Modular Arithmetic
Modulo is all about finding the
remainder when one number
divides another
WASSCE May/June 2018
Copy and complete the tables for
the addition ⊕ and ⨂ in modulo
5
Use the tables to find;
a) 4 ⨂ 2 ⊕ 3 ⨂ 4
b) 𝑚 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚 ⨂ 𝑚 = 𝑚 ⊕ 𝑚
c) 𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 3 ⊕ 𝑛 = 2⨂𝑛
Solution
𝑎) 4 ⨂ 2 ⨁ 3 ⨂ 4 = 3 ⨁ 2
= 0
𝑏) 𝑚 ⊗ 𝑚 = 𝑚 ⨁𝑚
𝑐) 2 ⊗ 2 = 2 ⨁ 2
∴ 𝑚 = 2
⊕ 1 2 3 4
1 2 3 4 0
2 3
3 4 2
4 0
⨂ 1 2 3 4
1 1 3 4 0
2 2
3 2
4 1
⨂ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
⊕ 1 2 3 4
1
2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3
SSSCE Nov 2003
Draw a table for multiplication,⨂,
modulo 7 on the set 𝑃 = {2,3,4,5,6}
Use your table to find on the set P,
the truth set of 𝑛⨂ 𝑛 ⨂ 6 = 3
Solution
𝑏) From the table 𝑛⨂ 𝑛 ⨂ 6 = 3
2⨂ 2 ⨂ 6 = 2 ⨂ 5 = 3
5⨂ 5 ⨂ 6 = 5 ⨂ 2 = 3
𝒏 = {𝟐, 𝟓}
⨂ 𝟐 𝟑 𝟒 𝟓 𝟔
𝟐 4 6 1 3 5
𝟑 6 2 5 1 4
𝟒 1 5 2 6 3
𝟓 3 1 6 4 2
𝟔 5 4 3 2 1
a
WASSCE Nov 2007
Copy and complete the
multiplication table modulo 5 on
the set {1,2,3,4}
From the table solve the expression
2𝑛 ∗ 4 = 3
Solution
𝐺𝑖𝑣𝑒𝑛 2𝑛 ∗ 4 = 3
From the table
𝟐 ∗ 𝟒 = 𝟑 → 𝟐𝒏 = 𝟐, 𝒏 = 𝟏
∗ 1 2 3 4
1 1 3
2 4 1
3 3 2
4 3 1
∗ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
WASSCE May/June 2006
Draw a table of multiplication ⨂, in
𝑀𝑜𝑑𝑢𝑙𝑜 8 on the set {2,3,5,7}
Solution
⨂ 2 3 5 7
2 4 6 2 6
3 6 1 7 5
5 2 7 1 3
7 6 5 3 1
1. Simplify 9𝑚𝑜𝑑6
A. 3
B. 2
C. 1
D. 0
E. 5
F. The correct answer is 3
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
9𝑚𝑜𝑑6
6 goes into 9 once
remainder 3
2. Evaluate 2⨂4 in modulo 5
A. 3
B. 4
C. 2
D. 6
E. 7
The correct answer is 3
Solution
2 ⨂ 4 = 8
8𝑚𝑜𝑑5 = 3
3. Given that 𝑛 ⊕ 5 = 0𝑚𝑜𝑑6. Find the value of 𝑛, such that 0 < 𝑛 < 15 .
A. 𝑛 = {1,7}
B. 𝑛 = {1,7,12}
C. 𝑛 = {0,6,12}
D. 𝑛 = {1,7,13}
E. 𝑛 = {1,13}
The correct answer is 𝑛 = {1,7,13}
Solution
𝑛 ⊕ 5 = 0𝑚𝑜𝑑6
1 ⊕ 5 = 0𝑚𝑜𝑑6
7 ⊕ 5 = 0𝑚𝑜𝑑6
13 ⊕ 5 = 0𝑚𝑜𝑑6
19 ⊕ 5 = 0𝑚𝑜𝑑6
Etc,
For 0 < 𝑛 < 15
𝑛 = {1,7,13}
4. Which of the following satisfies the equation 𝑦 𝑚𝑜𝑑 7 = 1 in the
interval 0 < 𝑦 < 10?
