khảo sát mặt cực tiểu trong không gian này như thế nào? Xuất phát từ mong muốn được tìm hiểu và làm rõ những vấn đề trên, dưới sự hướng dẫn của Thầy giáo, PGS. TS. Đoàn Thế Hiếu, tôi nhận làm về đề tài: “Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2 ” trong luận văn của mình. Đề tài góp phần làm rõ các khái niệm, kết quả liên quan đến mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2 trên cơ sở đối chiếu với các đối tượng tương đương trong không gian R3 , từ đó có thể giúp cho những ai vừa tìm hiểu về không gian R ×ω R2 có được cái nhìn tổng quan và gần gũi hơn. Luận văn được trình bày theo bốn phần: • Lời nói đầu: Giới thiệu nội dung nghiên cứu của luận văn. • Phần nội dung. • Phần kết luận: Tổng kết các kết quả đạt được, đồng thời nêu một số vấn đề chưa giải quyết được trong luận văn. • Phần phụ lục: Bổ sung các chứng minh chi tiết của một số kết quả có tính dẫn dắt và phục vụ cho việc đưa ra các kết luận ở phần nội dung chính. Phần nội dung của luận văn bao gồm hai chương: Chương 1: Mặt cực tiểu kiểu đồ thị trong R3 . Chương 2: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2 . 5
  • 7. Chương 1 Mặt cực tiểu kiểu đồ thị trong R3. 1.1 Kiến thức chuẩn bị. Trong phần này, ta sẽ củng cố lại một vài khái niệm nhằm hỗ trợ cho việc tiếp cận các kiến thức thuộc về nội dung chính của chương được dễ dàng và đạt hiệu quả hơn. 1.1.1 Mặt chính quy-Dạng cơ bản thứ nhất. Định nghĩa 1.1.1. Một tập con S ⊂ R3 được gọi là một mặt chính quy nếu ∀p ∈ S tồn tại lân cận V ⊂ R3 của p, tập con mở U ⊂ R2 cùng với ánh xạ X : U −→ V ∩ S sao cho: 1. X(u, v) = (x(u, v), y(u, v), z(u, v)); (u, v) ∈ S, với các x, y, z là các hàm có đạo hàm riêng tại mọi cấp. Khi đó, ta nói X là ánh xạ khả vi. 2. X là một đồng phôi từ U vào V ∩ S. Điều này có nghĩa X là song ánh liên tục, có ánh xạ ngược X−1 : V ∩S −→ U liên tục. Hay, có thể hiểu X−1 là hạn chế của một ánh xạ liên tục F : Ω ⊂ R3 −→ R2 , với (V ∩ S) ⊂ Ω. 3. (Tính chính quy) Với mọi p, đạo hàm dXp : R2 −→ R3 là một đơn ánh. Khi đó, X được gọi là tham số hóa địa phương của S; cặp (U, V ) gọi là hệ tọa độ địa phương hoặc bản đồ của S; V ∩ S là lân cận của p trong S và được gọi là lân cận tọa độ. Định nghĩa 1.1.2. Một mặt tham số là một cặp (X, S) với X : R2 ⊃ U −→ R3 là một ánh xạ khả vi xác định trên U mở và S = X(U). Khi đó: S được gọi là vết của mặt tham số; X được gọi là tham số hóa của mặt. Định nghĩa 1.1.3. Trong R3 , xét mặt S được cho bởi hàm vector sau: X : Ω −→ R3 (u, v) → X(u, v) := (u, v, f(u, v)). Trong đó, f là hàm hai biến lớp C; f : Ω ⊂ R2 −→ R, và Ω là một miền mở liên thông với bao đóng compact có biên trơn trong R2 . Khi đó, S chính là đồ thị của hàm f trong R3 , đồ thị này có dạng là một mặt trong không gian ba chiều. Mặt S được gọi là mặt kiểu đồ thị. 6
  • 8. Định nghĩa 1.1.4. Một vector tiếp xúc của mặt chính quy S tại điểm p ∈ S là vector tiếp xúc của một cung tham số khả vi có vết nằm trên S α : (− ; ) −→ S sao cho α(0) = p. Tập gồm tất cả các vector tiếp xúc của S tại p được gọi là không gian tiếp xúc của S đặt tại p và được ký hiệu là TpS. Ta có thể thấy rằng mỗi không gian tiếp xúc TpS là một không gian vector 2-chiều. Với điểm q(u, v) ∈ Ω, ta có X(q) = p ∈ S, ta có thể kiểm chứng được rằng hệ {Xu(q), Xv(q)} gồm các vector tiếp xúc với các đường tọa độ qua p chính là một cơ sở của TpS. Do vậy, TpS làm không gian chỉ phương cho mặt phẳng tiếp xúc của S tại p. Khi không quan tâm đến điểm tiếp xúc, ta có thể đồng nhất không gian tiếp xúc và mặt phẳng tiếp xúc. Ta đưa ra định nghĩa sau: Định nghĩa 1.1.5. Xét q(u, v) ∈ Ω, ta có X(q) = p ∈ S. Khi đó, mặt phẳng đi qua p nhận Xu(q), Xv(q) làm cặp vector chỉ phương được gọi là mặt phẳng tiếp xúc của S tại p. Định nghĩa 1.1.6. Cho S ⊂ R3 là một mặt chính quy. Tích vô hướng trên mỗi mặt phẳng tiếp xúc TpS cảm sinh từ tích vô hướng trên R3 được xác định như sau: ω1, ω2 p = ω1.ω2, ∀ω1, ω2 ∈ TpS. Khi đó, với mỗi mặt phẳng tiếp xúc TpS, dạng toàn phương Ip(ω) = ω, ω p = |ω|2 , với ω ∈ TpS được gọi là dạng cơ bản thứ nhất của mặt S tại điểm p. 1.1.2 Mặt định hướng. Trong phần này, cho S là một mặt chính quy và V ⊂ S là một tập mở. Định nghĩa 1.1.7. Một trường vector trên V được định nghĩa là ánh xạ F : V −→ R3 . Trường vector này được gọi là liên tục, khả vi nếu ánh xạ ánh xạ F có các tính chất đó. Ta nói F là trường vector tiếp xúc trên V nếu ∀p ∈ V, F(p) ∈ TpS. Nếu ∀p ∈ V, F(p)⊥TpS thì F được gọi là trường vector pháp trên V . Nếu |F(p)| = 1, ∀p ∈ V , F được gọi là trường vector đơn vị trên V . Định nghĩa 1.1.8. Xét một mặt chính quy S, nếu có một trường pháp vector đơn vị liên tục N xác định trên toàn bộ mặt thì mặt đó được gọi là định hướng được. Khi đó, trường pháp vector N được gọi là một định hướng của S. Một mặt chính quy định hướng là mặt chính quy định hướng được cùng hướng xác định N. 1.1.3 Ánh xạ Gauss và dạng cơ bản thứ hai. Cho (S, N) là một mặt chính quy định hướng. Ở đây, ta giả thiết rằng định hướng N của mặt là khả vi. Do |Np| = 1, ∀p ∈ S nên ta có thể coi N là ánh xạ khả vi đi từ mặt chính quy S vào mặt cầu đơn vị S2 , biến mỗi điểm p trên mặt S thành điểm ngọn của vector pháp Np thuộc mặt S2 . 7
  • 9. Định nghĩa 1.1.9 (Ánh xạ Gauss). Ánh xạ N : S −→ S2 như mô tả ở trên được gọi là ánh xạ Gauss của mặt định hướng S. Ta có ánh xạ Gauss khả vi và đạo hàm của nó tại p ∈ S là một ánh xạ tuyến tính: dNp : TpS −→ TNp S2 . Vì TpS⊥Np, TNp S2 ⊥Np, ∀p ∈ S, nên ta thường đồng nhất TpS và TNp S2 tại mọi p ∈ S. Nói cách khác, dNp là một tự đồng cấu tuyến tính của TpS. Mệnh đề sau đây nêu lên một tính chất quan trọng của ánh xạ dNp. Mệnh đề 1.1.10. Ánh xạ dNp : TpS −→ TpS tự liên hợp, tức là: ∀α, β ∈ TpS, dNp(α), β = α, dNp(β) (1.1) Chứng minh. Việc chứng minh của mệnh đề này có thể xem ở phần phụ lục (2.2.10). Định nghĩa 1.1.11 (Dạng cơ bản thứ hai). Dạng toàn phương IIp(α) := − dNp(α), α gọi là dạng cơ bản thứ hai của mặt S tại điểm p. 1.2 Bài toán Plateau. Bài toán này đặt ra câu hỏi liệu có hay không sự tồn tại của mặt cực tiểu diện tích trong một họ mặt cùng biên cho trước. Mặc dù bài toán đã được đưa ra bởi Joseph-Louis Lagrange vào năm 1760 nhưng vẫn thường được gọi là bài toán Joseph Plateau, hay ngắn gọn là bài toán Plateau, lấy theo tên của người đã miệt mài quan sát những thí nghiệm màng xà phòng và rút ra những quy luật để từ đó có thể đưa ra các phát biểu liên quan đến bài toán. Cũng vì lẽ đó mà bài toán này còn được biết đến như bài toán bong bóng xà phòng. Bài toán Plateau được xem là một mảng nghiên cứu của Phép tính biến phân. Các vấn đề liên quan đến việc chỉ ra sự tồn tại và tính chính quy được lấy từ Lý thuyết độ đo hình học. Có thể hình dung bài toán này thông qua hiện tượng thực tế như sau: Ta có một màng xà phòng với biên cố định. Ban đầu, nó ở trạng thái có thể được xem là mặt phẳng. Thổi nhẹ vào màng xà phòng này khiến nó dao động; quá trình này làm cho mặt phẳng ban đầu có hình thù biến dạng liên tục tạo ra một họ các mặt mà ta có thể xem như một biến phân của mặt ban đầu theo thời gian t chạy trong khoảng (−ε; ε). Tại mỗi thời điểm, ta có một màng xà phòng với một diện tích tương ứng. Điều này có nghĩa là diện tích của các mặt cũng biến đổi theo thời gian t nói trên, dẫn tới việc ta cũng thu được một biến phân theo thời gian t của hàm diện tích. Ta có ánh xạ A : (−ε; ε) −→ R t → A(t) Trong quá trình đi tìm mặt cực tiểu diện tích (Area Minimal Surface-AMS) trong họ các màng xà phòng nói trên, ta thu được lớp các mặt cực tiểu (Minimal Surface-MS) là 8
  • 10. những mặt thỏa điều kiện A (t) = 0 và lớp các mặt cực tiểu diện tích địa phương còn gọi là các mặt ổn định (Stable Minimal Surface-SMS) thỏa điều kiện A (t) ≥ 0. Mục tiêu của bài toán Plateau chính là khảo sát sự tồn tại và chỉ ra AMS tức là mặt cực tiểu diện tích xét trên toàn cục. Một số trường hợp đặc biệt của bài toán đã có được lời giải nhưng phải đến năm 1930, nghiệm tổng quát của bài toán mới được tìm thấy bởi hai nhà toán học nghiên cứu độc lập là Jesse Douglas và Tibor Radó. Trong khi công trình của Tibor Radó được phát triển trên cơ sở kế thừa nghiên cứu của René Garnier và chỉ áp dụng đối với trường hợp đường cong đơn đóng hiệu chỉnh được, thì Jesse Douglas lại giải quyết bài toán theo một hướng hoàn toàn mới mẻ và lời giải đưa ra đúng với đường cong đơn đóng bất kỳ. Douglas trở thành một trong hai người đã đoạt được giải thưởng Field đầu tiên vào năm 1936, cho những cống hiến của ông. Bài toán sau đó được mở rộng lên không gian nhiều chiều (cụ thể là xét mặt k-chiều trong không gian n chiều) nhưng quả thật không đơn giản để nghiên cứu. Trong khi nghiệm tìm được cho bài toán cổ điển có tính chính quy thì người ta chỉ ra được rằng lời giải cho bài toán mở rộng lại xuất hiện trường hợp kỳ dị nếu k ≤ n − 2 và trong trường hợp khảo sát siêu mặt có số chiều k = n − 1 thì nghiệm kỳ dị chỉ xảy ra khi n ≥ 8. Để giải bài toán mở rộng trong một số trường hợp đặc biệt, Lý thuyết chu vi (De Giorgi) áp dụng cho đối chiều 1 cũng như Lý thuyết dòng hiệu chỉnh (Federer và Flem- ing) cho đối chiều cao hơn đã và đang được phát triển. Bài toán Plateau nhiều chiều trong lớp các mặt phổ (các mặt được tham số hóa bởi phổ của các đa tạp có biên cố định) đã được giải quyết vào năm 1969 bởi A. T. Fomenko. 1.3 Nhát cắt chuẩn tắc. Độ cong Gauss, độ cong trung bình. Các ví dụ. 1.3.1 Độ cong pháp. Nhát cắt chuẩn tắc. Độ cong chính. Công thức Euler. Định nghĩa 1.3.1 (Độ cong pháp của đường cong). Xét C là một đường cong chính quy trên mặt S, đi qua p. Khi đó, np là pháp vector (đơn vị) của đường cong C tại p, Np là pháp vector (đơn vị) của mặt S tại p. Gọi k(p) là độ cong của C tại p. Lúc này, ta có: kn(p) = k(p). np, Np , số này được gọi là độ cong pháp của đường cong C tại p. Có thể thấy rằng độ cong pháp chính là độ dài hình chiếu của k(p)np lên pháp tuyến của mặt S. Dấu của nó phụ thuộc vào hướng của pháp vector Np. k(p)np được gọi là vector độ cong trung bình của đường cong C tại p. Giả sử ω ∈ TpS, |ω| = 1. Gọi α là đường tham số (với tham số hóa độ dài cung) α : (− ; ) −→ S 9
  • 11. α(0) = p và α (0) = ω. Ký hiệu N(s) là hạn chế của ánh xạ Gauss lên đường tham số α. Vì N, α = 0, dẫn đến: N(s), α (s) = − N (s), α (s) . Do vậy IIp(α (0)) = − dNp(α (0)), α (0) = − N (0), α (0) = N(0), α (0) = N, kn (p) = kn(p). Điều này đưa đến các nhận xét sau đây: Nhận xét 1.3.2. • Giá trị nhận được của dạng cơ bản thứ hai IIp đối với vector đơn vị ω ∈ TpS cũng chính là độ cong pháp của một đường cong chính quy đi qua điểm p đồng thời nhận vector ω làm vector tiếp xúc. • Độ cong pháp kn(p) chỉ phụ thuộc vào vector tiếp xúc chứ không phụ thuộc vào đường cong hay chiều của đường cong. • Trong trường hợp xét vector ω ∈ TpS bất kỳ, không bắt buộc phải là vector đơn vị, ta có công thức sau: kn(p) = IIp(ω) Ip(ω) . Chứng minh. Đặt v = ω |ω| , ta có v là vector đơn vị. Khi đó, kn(p) = IIp(v) = IIp ω |ω| = IIp(ω) Ip(ω) . Từ những nhận xét này đưa đến định lý sau: Định lý 1.3.3 (Định lý Meusnier). Tất cả các đường cong nằm trên mặt cùng đi qua một điểm p và có các tiếp tuyến tại điểm này trùng nhau thì sẽ có độ cong pháp tại đó giống nhau. Theo đó, ta có các định nghĩa sau: Định nghĩa 1.3.4 (Độ cong pháp của mặt). Độ cong pháp của mặt S tại điểm p ∈ S theo hướng của vector ω được định nghĩa là độ cong của một đường chính quy trên mặt S, đi qua p, đồng thời có vector tiếp xúc tại p chính là ω. Định nghĩa 1.3.5 (Nhát cắt chuẩn tắc). Ta xét mặt phẳng P chứa p, nhận ω và N làm cặp vector chỉ phương. Khi đó, giao của P và S được gọi là nhát cắt chuẩn tắc của S tại p dọc theo ω. Ta có thể thấy rằng, trong một lân cận của p, nhát cắt chuẩn tắc này chính là một đường cong phẳng, đồng thời có pháp vector là ±Np. Ta có một số kết quả liên quan như sau: 10
  • 12. Mệnh đề 1.3.6. Giá trị tuyệt đối của độ cong pháp của mặt S tại một điểm p theo vector v bằng độ cong của nhát cắt chuẩn tắc của S tại p dọc theo v. Vì ánh xạ tuyến tính dNp liên hợp, tồn tại cơ sở trực chuẩn {e1, e2} để dNp(e1) = −k1e1, dNp(e2) = −k2e2. Nghĩa là, −k1, −k2 là các giá trị riêng, còn e1, e2 là các vector riêng đơn vị lần lượt tương ứng với các giá trị riêng đó của ánh xạ dNp. Ta có thể giả thiết rằng k1 ≤ k2. Định nghĩa 1.3.7 (Độ cong chính- Phương chính). Các giá trị k1, k2 được gọi là các độ cong chính. Các phương được xác định bởi các vector riêng e1, e2 được gọi là các phương chính của mặt S tại p. Do vậy, có thể gọi e1, e2 là các vector chỉ phương chính. Trong một vài trường hợp, ta đồng nhất e1, e2 với các phương chính được xác định bởi chúng để thuận tiện hơn trong khi phát biểu. Định nghĩa 1.3.8 (Công thức Euler). Giả sử {e1, e2} là một cơ sở trực chuẩn của TpS, gồm các vector riêng của ánh xạ dNp. Xét ω ∈ TpS, |ω| = 1, ω = cos ηe1 + sin ηe2. Ta có: IIp(ω) = − dNp(ω), ω = − dNp(cos