A. {1,9}
B. {1,5}
C. {1}
D. {8}
E. {2,8}
F. {1,8}
The correct answer is
1
2
𝑝𝑞
Solution
1 𝑚𝑜𝑑 7 = 1
8 𝑚𝑜𝑑 7 = 1
𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒
{1,8}
5. Solve 𝑥 + 1 𝑚𝑜𝑑 5 = 3 in the interval 0 < 𝑥 < 10.
A. 𝑥 = {7,8}
B. 𝑥 = {2,8}
C. 𝑥 = {7}
D. 𝑥 = {2}
E. 𝑥 = {2,7}
The correct answer is𝑥 = {2,7}
Solution
3 𝑚𝑜𝑑 5 = 3
𝑥 + 1 = 3
𝑥 = 2
8 𝑚𝑜𝑑 5 = 3
𝑥 + 1 = 8
𝑥 = 7
13 𝑚𝑜𝑑 5 = 3
𝑥 + 1 = 13
𝑥 = 12
For the given interval
0 < 𝑥 < 10
𝑥 = {2,7}
6. Find the remainder when 1001 is divided by 3
A. 2
B. 3
C. 4
D. 6
E. 5
The correct answer is 2
Solution
1001 = 3 × 999 + 2
7. Evaluate 2018 𝑚𝑜𝑑 11
A. 1
B. 2
C. 3
D. 4
E. 5
The correct answer is 5
Solution
2018 = 11 × 183 + 5
2018 𝑚𝑜𝑑 11 = 5
8. Find the remainder when −12 is divided by 5.
A. −3
B. 3
C. −7
D. −2
E. 5
The correct answer is 3
Solution
−12 = −5 × 3 + 3
−12 𝑚𝑜𝑑 5 = 3
9. Find the remainder when −12 is divided by 3
A. −2
B. −1
C. 0
D. 1
E. 2
The correct answer is 0
Solution
−12 = −4 × 3 + 0
−12 𝑚𝑜𝑑 3 = 0
10. Simplify 1 + 8𝑚𝑜𝑑6
A. 3
B. 2
C. 1
D. 0
E. 4
The correct answer is 3
Solution
1 + 8𝑚𝑜𝑑6 = 1 + 2𝑚𝑜𝑑6 = 3𝑚𝑜𝑑6
SUMMARY
Modulo is just about remainder
Note that remainder is not negative

Modular arithmetic revision card

  • 1.
    Modular Arithmetic Modulo isall about finding the remainder when one number divides another
  • 2.
    WASSCE May/June 2018 Copyand complete the tables for the addition ⊕ and ⨂ in modulo 5 Use the tables to find; a) 4 ⨂ 2 ⊕ 3 ⨂ 4 b) 𝑚 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚 ⨂ 𝑚 = 𝑚 ⊕ 𝑚 c) 𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 3 ⊕ 𝑛 = 2⨂𝑛 Solution 𝑎) 4 ⨂ 2 ⨁ 3 ⨂ 4 = 3 ⨁ 2 = 0 𝑏) 𝑚 ⊗ 𝑚 = 𝑚 ⨁𝑚 𝑐) 2 ⊗ 2 = 2 ⨁ 2 ∴ 𝑚 = 2 ⊕ 1 2 3 4 1 2 3 4 0 2 3 3 4 2 4 0 ⨂ 1 2 3 4 1 1 3 4 0 2 2 3 2 4 1 ⨂ 1 2 3 4 1 1 2 3 4 2 2 4 1 3 3 3 1 4 2 4 4 3 2 1 ⊕ 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
  • 3.
    SSSCE Nov 2003 Drawa table for multiplication,⨂, modulo 7 on the set 𝑃 = {2,3,4,5,6} Use your table to find on the set P, the truth set of 𝑛⨂ 𝑛 ⨂ 6 = 3 Solution 𝑏) From the table 𝑛⨂ 𝑛 ⨂ 6 = 3 2⨂ 2 ⨂ 6 = 2 ⨂ 5 = 3 5⨂ 5 ⨂ 6 = 5 ⨂ 2 = 3 𝒏 = {𝟐, 𝟓} ⨂ 𝟐 𝟑 𝟒 𝟓 𝟔 𝟐 4 6 1 3 5 𝟑 6 2 5 1 4 𝟒 1 5 2 6 3 𝟓 3 1 6 4 2 𝟔 5 4 3 2 1 a
  • 4.
    WASSCE Nov 2007 Copyand complete the multiplication table modulo 5 on the set {1,2,3,4} From the table solve the expression 2𝑛 ∗ 4 = 3 Solution 𝐺𝑖𝑣𝑒𝑛 2𝑛 ∗ 4 = 3 From the table 𝟐 ∗ 𝟒 = 𝟑 → 𝟐𝒏 = 𝟐, 𝒏 = 𝟏 ∗ 1 2 3 4 1 1 3 2 4 1 3 3 2 4 3 1 ∗ 1 2 3 4 1 1 2 3 4 2 2 4 1 3 3 3 1 4 2 4 4 3 2 1
  • 5.