ηe1 + sin ηe2), cos ηe1 + sin ηe2 = k1 cos ηe1 + k2 sin ηe2, cos ηe1 + sin ηe2 = k1 cos2 ηe1 + k2 sin2 ηe2 = kn(p, ω). Đến đây, ta thu được công thức Euler như sau: kn(p, ω) = k1 cos2 ηe1 + k2 sin2 ηe2. (1.2) Nhận xét 1.3.9. Theo (1.2), xét trên đường tròn đơn vị trong mặt phẳng TpS, ta nhận thấy các độ cong chính k1, k2 lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của dạng cơ bản IIp, nghĩa là giá trị nhỏ nhất và giá trị lớn nhất của độ cong pháp tại điểm p. Ta có thể nhìn nhận điều này như sau, khi cho ω đổi hướng (tức là ω quay quanh p theo các góc từ 0o đến 360o ), thì cứ ứng với mỗi ω như thế ta lại có span (N, ω) (không gian sinh bởi N và ω) thay đổi. Một cách tương ứng, độ cong pháp của đường cong C theo hướng ω đối với vector pháp N, ký hiệu là kn(p, ω), cũng thay đổi. Vì phạm vi biến đổi của ω là một tập compact nên miền giá trị nhận được của các kn(p, ω) tồn tại k1(p) = min kn(p, ω) và k2(p) = max kn(p, ω). Hai giá trị k1(p), k2(p) (nếu không có gì nhầm lẫn, ta có thể viết lần lượt là k1, k2) là các độ cong chính của S tại p ứng với vector pháp N. 1.3.2 Độ cong Gauss - Độ cong trung bình. Định nghĩa 1.3.10. Cho mặt chính quy định hướng (S, N), p ∈ S, dNp là ánh xạ đạo hàm của ánh xạ Gauss tại điểm p. Khi đó, ta có các khái niệm sau: • Độ cong Gauss của S tại điểm p được định nghĩa là định thức của dNp. Ký hiệu K(p). • Một nửa vết của −dNp được gọi là độ cong trung bình của S tại p. Ký hiệu H(p). 11
  • 13. Từ định nghĩa này, ta có thể nhận thấy: a. K = k1.k2. (1.3) H = k1 + k2 2 . (1.4) b. Khi định hướng của mặt thay đổi sẽ làm đổi dấu độ cong trung bình nhưng không làm thay đổi độ cong Gauss. Theo đó, ta xây dựng công thức tính toán cụ thể của các độ cong này như sau: Với (S, N) là mặt chính quy định hướng và có tham số hóa địa phương tại điểm p ∈ S là X : U −→ S. Giả sử rằng hướng của N tương thích với X, tức là: N = Xu ∧ Xv |Xu ∧ Xv| Ta có N, N = 1, suy ra N, Nu = 0, N, Nv = 0. Do đó, Nu, Nv ∈ TpS. Mà TpS có cơ sở {Xu, Xv}, nên: Nu = aXu + bXv, Nv = cXu + dXv. Vậy, ma trận của dNp theo cơ sở {Xu, Xv} là: a b c d . Tiếp theo, ta đi tìm ma trận của dạng cơ bản IIp: IIp(Xu) = − dNp(Xu), Xu = − Nu, Xu = N, Xuu := e, − dNp(Xu), Xv = − Nu, Xv = N, Xuv := f, IIp(Xv) = − dNp(Xv), Xv = − Nv, Xv = N, Xvv := g. Vậy, ma trận của IIp theo cơ sở {Xu, Xv} là: e f f g . Khi đó, với: Xu, Xu = E; Xu, Xv = Xv, Xv = F; Xv, Xv = G. −e = Nu, Xu = aXu + bXv, Xu = aE + bF, −g = Nv, Xv = cXu + dXv, Xv = cG + dF, −f = Nu, Xv = aXu + bXv, Xv = aF + bG, = Nv, Xu = cXu + dXv, Xu = cE + dF, 12
  • 14. hay − e f f g = a b c d E F F G . Suy ra a b c d = − e f f g E F F G −1 . Trong đó, E F F G −1 = 1 EG − F2 G −F −F E . Ta thu được: a = fF − eG EG − F2 ; b = eF − fE EG − F2 ; c = gF − fG EG − F2 ; d = fF − gE EG − F2 . Như vậy, với các định nghĩa độ cong nêu trên và thông qua tính toán, ta có: • Độ cong trung bình: H(N) = eG − 2fF + gE 2(EG − F2) . • Độ cong Gauss: K(N) = eg − f2 EG − F2 . 1.3.3 Các ví dụ. Từ công thức tính độ cong Gauss (1.3), độ cong trung bình (1.4), công thức Euler (1.2) và mối quan hệ giữa độ cong chính với độ cong của nhát cắt chuẩn tắc thuộc mặt S tại p, dọc theo phương ω, ta có thể tính toán nhanh độ cong của một số mặt phổ biến dưới đây. 1. Mặt phẳng: (P) Tại mỗi điểm p ∈ (P), Tp(P) ≡ (P). Np là vector pháp của (P) tại p. Với mỗi ω ∈ Tp(P), ta đều có span (Np, ω) ∩ (P) = ∆, ∆ là đường thẳng. Tức là tất cả các nhát cắt chuẩn tắc của mặt đều là đường thẳng, có độ cong bằng 0. Vậy các độ cong chính k1 = k2 = 0. Do đó: H(p) = k1 + k2 2 = 0; K(p) = k1k2 = 0. 13
  • 15. 2. Mặt trụ: (C) có bán kính đáy là R Tại mỗi điểm p ∈ (C), Tp(C) là một mặt phẳng. Np là vector pháp của (C) tại p. (Lưu ý rằng, Np có hai khả năng hoặc là hướng ra ngoài, hoặc là hướng vào trong; ở đây ta xét trường hợp Np hướng ra ngoài mặt trụ.) Xét các vector ωi đặt gốc tại p, sai lệch nhau bởi các góc quay từ 0o đến 360o . Khi đó span (Np, ωi) ∩ (C) sẽ cho ra ba dạng đường cong sau: – đường thẳng có độ cong k = 0; – đường tròn (vector pháp Np hướng ra ngoài) có độ cong k = 1 R ; – các đường elip có độ cong 0 < k < 1 R . Vậy, hai độ cong chính là k1 = 0 và k2 = 1 R . Do đó: H(p) = k1 + k2 2 = 1 2R ; K(p) = k1k2 = 0. 3. Mặt cầu: (S) có bán kính là R Tại mỗi điểm p ∈ (S), Tp(S) là một mặt phẳng. Np là vector pháp của (S) tại p. (Ở đây, ta xét trường hợp Np hướng ra ngoài mặt cầu) Xét các vector ωi đặt gốc tại p, sai lệch nhau bởi các góc quay từ 0o đến 360o . Khi đó span (Np, ωi) ∩ (S) sẽ cho ra các đường tròn có tâm chính là tâm của mặt cầu. Các đường tròn này (với vector pháp Np hướng ra ngoài) có độ cong k = 1 R . Vậy, hai độ cong chính là k1 = k2 = 1 R . Do đó: H(p) = k1 + k2 2 = 1 R ; K(p) = k1k2 = 1 R2 . 1.4 Mặt cực tiểu. Định nghĩa 1.4.1 (Vector độ cong trung bình). Như ta đã nêu ở phần trước, độ cong trung bình của S tại p, ứng với pháp vector N được xác định bởi công thức: H(N) = eG − 2fF + gE 2(EG − F2) . Ta có: TpS⊥ −→ R N → H(N) 14
  • 16. H tuyến tính theo N. Khi đó, tồn tại duy nhất H sao cho: H(N) = H.N, ∀N ∈ TpS⊥ . Vector H như trên được gọi là vector độ cong trung bình của S tại p. Vector này không phụ thuộc vào N và có vai trò được xem như là ma trận của ánh xạ H(.) đối với một cơ sở nào đó. Định nghĩa 1.4.2 (Mặt cực tiểu). Mặt M là một mặt cực tiểu nếu vector độ cong trung bình của nó triệt tiêu tại mọi điểm. Mà ta có H(N) = H.N, theo đó thì mặt M là một mặt cực tiểu nếu độ cong trung bình của nó bằng 0 tại mọi điểm. Dưới đây, ta có phương trình của mặt cực tiểu: H(N) = 0 ⇔ eG − 2fF + gE = 0. Ví dụ 1.4.1. • Mặt Catenoid: Mặt này nhận được bằng cách quay đường dây xích (Catenary) x = a cosh(z−b a ), với a = 0; a, b ∈ R quanh trục Oz. Nếu ta xét b = 0 thì phương trình của mặt có dạng: X(u, v) = (a cosh v cos u; a cosh v sin u; av) Với − ∞ < v < +∞; 0 < u < 2π Hình 1.1: Mặt Catenoid. • Mặt Helicoid: Phương trình: X(u, v) = (a sinh v sin u; −a sinh v cos u; au) Với − ∞ < v < +∞; 0 < u < 2π 15
  • 17. Hình 1.2: Mặt Helicoid. • Mặt Enneper: Phương trình: X(u, v) = (u − u3 3 + uv2 ; −v + v3 3 − v2 u; u2 − v2 ) Hình 1.3: Mặt Enneper. Đặc biệt, với mỗi t ∈ (−π; π), ta xét X(u, v, t) = cos t(sinh v sin u; − sinh v cos u; u) + sin t(cosh v cos u; cosh v sin u; u). Khi đó: X(u, v, 0) = (sinh v sin u; − sinh v cos u; u) : có dạng của mặt Helicoid, X(u, v, π 2 ) = (cosh v cos u; cosh v sin u; u) : có dạng của mặt Catenoid. 16
  • 18. Nhận xét 1.4.3. cos tX(u, v, 0) + sin tX(u, v, π 2 ) = X(u, v, t), khi ta cho t chạy từ 0 đến π 2 , ta thu được một họ mặt biến dạng từ Helicoid sang Catenoid. Một điều thú vị nữa là, mỗi X(u, v, t) trong họ mặt này đều là mặt cực tiểu. Thật vậy, bằng tính toán, ta sẽ thu được: E = cosh2 v, F = 0, G = cosh2 v e = − sin t, f = cos t, g = sin t. Khi đó: H = eG − 2fF + gE 2(EG − F2) = 0. 1.5 Mặt cực tiểu kiểu đồ thị. 1.5.1 Phương trình Lagrange. Trong R3 , xét mặt cực tiểu S được tham số hóa kiểu đồ thị: X : Ω −→ R3 (u, v) → X(u, v) := (u, v, f(u, v)). Bằng tính toán, ta thu được: Xu = (1, 0, fu); Xv = (0, 1, fv) Xuu = (0, 0, fuu); Xuv = (0, 0, fuv); Xvv = (0, 0, fvv) N = Xu ∧ Xv |Xu ∧ Xv| = 1 f2 u + f2 v + 1 (−fu, −fv, 1). Các hệ số của dạng cơ bản I: E = Xu, Xu = 1 + f2 u F = Xu, Xv = Xv, Xu = fufv G = Xv, Xv = 1 + f2 v . Các hệ số của dạng cơ bản II: e = Xuu, N = fuu f2 u + f2 v + 1 f = Xuv, N = Xvu, N = fuv f2 u + f2 v + 1 g = Xvv, N = fvv f2 u + f2 v + 1 . 17
  • 19. S là mặt cực tiểu, tức là: H = eG − 2fF + gE 2(EG − F2) = 0 ⇔ eG − 2fF + gE = 0 ⇔ fuu f2 u + f2 v + 1 (1 + f2 v ) − 2 fuv f2 u + f2 v + 1 fufv + fvv f2 u + f2 v + 1 (1 + f2 u) = 0 ⇔ fuu(1 + f2 v ) − 2fuvfuv + fvv(1 + f2 u) = 0. Đây chính là phương trình của mặt cực tiểu kiểu đồ thị và được gọi là phương trình Lagrange nhằm tưởng nhớ công lao phát hiện ra đầu tiên bởi nhà toán học này. 1.5.2 Tính cực tiểu diện tích. Cho một mặt tham số hóa X : Ω −→ R3 . Tham số hóa này được gọi là trực giao nếu E = G và F = 0. Về mặt địa phương, ta luôn có thể biểu thị một mặt cực tiểu bằng một tham số hóa trực giao. Điều này được khẳng định trong định lý dưới đây: Định lý 1.5.1. Mỗi mặt tham số cực tiểu X đều có tham số hóa trực giao địa phương. Chứng minh. Với S có tham số hóa kiểu đồ thị, giả sử rằng X(x, y) = (x, y, f(x, y)). Xét p ∈ S, p = X(x0, y0), trong đó (x0, y0) ∈ Ω. Lưu ý rằng, các phép biến đổi đẳng cự sẽ không gây ảnh hưởng đến các hệ số của dạng cơ bản I và II, do vậy chúng không làm thay đổi tính cực tiểu của mặt. Vậy nên, ta có thể xét p trùng với gốc tọa độ O, mặt phẳng tiếp xúc là TpS ≡ Oxy. Giả thiết đưa ra ban đầu là S cực tiểu, nghĩa là f thỏa mãn phương trình Lagrange. Lúc này, theo như Bài toán (2.2.9) (phần phụ lục), ta thu được các kết quả: 1) Ma trận của dạng cơ bản I: G = 1 + (fx1 )2 fx1 fx2 fx1 fx2 1 + (fx2 )2 . 2) detG = [1 + (fx1 )2 ].[1 + (fx2 )2 ] − (fx1 )2 .(fx2 )2 = 1 + (fx1 )2 + (fx2 )2 . hay để cho thuận tiện khi tính toán về sau, ta có thể viết lại: detG = 1 + f2 x1 + f2 x2 . 3) 1 + f2 x2 √ detG x1 = fx1 fx2 √ detG x2 ; fx1 fx2 √ detG x1 = 1 + f2 x1 √ detG x2 . (1.5) Suy ra sự tồn tại của các hàm g và h sao cho: gx1 = 1 + f2 x1 √ detG ; gx2 = fx1 , fx2 √ detG ; hx1 = fx1 , fx2 √ detG ; hx2 = 1 + f2 x2 √ detG . (1.6) 18
  • 20. Xét hàm: T : Ω −→ R2 (x, y) → T(x, y) = (x + g(x, y), y + h(x, y)). Khi đó, ma trận Jacobi của T: dT = 1 + gx gy hx 1 + hy = 1 + 1+f2 x√ detG fxfy √ detG fxfy √ detG 1 + 1+f2 y √ detG . Định thức |dT| = (1+ √ detG)2 √ detG > 0, áp dụng định lý hàm ngược, tồn tại hàm T−1 (u, v) = (x, y). Khi đó, d(T−1 ) = (dT)−1 = 1 detdT 1 + 1+f2 y √ detG − fxfy √ detG − fxfy √ detG 1 + 1+f2 x√ detG = 1 (1 + √ detG)2 √ detG + 1 + f2 y −fxfy −fxfy √ detG + 1 + f2 x = xu xv yu yv . Ta tiến hành kiểm chứng tham số sau là trực giao: X(u, v) = (x(u, v); y(u, v); f(x(u, v), y(u, v))). Thật vậy, Xu = 1 (1 + √ detG)2 .( √ detG + 1 + f2 y ; −fxfy; ( √ detG + 1 + f2 y )fx + fy(−fxfy)), Xv = 1 (1 + √ detG)2 .(−fxfy; √ detG + 1 + f2 x ; ( √ detG + 1 + f2 x )fy + fx(−fxfy)). Theo đó, bằng tính toán, ta thu được: E = G = detG (1 + √ detG)2 , đồng thời F = 0. Định lý 1.5.2. Tham số hóa X(u, v) là trực giao thì ∆X = Xuu + Xvv = (2EH).N Chứng minh. Ta có {Xu, Xv, N} là một trường mục tiêu trên mặt, ta có thể biểu diễn Xuu và Xvv qua trường mục tiêu này. Cụ thể ∃ a, b, c, m, n, p sao cho: Xuu = aXu + bXv + cN, (1.7) Xvv = mXu + nXv + pN. (1.8) Trong đó, a, b, c, m, n, p đều là các hàm khả vi xác định trên mặt. Ta tiến hành tính toán cụ thể để tìm các hàm này như sau: 19
  • 21. • Khi nhân (1.7) với lần lượt Xu, Xv, N, ta được: a Xu, Xu = Xuu, Xu = ∂ 2∂u Xu, Xu = Eu 2 b Xv, Xv = Xuu, Xv = − Xu, Xuv = − ∂ 2∂v Xu, Xu = − Ev 2 c = Xuu, N = e. • Khi nhân (1.8) với lần lượt Xu, Xv, N, ta được: m Xu, Xu = Xvv, Xu = − Xv, Xuv = − ∂ 2∂u Xv, Xv = − Gu 2 n Xv, Xv = Xvv, Xv = ∂ 2∂v Xv, Xv = Gv 2 p = Xvv, N = g. Tóm lại, ta có: a = Eu 2E , b = − Ev 2G , c = e, m = − Gu 2E , n = Gv 2G , p = g. Thay vào (1.7) và (1.8), ta được: Xuu + Xvv = Eu 2E Xu − Ev 2G Xv + eN + − Gu 2E Xu + Gv 2G Xv + gN = (e + g)N + Eu 2E − Gu 2E Xu + Gv 2G − Ev 2G Xv = (e + g)N = 2E e + g 2E N = (2EH)N. Điều sau đây được xem như một hệ quả trực tiếp của định lý trên và được dùng như một trong những công cụ để kiểm tra tính cực tiểu của một mặt: Hệ quả 1.5.3. Mỗi mặt tham số trực giao X(u, v) = (x(u, v), y(u, v), z(u, v)) là mặt cực tiểu khi và chỉ khi các hàm x, y, z là những hàm điều hòa, hay ∆X = 0. 1.5.3 Định lý Bernstein. Theo như nhận định của nhà toán học Osserman thì đây là định lý mang tính chất phổ quát và đáng để người ta tìm hiểu. Hai lý do chính được đưa ra cho nhận xét này, một là người ta có thể sử dụng các kết quả sơ cấp để chứng minh nó và điều thứ hai là dựa vào nó, người ta phát hiện thêm một loạt các kết quả đáng lưu tâm khác. Để dẫn dắt cho người đọc tiện theo dõi, ta bắt đầu từ những kết quả có tính sơ cấp dưới đây: 20
  • 22. Bổ đề 1.5.4. Cho hàm số F(x1, x2) thuộc lớp C2 , được xác định trên một miền lồi D, ma trận Hessian Fx1x1 Fx1x2 Fx2x1 Fx2x2 được giả thiết rằng xác định dương. Xét ánh xạ: (x1, x2) → (u1, u2), với ui = Fxi . (1.9) Khi đó, nếu a, b là hai điểm phân biệt trong D và u, v lần lượt là ảnh của chúng qua ánh xạ (1.9) thì ta có: (v − u).(b − a) > 0 . Chứng minh. Để cho thuận tiện trong việc tính toán, với a = (a1, a2), ta có thể viết F(a1, a2) = F(a). Vì D lồi nên với a = (a1, a2); b = (b1, b2) ∈ D, ta có [tb + (1 − t)a] ∈ D, với 0 ≤ t ≤ 1. Khi đó, ta đặt α(t) = F(tb + (1 − t)a). α (t) = (b − a).F (tb + (1 − t)a) = 2 i=1 [Fxi (tb + (1 − t)a)](bi − ai), với lưu ý rằng, ta ký hiệu Fxi (.) là đạo hàm theo biến thứ i của hàm F(.). Từ đó, ta có: α (t) = 2 i,j=1 [Fxixj (tb + (1 − t)a)](bi − ai)(bj − aj). Theo giả thiết, α (t) > 0, ∀t ∈ [0, 1], do vậy α là một hàm tăng. Suy ra α (0) < α (1). Cụ thể, nếu ta đặt y = (y1, y2) = tb + (1 − t)a, 0 ≤ t ≤ 1, với ánh xạ (1.9), ta xác định được v = (v1, v2) là ảnh của y, vi = Fxi (y). Vậy α = 2 i=1 [Fxi (tb + (1 − t)a)](bi − ai) (1.10) = 2 i=1 vi(bi − ai). (1.11) Khi đó, xét 0 ≤ t1 < t2 ≤ 1, ta xác định được hai điểm phân biệt trên D là t1b+(1−t1)a và t2b + (1 − t2)a, ảnh của chúng qua ánh xạ (1.9) lần lượt là u(u1, u2) và w(w1, w2). α là hàm tăng trên [0; 1] nên α (t1) < α (t2). Áp dụng sự phân tích ở (1.11), ta được: 2 i=1 ui(bi − ai) < 2 i=1 wi(bi − ai) ⇔ 2 i=1 (wi − ui).(bi − ai) > 0 ⇔ (w − u).(b − a) > 0 ⇔ (w − u).(t2 − t1).(b − a) > 0 ⇔ (w − u).[(t2b + (1 − t2)a) − (t1b + (1 − t1)a)] > 0. 21