    WASSCE May/June 2006 Drawa table of multiplication ⨂, in 𝑀𝑜𝑑𝑢𝑙𝑜 8 on the set {2,3,5,7} Solution ⨂ 2 3 5 7 2 4 6 2 6 3 6 1 7 5 5 2 7 1 3 7 6 5 3 1
  • 6.
    1. Simplify 9𝑚𝑜𝑑6 A.3 B. 2 C. 1 D. 0 E. 5 F. The correct answer is 3 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 9𝑚𝑜𝑑6 6 goes into 9 once remainder 3
  • 7.
    2. Evaluate 2⨂4in modulo 5 A. 3 B. 4 C. 2 D. 6 E. 7 The correct answer is 3 Solution 2 ⨂ 4 = 8 8𝑚𝑜𝑑5 = 3
  • 8.
    3. Given that𝑛 ⊕ 5 = 0𝑚𝑜𝑑6. Find the value of 𝑛, such that 0 < 𝑛 < 15 . A. 𝑛 = {1,7} B. 𝑛 = {1,7,12} C. 𝑛 = {0,6,12} D. 𝑛 = {1,7,13} E. 𝑛 = {1,13} The correct answer is 𝑛 = {1,7,13} Solution 𝑛 ⊕ 5 = 0𝑚𝑜𝑑6 1 ⊕ 5 = 0𝑚𝑜𝑑6 7 ⊕ 5 = 0𝑚𝑜𝑑6 13 ⊕ 5 = 0𝑚𝑜𝑑6 19 ⊕ 5 = 0𝑚𝑜𝑑6 Etc, For 0 < 𝑛 < 15 𝑛 = {1,7,13}
  • 9.
    4. Which ofthe following satisfies the equation 𝑦 𝑚𝑜𝑑 7 = 1 in the interval 0 < 𝑦 < 10? A. {1,9} B. {1,5} C. {1} D. {8} E. {2,8} F. {1,8} The correct answer is 1 2 𝑝𝑞 Solution 1 𝑚𝑜𝑑 7 = 1 8 𝑚𝑜𝑑 7 = 1 𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 {1,8}
  • 10.
    5. Solve 𝑥+ 1 𝑚𝑜𝑑 5 = 3 in the interval 0 < 𝑥 < 10. A. 𝑥 = {7,8} B. 𝑥 = {2,8} C. 𝑥 = {7} D. 𝑥 = {2} E. 𝑥 = {2,7} The correct answer is𝑥 = {2,7} Solution 3 𝑚𝑜𝑑 5 = 3 𝑥 + 1 = 3 𝑥 = 2 8 𝑚𝑜𝑑 5 = 3 𝑥 + 1 = 8 𝑥 = 7 13 𝑚𝑜𝑑 5 = 3 𝑥 + 1 = 13 𝑥 = 12 For the given interval 0 < 𝑥 < 10 𝑥 = {2,7}
  • 11.
    6. Find theremainder when 1001 is divided by 3 A. 2 B. 3 C. 4 D. 6 E. 5 The correct answer is 2 Solution 1001 = 3 × 999 + 2
  • 12.
    7. Evaluate 2018𝑚𝑜𝑑 11 A. 1 B. 2 C. 3 D. 4 E. 5 The correct answer is 5 Solution 2018 = 11 × 183 + 5 2018 𝑚𝑜𝑑 11 = 5
  • 13.
    8. Find theremainder when −12 is divided by 5. A. −3 B. 3 C. −7 D. −2 E. 5 The correct answer is 3 Solution −12 = −5 × 3 + 3 −12 𝑚𝑜𝑑 5 = 3
  • 14.
    9. Find theremainder when −12 is divided by 3 A. −2 B. −1 C. 0 D. 1 E. 2 The correct answer is 0 Solution −12 = −4 × 3 + 0 −12 𝑚𝑜𝑑 3 = 0
  • 15.
    10. Simplify 1+ 8𝑚𝑜𝑑6 A. 3 B. 2 C. 1 D. 0 E. 4 The correct answer is 3 Solution 1 + 8𝑚𝑜𝑑6 = 1 + 2𝑚𝑜𝑑6 = 3𝑚𝑜𝑑6
  • 16.
    SUMMARY Modulo is justabout remainder Note that remainder is not negative