  • 23. Đây chính là điều ta cần chứng minh. Bổ đề 1.5.5. Cũng với giả thiết như trong Bổ đề (1.5.4), nếu chúng ta xét hàm: G(x1, x2) = (ξ1, ξ2) := (x1 + Fx1 , x2 + Fx2 ) thì với hai điểm phân biệt a, b trong D, ảnh ξ và η của chúng sẽ thỏa mãn bất đẳng thức sau: |η − ξ| > |b − a|. (1.12) Chứng minh. Với v = (v1, v2) = (Fb1 , Fb2 ); u = (u1, u2) = (Fa1 , Fa2 ). η − ξ = (η1; η2) − (ξ1; ξ2) = (b1 + Fb1 ; b2 + Fb2 ) − (a1 + Fa1 ; a2 + Fa2 ) = (b1 + v1; b2 + v2) − (a1 + u1; a2 + u2) = (b − a) + (v − u). Theo Bổ đề (1.5.4), ta suy ra: (η − ξ).(b − a) > (b − a)2 . (1.13) Theo bất đẳng thức Cauchy Schwatz, ta có: |η − ξ|.|b − a| ≥ |(η − ξ).(b − a)| > |b − a|2 ⇒ |η − ξ| > |b − a|. Bổ đề 1.5.6. Nếu D = {(x1, x2)|x2 1 +x2 2 < r2 }, thì ánh xạ G được đề cập ở Bổ đề (1.5.5) là một vi phôi đi từ D lên một miền mở chứa một đĩa có tâm là G(0, 0), bán kính r. Chứng minh. Ta có F thuộc lớp C2 nên G thuộc lớp C1 . Giả sử α(t) là một đường cong khả vi trong miền D và β(t) là ảnh của nó qua ánh xạ G. Khi đó, dựa theo Bổ đề (1.5.5), ta thu được: |α (t)| < |β (t)|. Do đó, Jacobian của G lớn hơn 1 tại mọi điểm. Theo định lý hàm ngược, hàm G là vi phôi địa phương. Mặt khác, dựa vào bất đẳng thức (1.12), ta thấy G : 1 − 1. Vậy nên G là một vi phôi toàn cục vào một miền mở V , ta lần lượt xét hai trường hợp sau: • V ≡ R2 , hiển nhiên đảm bảo điều cần chứng minh là đúng. • V = R2 ⇒ R2 V = ∅. Do đó, tồn tại điểm µ sao cho: d(µ; G(0)) ≤ d(ν; G(0)), ∀ν ∈ R2 V. (Lưu ý rằng, để gọn và thuận tiện khi tính toán, ta viết G(0) để thay cho G(0; 0)) Xét dãy (µn)n với µn ∈ V, µn −→ µ. Khi đó sẽ có tương ứng dãy (xn)n ⊂ D, dãy này không thể có điểm tụ ở trong D vì ảnh của nó sẽ là µ. Vậy, |xn| −→ r. Theo bất đẳng thức (1.12), ta có |µn − G(0)| > |xn| kéo theo |µn − G(0)| ≥ r. Tóm lại, các điểm thuộc R2 V thì sẽ có khoảng cách đến G(0) đều lớn hơn hoặc bằng r, điều này đồng nghĩa với các điểm có khoảng cách đến G(0) nhỏ hơn r thì đều nằm trong V . 22
  • 24. Bổ đề 1.5.7. Cho f(x1, x2) xác định trên D = {(x1, x2)|x2 1 + x2 2 < r2 } thỏa mãn phương trình mặt cực tiểu: (1 + |fx1 |2 ).fx1x1 − 2fx1 fx2 fx1x2 + (1 + |fx2 |2 ) = 0. Với hai hàm g và h được xác định như ở Bài toán (2.2.9) (phần phụ lục), ta xét hàm: G(x1, x2) = (ξ1, ξ2) = (x1 + g(x1 , x2), x2 + h(x1, x2)). Ta có G là một vi phôi vào miền mở U chứa một đĩa tâm G(0, 0), bán kính r, (để thuận tiện, nếu không có gì nhầm lẫn, ta có thể viết G(0, 0) = G(0)). Chứng minh. Theo Bài toán (2.2.9), ta chỉ ra tồn tại hàm E thỏa mãn: Ex1 = g, Ex2 = h. Khi đó, hàm E thuộc lớp C2 , đồng thời: Ex1x1 = gx1 = 1 + f2 x1 √ detG ; Ex1x2 = ∂(g, h) ∂(x1, x2) = 1 . Do vậy, ta dễ dàng nhận thấy E thỏa mãn các điều kiện được nêu trong các Bổ đề (1.5.4), (1.5.5), (1.5.6), từ đấy dẫn đến điều cần phải chứng minh. Bổ đề 1.5.8. Cho hàm f(x1, x2) là hàm thuộc lớp C1 nhận giá trị thực, được xác định trên một miền mở U. điều kiện cần và đủ để mặt X(x1, x2) = (x1, x2, f(x1, x2)) nằm trên một mặt phẳng là tồn tại một phép biến đổi tuyến tính biến (u1, u2) thành (x1, x2) được gọi là phép biến đổi tham số sao cho đảm bảo hai điều kiện sau: • Phép biến đổi này phải không suy biến. • X(u, u) là tham số hóa trực giao của mặt X. Chứng minh. Giả sử tồn tại tham số (u1, u2) thỏa mãn điều kiện nêu trên. Ta đặt: ϕk (z) = (xk)u1 − i(xk)u2 , k = 1, 2, 3 với x3 = f(x1, x2) Vì x1, x2 là các hàm tuyến tính theo u1 và u2 nên (xk)uj , j = 1, 2; k = 1, 2 là các hàm hằng, do vậy ϕ1 , ϕ2 cũng là các hàm hằng. Mặt khác, vì (u1, u2) là tham số hóa trực giao nên ϕ3 là hàm hằng. Điều này có nghĩa là hàm x3 = f có gradient hằng nên f(x1, x2) = Ax1 + Bx2 + C (có đồ thị biểu diễn là một mặt phẳng). Ngược lại, nếu f(x1, x2) = Ax1 + Bx2 + C, ta hoàn toàn có thể đặt x1 = λAu1 + Bu2, x2 = λBu1 − Au2, với λ2 = 1 1+A2+B2 . Hệ quả 1.5.9 (Định lý Bernstein). Mặt tham số cực tiểu kiểu đồ thị xác định trên toàn bộ mặt phẳng là mặt phẳng. Chứng minh. Điều này được suy ra trực tiếp từ Bổ đề (1.5.8). 23
  • 25. Chương 2 Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R2. 2.1 Không gian tích cong R ×ω R2 . 2.1.1 Định nghĩa. Cho B và F là hai đa tạp Riemann cùng với các metric Riemann tương ứng lần lượt là gB và gF . Cho ω là một hàm trơn, dương trên B. Xét đa tạp tích B × F với các phép chiếu: π : B × F −→ B σ : B × F −→ F. Khi đó, đa tạp tích cong M = B ×ω F được định nghĩa là đa tạp B × F và trên đó được trang bị metric: g = π∗ (gB) + (ω ◦ π)2 σ∗ (gF ) Với mọi vector X ∈ T(p,q)M, ta có: g(X, X) = gB(dπ(X), dπ(X)) + ω2 (π(p, q)).gF (dσ(X), dσ(X)) g(X, X) = gB(dπ(X), dπ(X)) + ω2 (p). gF (dσ(X), dσ(X)). và ta có thể viết gọn lại là: g = gB + ω2 gF . Hàm ω được nêu trên gọi là hàm tích cong (warp product). Ta có thể thấy rằng, metric trong không gian này sẽ không chỉ còn đơn thuần phụ thuộc vào vector X mà còn bị chi phối bởi vị trí điểm đặt (p, q). Trong trường hợp ω = 1 thì B ×ω F chính là đa tạp tích Riemann thông thường. B được gọi là nền (base) và F được gọi là thớ (fiber) của đa tạp tích cong M. Tại mỗi điểm (p, q) ∈ M, ta có các đa tạp semi-Riemann con của M: p × F = π−1 (p) được gọi là các fiber, 24
  • 26. B × q = σ−1 (q) được gọi là các leaf. Theo đó, R ×ω R2 chính là một đa tạp tích cong được cho bởi base là R và fiber là R2 . 2.1.2 Các phép toán. 1. Tích vô hướng. Không gian tích cong R ×ω R2 là không gian tích R × R2 với tích vô hướng được cho bởi: g(x, y) = x1y1 + ω2 (p)(x2y2 + x3y3), với x = (x1, x2, x3) và y = (y1, y2, y3) tùy ý thuộc T(p,q)R × R2 . Theo đó thì metric tương ứng được xác định: g(x, x) = x1x1 + ω2 (p)(x2x2 + x3x3) = x2 1 + ω2 (x2 2 + x2 3) = dx2 1 + ω2 (dx2 2 + dx2 3). Ví dụ 2.1.1. Xét R, R2 với metric thông thường, M = R ×ω R2 với ω : R −→ R+ , ω(x) = x2 + 1. Khi đó, tại mỗi điểm (p, q) ∈ M, với vector X(x, y, z) ∈ T(p,q)M tùy ý, ta có: g|(p,q) (X, X) = gR|p (dπ(X), dπ(X)) + ω2 (p)gR2|q (dσ(X), dσ(X)) = x2 + ω2 (p).(y2 + z2 ) = x2 + (p2 + 1)2 .(y2 + z2 ). Ta thường dùng ký hiệu <, >ω để thay cho g(, ) khi thực hiện các tính toán liên quan đến tích vô hướng này trong các phần tiếp theo của luận văn. Theo đó, ta có x ω được dùng để ký hiệu cho chuẩn của vector x được tính theo tích vô hướng trên. 2. Tích trong. Trong không gian R ×ω R2 , xét hai vector x = (x1, x2, x3) và y = (y1, y2, y3) cùng đặt tại điểm (p, q). Khi đó, tích trong của x và y được tính toán bằng định thức mang tính hình thức sau: x ∧ω y := ω2 (p)e1 e2 e3 x1 x2 x3 y1 y2 y3 . (2.1) Cần lưu ý vì ta đang giữ nguyên thứ tự các trục, base B = R vẫn để là trục Ox nên ω2 (p) được nhân vào e1. Nếu như ở đây ta chọn lại base B = R là trục Oz thì ω2 (p) sẽ được nhân vào e3. Ta sẽ kiểm tra được công thức này thỏa mãn các tính chất của tích vector: Xét x = (x1, x2, x3); y = (y1, y2, y3) cùng đặt tại điểm (p, q), khi đó: 1) x ∧ω y, x ω = 0; x ∧ω y, y ω = 0. 2) det(x, y, x ∧ω y) ≥ 0. 3) x ∧ω y 2 ω + x, y 2 ω = x 2 ω. y 2 ω. 25
  • 27. Chứng minh. 1. x ∧ω y = ω2 (p)e1 e2 e3 x1 x2 x3 y1 y2 y3 = ω2 (p) 0 0 x1 x2 x3 y1 y2 y3 ; 0 1 0 x1 x2 x3 y1 y2 y3 ; 0 0 1 x1 x2 x3 y1 y2 y3 = ω2 (p)(x2y3 − x3y2); x3y1 − x1y3; x1y2 − x2y1 . Từ đó, suy ra: x ∧ω y, x ω = ω2 (p)x1.(x2y3 − x3y2) + ω2 (p).(x2x3y1 − x1x2y3 + x1x3y2 − x2x3y1) = ω2 (p).(x1x2y3 − x1x3y2) + ω2 (p).(x1x3y2 − x1x2y3) = 0. Hoàn toàn tương tự, ta có x ∧ω y, y ω = 0. 2. det(x, y, x ∧ω y) = x1 y1 ω2 (p).(x2y3 − x3y2) x2 y2 x3y1 − x1y3 x3 y3 x1y2 − x2y1 = x1y2(x1y2 − x2y1) + x3y1(x3y1 − x1y3) + x2y3ω2 (p).(x2y3 − x3y2) − x3y2ω2 (p).(x2y3 − x3y2) − x2y1(x1y2 − x2y1) − x1y3(x3y1 − x1y3) = (x1y2 − x2y1)2 + (x3y1 − x1y3)2 + ω2 (p).(x2y3 − x3y2)2 ≥ 0. Vậy, ta vừa chứng minh được det(x, y, x ∧ω y) ≥ 0. 3. Ta có: x, y ω = x1y1 + ω2 (p).(x2y2 + x3y3); x ∧ω y = ω2 (p).(x2y3 − x3y2); x3y1 − x1y3; x1y2 − x2y1 . Suy ra: x, y 2 ω = [x1y1 + ω2 (p).(x2y2 + x3y3)]2 = (x1y1)2 + ω4 (p).(x2 2y2 2 + x2 3y2 3 + 2x2y2x3y3) + 2ω2 (p).(x1y1x2y2 + x1y1x3y3). x ∧ω y 2 ω = x ∧ω y; x ∧ω y ω = ω4 (p).(x2y3 − x3y2)2 + ω2 (p).[( x3y1 − x1y3)2 + ( x1y2 − x2y1)2 ] = ω4 (p).(x2 2y2 3 + x2 3y2 2 − 2x2y3x3y2) + ω2 (p).[x2 3y2 1 + x2 1y2 3 + x2 1y2 2 + x2 2y2 1 − 2x3y1x1y3 − 2x1y2x2y1]. x 2 ω = x, x ω = x2 1 + ω2 (p).(x2 2 + x2 3); 26
  • 28. y 2 ω = y, y ω = y2 1 + ω2 (p).(y2 2 + y2 3); Từ đó, dẫn đến: x 2 ω. y 2 ω = x2 1.y2 1 +ω2 (p).[x2 1(y2 2 +y2 3)+y2 1(x2 2 +x2 3)]+ω4 (p).(x2 2 +x2 3).(y2 2 +y2 3). Tiến hành so sánh, đối chiếu giữa các kết quả liên quan đã tính trên, ta thu được x ∧ω y 2 ω + x, y 2 ω = x 2 ω. y 2 ω. 2.2 Mặt cực tiểu kiểu đồ thị trong không gian tích cong R ×ω R2 . 2.2.1 Mặt kiểu đồ thị . Trong không gian R ×ω R2 , xét mặt tham số hóa X(y, z) = (u(y, z), y, z), có dạng đồ thị biểu diễn trong không gian là Γu = {(u(y, z), y, z)|(y, z) ∈ R2 }. Ta có: Xy = (uy, 1, 0); Xz = (uz, 0, 1); Xyy = (uyy, 0, 0); Xyz = (uyz, 0, 0); Xzz = (uzz, 0, 0). Khi đó: Xy ∧ω Xz = (ω2 , −uy, −uz). Suy ra N = Xy ∧ω Xz Xy ∧ω Xz ω = (ω2 , −uy, −uz) ω4 + ω2(u2 y + u2 z) . Chú ý 2.2.1. Khi khảo sát các mặt kiểu đồ thị, thông thường ta chọn các trục x, y, z sao cho z = u(x, y). Khi đó trong không gian R ×ω R2 có base B = R sẽ là trục z, fiber F = R2 sẽ là mặt phẳng Oxy. Metric tương ứng được viết lại là: g = ω2 (p)(dx2 + dy2 ) + dz2 , ∀X = (x, y, z) ∈ T(p,q)R ×ω R2 . Như vậy đảm bảo được đúng định nghĩa hàm ω : B −→ R và ω2 đóng vai trò là trọng số cho metric trên F. Khác với không gian tích cong R2 ×ω R thì metric tương ứng là: g = (dx2 + dy2 ) + ω2 (p)dz2 , ∀X = (x, y, z) ∈ T(p,q)R2 ×ω R. Sau đây, để khỏi đổi trục, ta sẽ vẫn giữ nguyên thứ tự các trục và đồ thị sẽ được biểu diễn dưới dạng đồ thị của hàm x = u(y, z). Metric lúc này là: g(X, X) = dx2 + ω2 (p).(dy2 + dz2 ), ∀X = (x, y, z) ∈ T(p,q)R ×ω R2 . 2.2.2 Bài toán biến phân. Xét u = u(x, y) là một hàm khả vi theo hai biến x và y. Hàm L = L(x, y, u, ux, uy) gọi là hàm Lagrange được giả thiết là hàm khả vi đến cấp cần thiết. Khi đó, ta xét hàm được cho bởi: J[u] = Ω L(x, y, u, ux, uy)dxdy. 27
  • 29. Hàm này có dạng tích phân hai lớp của hàm L lấy trên một miền cho trước Ω ⊂ R2 . Ta cần phải tìm được hàm u∗ sao cho trong lớp các hàm thỏa cùng điều kiện biên u(x, y) = f(x, y), ∀(x, y) ∈ ∂Ω, thì u∗ = u∗ (x, y) sẽ làm cực tiểu hàm J[u]. Hàm biến phân v(x, y) của u(x, y) thỏa mãn điều kiện biên v(x, y) = 0, ∀(x, y) ∈ ∂Ω. Với ∈ R, ta đặt: h( ) = J[u + v] = Ω L(x, y, u + v, ux + vx, uy + vy)dxdy. gọi là biến phân của hàm J[u]. Khi đó, nếu u∗ là một nghiệm cực tiểu của J[u] thì hàm h( ) sẽ đạt cực tiểu tại = 0, tức là h (0) = 0. Để thuận tiện trong việc tính toán, ta ký hiệu: ux = p, uy = q, ∂L ∂p = ω1, ∂L ∂q = ω2, khi đó: h( ) = Ω L(x, y, u + v, ux + vx, uy + vy)dxdy := Ω L dxdy. h ( ) = d d Ω L dxdy = Ω v ∂L ∂u + vx ∂L ∂p + vy ∂L ∂q dxdy. h (0) = d d J[u + v]| =0 = Ω v ∂L ∂u + vx ∂L ∂p + vy ∂L ∂q dxdy = Ω v ∂L ∂u + vx.ω1 + vy.ω2 dxdy. Ta có: d(v.ω2dx) + d(v.ω1dy) = vy.ω2 + v. ∂ω2 ∂y dydx + vx.ω1 + v. ∂ω1 ∂x dxdy = vx.ω1 − vy.ω2 + v. ∂ω1 ∂x − v. ∂ω2 ∂y dxdy ⇒ d(−v.ω2dx) + d(v.ω1dy) = vx.ω1 + vy.ω2 + v. ∂ω1 ∂x + v. ∂ω2 ∂y dxdy ⇒ vx.ω1 + vy.ω2 dxdy = d(−v.ω2dx) + d(v.ω1dy) − v. ∂ω1 ∂x + v. ∂ω2 ∂y dxdy ⇒ Ω vx.ω1 + vy.ω2 dxdy = Ω d(−v.ω2dx + v.ω1dy) − Ω v ∂ω1 ∂x + ∂ω2 ∂y dxdy. Ta cần lưu ý, vì v(x, y) = 0, ∀(x, y) ∈ ∂Ω, nên ∂Ω v(−ω2dx + ω1dy) = 0. Theo định lý Stoke: Ω d(−v.ω2dx + v.ω1dy) = ∂Ω v(−ω2dx + ω1dy) = 0. 28
  • 30. Do đó: Ω vx.ω1 + vy.ω2 dxdy = − Ω v ∂ω1 ∂x + ∂ω2 ∂y dxdy. Vậy h (0) = Ω v ∂L ∂u + vx.ω1 + vy.ω2 dxdy = Ω v ∂L ∂u − v ∂ω1 ∂x + ∂ω2 ∂y dxdy = Ω v ∂L ∂u − ∂ω1 ∂x − ∂ω2 ∂y dxdy = Ω v ∂L ∂u − ∂ ∂x ∂L ∂p − ∂ ∂y ∂L ∂q dxdy. Như phân tích trước đó, nếu u∗ là một nghiệm cực tiểu của J[u] thì h (0) = 0. Suy ra, nghiệm cực tiểu u∗ (x, y) của J[u] phải thỏa mãn phương trình sau: ∂L ∂u − ∂ ∂x ∂L ∂p − ∂ ∂y ∂L ∂q = 0. (2.2) 2.2.3 Diện tích. Biến phân thứ nhất của phiếm hàm diện tích. Định nghĩa 2.2.2. Trong không gian R ×ω R2 , cho S là một mặt chính quy. Xét R ⊂ S là một miền bị chặn chứa trong lân cận tọa độ xác định bởi tham số hóa X : U −→ S, U ⊂ R2 (y, z) → X(y, z). Số dương A(R) := Q Xy ∧ω Xz ω, Q = X−1 (R) (2.3) gọi là diện tích của R. Do Xy ∧ω Xz 2 ω + Xy, Xz 2 ω = Xy 2 ω. Xz 2 ω nên Xy ∧ω Xz ω = Xy 2 ω. Xz 2 ω − Xy, Xz 2 . Hơn nữa, ta lại có: Xy ∧ω Xz = (ω2 , −uy, −uz), nên Xy ∧ω Xz 2 ω = ω4 + ω2 (u2 y + u2 z). Từ đó, công thức tính diện tích (2.3) được viết lại: A(R) = Q Xy 2 ω. Xz 2 ω − Xy, Xz 2 dydz = Q ω4 + ω2(u2 y + u2 z)dydz. (2.4) 29
  • 31. Xy 2 ω. Xz 2 ω − Xy, Xz 2 được gọi là phần tử diện tích của mặt tham số S xét trong không gian R ×ω R2 . Áp dụng bài toán biến phân với hàm L(y, z, u, uy, uz) = ω4 + ω2(u2 y + u2 z) = ω ω2 + (u2 y + u2 z). Khi đó, ta gọi J[u] là phiếm hàm diện tích, h( ) là biến phân của J[u] và h (0) là biến phân thứ nhất của phiếm hàm diện tích. 2.2.4 Độ cong trung bình. Mặt cực tiểu. Định nghĩa 2.2.3. Khi ta xét bài toán biến phân cho phiếm hàm diện tích J[u] như vừa đề cập ở trên, ta có h (0) = Ω v ∂L ∂u − ∂ ∂y ∂L ∂p − ∂ ∂z ∂L ∂q dydz. với uy = p, uz = q. Khi đó h (0) = Ω 2vHdydz. với H là độ cong trung bình của mặt tham số kiểu đồ thị X(y, z) = (u(y, z), y, z). Như vậy H = 1 2 ∂L ∂u − ∂ ∂y ∂L ∂p − ∂ ∂z ∂L ∂q . Cũng tương tự như đã nêu ở Chương 1, ta có định nghĩa của mặt cực tiểu như sau. Định nghĩa 2.2.4. Mặt M là một mặt cực tiểu nếu vector độ cong trung bình của nó bằng 0 (triệt tiêu) tại mọi điểm. Ta có H(N) = H.N nên mặt M là một mặt cực tiểu nếu độ cong trung bình bằng 0 tại mọi điểm. Theo đó, phương trình mặt cực tiểu được cho bởi: ∂L ∂u − ∂ ∂y ∂L ∂p − ∂ ∂z ∂L ∂q = 0. (2.5) với L = L(y, z, u, uy, uz) = ω4 + ω2(u2 y + u2 z) = ω ω2 + (u2 y + u2 z). 2.2.5 Phương trình Lagrange. Trong không gian R ×ω R2 , xét mặt tham số hóa X(y, z) = (u(y, z), y, z), có dạng đồ thị biểu diễn trong không gian là Γu = {(u(y, z), y, z)|(y, z) ∈ R2 }. Ta tiến hành tính toán cụ thể đối với phương trình (2.5) ∂L ∂u = ∂ ∂u ω ω2 + (u2 y + u2 z) = ωu ω2 + (u2 y + u2 z) + ω ω.ωu ω2 + (u2 y + u2 z) = ωu. ω2 + (u2 y + u2 z) + ω2 ωu ω2 + (u2 y + u2 z) = 2ω2 ωu + ωu(u2 y + u2 z) ω2 + u2 y + u2 z . 30
  • 32. ∂L ∂p = ω.uy ω2 + u2 y + u2 z . ∂ ∂y ∂L ∂p = ∂ ∂y ω.uy ω2 + u2 y + u2 z = (ωuu2 y + ωuyy) ω2 + u2 y + u2 z − ωuy ωωuuy+uyuyy+uzuyz √ ω2+u2 y+u2 z ω2 + u2 y + u2 z = (ωuu2 y + ωuyy)(ω2 + u2 y + u2 z) − ω2 ωuu2 y − ωu2 yuyy − ωuyuzuzy ω2 + u2 y + u2 z 3 . Tính toán tương tự, ta có ∂ ∂z ∂L ∂q = (ωuu2 z + ωuzz)(ω2 + u2 y + u2 z) − ω2 ωuu2 z − ωu2 zuzz − ωuzuyuyz ω2 + u2 y + u2 z 3 . Thay vào (2.5), ta đươc: 1 ω2 + u2 y + u2 z 3 ω2 ωu.(2ω2 + 3u2 y + 3u2 z) − ωuyy(ω2 + u2 z) − ωuzz(ω2 + u2 y) + 2ωuyuzuyz = 0 ⇔ ω ω2 + u2 y + u2 z 3 − (ω2 + u2 z)uyy − (ω2 + u2 y)uzz + ωωu(3u2 y + 3u2 z + 2ω2 ) + 2uyuzuyz = 0 ⇔ (ω2 + u2 z)uyy + (ω2 + u2 y)uzz − ωωu(3u2 y + 3u2 z + 2ω2 ) − 2uyuzuyz = 0. Phương trình thu được cuối cùng của quá trình tính toán trên được gọi là phương trình Lagrange của mặt tham số kiểu đồ thị trong không gian R ×ω R2 . Hơn nữa, mặt tham số thỏa mãn phương trình Lagrange chính là một mặt cực tiểu. Theo đó, trong không gian R ×ω R2 , độ cong trung bình của mặt tham số kiểu đồ thị X(y, z) = (u(y, z), y, z) được cho bởi: H = 1 2 ∂L ∂u − ∂ ∂y ∂L ∂p − ∂ ∂z ∂L ∂q (2.6) = ω ω2 + u2 y + u2 z 3 − (ω2 + u2 z)uyy − (ω2 + u2 y)uzz + ωωu(3u2 y + 3u2 z + 2ω2 ) + 2uyuzuyz . (2.7) 2.2.6 Một số ví dụ điển hình: Trong phần này, ta sẽ tiến hành tìm hiểu về tính cực tiểu diện tích của một số mặt kiểu đồ thị, xét với trường hợp hàm warp được cho ở dạng một hàm hằng. Khi ω = a = const với a = 0, ta thu được phương trình Lagrange tương ứng như sau: (a2 + u2 z)uyy + (a2 + u2 y)uzz − 2uyuzuyz = 0. (2.8) 31
  • 33. 1. Mặt phẳng: Định lý 2.2.5. Trong không gian R×ω R2 , với hàm ω = a = const = 0, mặt phẳng là mặt cực tiểu. Chứng minh. Mặt phẳng được cho bởi tham số kiểu đồ thị X(y, z) = (αy + βz; y; z). Ta có: u(y, z) = αy + βz nên uyy = uzz = uyz = 0. Do đó, mặt phẳng thỏa mãn phương trình Lagrange. Theo như nhận xét trên, ta có mặt phẳng là mặt cực tiểu. 2. Mặt Catenoid: Định lý 2.2.6. Trong không gian R ×ω R2 , với hàm ω = a = const = 0, mặt Catenoid được cho bởi tham số hóa kiểu đồ thị X(y, z) = u(y, z), y, z = b cosh−1 y2 + z2; y; z là mặt cực tiểu khi b = a. Chứng minh. Xét mặt X(y, z) = u(y, z), y, z = b cosh−1 y2 + z2; y; z . Ta có: u(y, z) = b cosh−1 y2 + z2 = b ln y2 + z2 + y2 + z2 − 1 . Khi đó: uy = by y2 + z2 y2 + z2 − 1 ; uyy = b(z4 − y4 − z2 ) y2 + z2 y2 + z2 − 1 3 ; uz = bz y2 + z2 y2 + z2 − 1 ; uzz = b(y4 − z4 − y2 ) y2 + z2 y2 + z2 − 1 3 ; uyz = −byz 2y2 + 2z2 − 1 y2 + z2 y2 + z2 − 1 3 . Từ đó: (a2 + u2 z)uyy = a2 + b2 z2 (y2 + z2).(y2 + z2 − 1) . b(z4 − y4 − z2 ) y2 + z2 y2 + z2 − 1 3 (a2 + u2 y)uzz = a2 + b2 y2 (y2 + z2).(y2 + z2 − 1) . b(y4 − z4 − y2 ) y2 + z2 y2 + z2 − 1 3 −2uyuzuyz = 2 by y2 + z2 y2 + z2 − 1 . bz y2 + z2 y2 + z2 − 1 . byz.(2y2 + 2z2 − 1) y2 + z2 y2 + z2 − 1 3 32
  • 34. Tiến hành cộng vế theo vế, ta thu được vế trái của (2.8) trở thành: (a2 + u2 z)uyy + (a2 + u2 y)uzz − 2uyuzuyz = 1 y2 + z2 y2 + z2 − 1 5 a2 (y2 + z2 )(y2 + z2 − 1) + b2 z2 . b(z4 − y4 − z2 ) + a2 (y2 + z2 )(y2 + z2 − 1) + b2 y2 . b(y4 − z4 − y2 ) + 2b3 y2 z2 2(y2 + z2 ) − 1 = − a2 b(y2 + z2 )2 (y2 + z2 − 1) + b3 (y6 + z6 ) + 3y2 z2 (y2 + z2 ) − (y4 + z4 ) − 2y2 z2 y2 + z2 y2 + z2 − 1 5 = − a2 b(y2 + z2 )2 (y2 + z2 − 1) + b3 (y2 + z2 )(y4 + z4 + 2y2 z2 ) − (y4 + z4 + 2y2 z2 ) y2 + z2 y2 + z2 − 1 5 = −a2 b (y2 + z2 )2 (y2 + z2 − 1) + b3 (y2 + z2 )2 (y2 + z2 − 1) y2 + z2 y2 + z2 − 1 5 = (−a2 b + b3 ). (y2 + z2 )2 (y2 + z2 − 1) y2 + z2 y2 + z2 − 1 5 . Theo đó, dấu bằng trong phương trình Lagrange (2.8) xảy ra khi và chỉ khi a = b. Ta có điều cần chứng minh. 3. Mặt Helicoid: Định lý 2.2.7. Trong không gian R ×ω R2 , với hàm ω = a = const = 0, mặt Helicoid được cho bởi tham số hóa kiểu đồ thị X(y, z) = u(y, z), y, z = tan−1 ( z y ); y; z là mặt cực tiểu. Chứng minh. Xét mặt Helicoid cho bởi: X(y, z) = u(y, z), y, z = tan−1 (z y ); y; z , ta có: u(y, z) = tan−1 ( z y ) = arctan( z y ). Khi đó: uy = −z y2 + z2 ; uyy = 2yz (y2 + z2)2 ; uz = y y2 + z2 ; uzz = −2yz (y2 + z2)2 ; 33
  • 35. uyz = z2 − y2 (y2 + z2)2 . Thay vào vế trái của phương trình Lagrange (2.8), ta có: (a2 + u2 z)uyy + (a2 + u2 y)uzz − 2uyuzuyz = a2 + y2 (y2 + z2)2 . 2yz (y2 + z2)2 + a2 + z2 (y2 + z2)2 . −2yz (y2 + z2)2 + 2yz.(z2 − y2 ) (y2 + z2)4 = 2yza2 (y2 + z2 )2 − 2yza2 (y2 + z2 )2 + 2yz(z2 − y2 ) − 2yz(z2 − y2 ) (y2 + z2)4 = 0. Vậy, mặt Helicoid được cho trên thỏa mãn phương trình Lagrange (2.8) nên là mặt cực tiểu. 2.2.7 Độ cong của các thớ. Trong không gian R ×ω R2 , các thớ (fibers) tại mỗi điểm (p, q) được cho bởi p × R2 = π−1 (p). Ta có thể xem chúng như là các mặt tham số kiểu đồ thị X(y, z) = u(y, z), y, z = (p, y, z) tức là u(y, z) được xem như hàm hằng. Lúc này, áp dụng công thức tính độ cong (2.7), ta có: H = ω(p).ωu(p). (2.9) chính là công thức tính độ cong của thớ p × R2 = π−1 (p). Nhận xét 2.2.8. • Tại mỗi điểm (p, q) ∈ R ×ω R2 , ta có ω(p) = const, ωu(p) = const, nên H = const. Nghĩa là, trong không gian R ×ω R2 , các fiber là những mặt có độ cong hằng. • Khi ω = a = const = 0, các thớ đều là mặt cực tiểu. 34
  • 36. Kết luận Thông qua luận văn này, tôi trình bày một số nội dung mà bản thân đã tìm hiểu cũng như học hỏi được từ các buổi thảo luận với Thầy giáo hướng dẫn và các thành viên trong nhóm Hình Học ở Huế, có thể tóm tắt như sau: • Trình bày một số kiến thức về mặt, mặt cực tiểu trong không gian R3 . Đồng thời, dẫn dắt quá trình xây dựng một số công thức tính toán độ cong trên cơ sở liên hệ với khái niệm “nhát cắt chuẩn tắc”, theo đó, ta có thể áp dụng để tính nhanh độ cong của một số mặt quen thuộc. • Giới thiệu tổng quan về không gian R ×ω R2 , kèm theo một số ví dụ. • Làm rõ một số khái niệm, kết quả liên quan đến mặt cực tiểu kiểu đồ thị trong không gian R×ω R2 trên cơ sở đối chiếu với các đối tượng tương đương trong không gian R3 . Chẳng hạn như Độ cong trung bình, Phương trình Lagrange, Mặt cực tiểu kiểu đồ thị,.... • Tính toán và thu được một số kết quả cụ thể với trường hợp hàm tích cong là hàm hằng. Do sự hạn định về mặt thời gian cũng như năng lực bản thân còn nhiều thiếu sót, nên thành quả thu được qua luận văn vẫn còn hạn chế. Cụ thể như việc khảo sát một vài ví dụ điển hình cho không gian R ×ω R2 , tôi chỉ có thể làm cho trường hợp hàm warp là hằng mà chưa thể tiến hành tính toán cho trường hợp có tính tổng quát hơn. Hay, tôi chưa đi sâu khảo sát thêm về tính cực tiểu diện tích của các mặt cực tiểu kiểu đồ thị, hoặc tìm hiểu về định lý Bernstein trong không gian này. Bên cạnh đó, dù đã cố gắng nhưng không thể tránh khỏi những sai sót về mặt trình bày, lỗi đánh máy... Rất mong nhận được sự góp ý từ quý thầy cô và bạn đọc nhằm hoàn thiện luận văn hơn nữa. Kính chân thành cảm ơn ! 35
  • 37. Phụ lục Bài toán 2.2.9. Xét mặt X(x1, x2) = (x1, x2, f(x1, x2)), với hàm f(x1, x2) thỏa mãn phương trình mặt cực tiểu: (1 + |fx1 |2 ).fx1x1 − 2fx1 fx2 fx1x2 + (1 + |fx2 |2 ) = 0. Khi đó, ta thu được: 1) Ma trận của dạng cơ bản I: G = 1 + (fx1 )2 fx1 fx2 fx1 fx2 1 + (fx2 )2 . 2) detG = [1 + (fx1 )2 ].[1 + (fx2 )2 ] − (fx1 )2 .(fx2 )2 = 1 + (fx1 )2 + (fx2 )2 . hay để cho thuận tiện khi tính toán về sau, ta có thể viết lại: detG = 1 + f2 x1 + f2 x2 . 3) 1 + f2 x2 √ detG x1 = fx1 fx2 √ detG x2 ; fx1 fx2 √ detG x1 = 1 + f2 x1 √ detG x2 . (2.10) Suy ra sự tồn tại của các hàm g và h sao cho: gx1 = 1 + f2 x1 √ detG ; gx2 = fx1 , fx2 √ detG ; hx1 = fx1 , fx2 √ detG ; hx2 = 1 + f2 x2 √ detG . (2.11) Chứng minh. Bằng tính toán đơn giản, ta có ngay 1) và 2). Để làm rõ 3), đối với (2.10), ta chỉ tiến hành tính toán cụ thể đối với phương trình đầu tiên, phần còn lại hoàn toàn tương tự. 1 + f2 x2 √ detG x1 = fx1 fx2 √ detG x2 . 36
  • 38. Thật vậy, xét vế trái: 1 + f2 x2 √ detG x1 = 1 + f2 x2 1 + f2 x1 + f2 x2 x1 = 1 + f2 x2 x1 . 1 + f2 x1 + f2 x2 − 1 + f2 x1 + f2 x2 x1 . 1 + f2 x2 1 + f2 x1 + f2 x2 = 2fx2 fx1x2 . 1 + f2 x1 + f2 x2 − 2fx2 fx1x2 +2fx1 fx1x1 2 √ 1+f2 x1 +f2 x2 .(1 + f2 x2 ) 1 + f2 x1 + f2 x2 = 2fx2 fx1x2 .(1 + f2 x1 + f2 x2 ) − (fx2 fx1x2 + fx1 fx1x1 )(1 + f2 x2 ) (1 + f2 x1 + f2 x2 ). 1 + f2 x1 + f2 x2 = fx2 fx1x2 + f3 x2 fx1x2 + 2fx2 fx1x2 f2 x1 − fx1 fx1x1 − f2 x2 fx1 fx1x1 (1 + f2 x1 + f2 x2 ). 1 + f2 x1 + f2 x2 . Xét vế phải: fx1 fx2 √ detG x2 = fx1 fx2 x2 1 + f2 x1 + f2 x2 − 1 + f2 x1 + f2 x2 x2 . fx1 fx2 1 + f2 x1 + f2 x2 = (fx1x2 fx2 + fx1 fx2x2 ). 1 + f2 x1 + f2 x2 − 2fx2 fx2x2 +2fx1 fx1x2 2. √ 1+f2 x1 +f2 x2 fx1 fx2 1 + f2 x1 + f2 x2 = fx1x2 fx2 + fx1 fx2x2 . 1 + f2 x1 + f2 x2 − fx2 fx2x2 + fx1 fx1x2 .fx1 fx2 1 + f2 x1 + f2 x2 . 1 + f2 x1 + f2 x2 = fx1x2 fx2 .(1 + f2 x2 ) + f2 x1 fx1x2 fx2 + fx1 fx2x2 + fx1 f2 x2 fx2x2 + f3 x1 fx2x2 − fx1 f2 x2 fx2x2 − f2 x1 fx2 fx1x2 1 + f2 x1 + f2 x2 . 1 + f2 x1 + f2 x2 = fx2 fx1x2 .(1 + f2 x2 ) + fx1 fx2x2 .(1 + f2 x1 ) 1 + f2 x1 + f2 x2 . 1 + f2 x1 + f2 x2 . Vậy, ta có: 1 + f2 x2 √ detG x1 − fx1 fx2 √ detG x2 = 2fx2 fx1x2 f2 x1 − fx1 fx1x1 .(1 + f2 x2 ) − fx1 fx2x2 .(1 + f2 x1 ) 1 + f2 x1 + f2 x2 . 1 + f2 x1 + f2 x2 = −fx1 fx1x1 .(1 + f2 x2 ) − 2fx2 fx1 fx1x2 + fx2x2 .(1 + f2 x1 ) 1 + f2 x1 + f2 x2 . 1 + f2 x1 + f2 x2 = 0 . Từ đây, xác định được hai trường vector: V = 1 + f2 x1 √ detG ; fx1 fx2 √ detG ; W = fx1 fx2 √ detG ; 1 + f2 x2 √ detG . 37
  • 39. Theo công thức Green, với miền D liên thông đơn: ∂D V = D fx1 fx2 √ detG x1 − 1 + f2 x1 √ detG x2 = 0 ∂D W = D 1 + f2 x2 √ detG x1 − fx1 fx2 √ detG x2 = 0 . Theo đó, V và W có các hàm thế vị, tức là tồn tại các hàm g và h sao cho g = V và h = W, ta có: gx1 = 1 + f2 x1 √ detG ; gx2 = fx1 , fx2 √ detG ; hx1 = fx1 , fx2 √ detG ; hx2 = 1 + f2 x2 √ detG . Chứng minh 2.2.10. Xét X(u, v) là mặt tham số hóa của mặt S tại p, {Xu, Xv} là một cơ sở của TpS. Ta có: N ◦ X = Xu ∧ Xv |Xu ∧ Xv| . dNp(Xu) = ∂ ∂u (N ◦ X) = Nu; dNp(Xv) = ∂ ∂v (N ◦ X) = Nv. Vậy, với α, β ∈ TpS, nghĩa là α = mXu + nXv; β = sXu + tXv ta có: dNp(α), β = mNu + nNv, sXu + tXv = ms Nu, Xu + mt Nu, Xv + ns Nv, Xu + nt Nv, Xv ; và tương tự: α, dNp(β) = mXu + nXv, sNu + tNv = ms Xu, Nu + mt Xu, Nv + ns Xv, Nu + nt Xv, Nv . Mà N, Xu = 0 và N, Xv = 0 nên: Nv, Xu + N, Xuv = 0. (2.12) Nu, Xv + N, Xuv = 0. (2.13) Từ (2.12) và (2.13), suy ra Nv, Xu = Nu, Xv . Thay vào các khai triển của dNp(α), β và α, dNp(β) , ta thu được: dNp(α), β = α, dNp(β) . 38
  • 40. Tài liệu tham khảo Tiếng Việt [1] Nguyễn Thị Mỹ Duyên (2016), Không gian tích cong R ×F R2 , Báo cáo gửi hội thảo khoa học Nghiên cứu sinh, Đại Học Sư Phạm, Đại Học Huế. [2] Nguyễn Minh Hoàng (2009), Một số tính chất của đường và mặt trong không gian với mật độ tuyến tính, Khóa luận tốt nghiệp, Đại Học Sư Phạm, Đại Học Huế. [3] Trương Thị Thùy Trang (2009), Mặt cực tiểu trong không gian tích với một nhân tử có mật độ Gauss, Khóa luận tốt nghiệp, Đại Học Sư Phạm, Đại học Huế. Tiếng Anh [4] do Carmo, Manfredo P., (1976), Differential geometry of curves and surfaces. Trans- lated from the Portuguese. Prentice- Hall, Inc., Englewood Cliffs, N.J., [5] B.O’Neil, (1983), Semi- Riemannian Geometry with Applications to Relativity, Aca- demic Press, London. [6] R.Osserman, (2002), A survey of minimal surfaces,Courier Dover Publications, 39