SULPHONAMIDES
NISHU SINGLA
ASSISTANT PROFESSOR
DEPT. OF PHARMACEUTICAL CHEMISTRY
ISF COLLEGE OF PHARMACY
WEBSITE: - WWW.ISFCP.ORG
EMAIL: NISHU131989@GMAIL.COM
ISF College of Pharmacy, Moga
Ghal Kalan,nGT Road, Moga- 142001, Punjab, INDIA
Internal Quality Assurance Cell - (IQAC)
HISTORY OF DRUG DISCOVERY 2
• In 1935, Gerhard Domagk discovered the first sulphonamide--prontosil rubrum. Four years
later he received the Noble Prize.
• Developed mouse model of sepsis with Streptococcus hemolyticus infection
• Lethal model with most mice dead in 24 hours
• Tested azo-dyes directly in this model.
• Others had shown some azo dyes to be active in vitro against a number of bacteria but not to
have any in vivo activity
N NH2N
NH2
Chrysoidin
N NH2N S
O
O
NH2
NH2
Prontosil Red
3DISCOVERY OF SULFONAMIDES
-Prontosil “Red” - Azo-dye
• Pre-treatment of bacteria before infection, no effect, but subsequent administration to mice -
survival!
• In vivo activity but no in vitro activity!
N NH2N S
O
O
NH2
NH2
H2N S NH2
O
O
Prontosil Red Sulfanilamide
in vivo
• Pro-drug - active in vitro after reduction
• Sulfanilamide first shown active in vitro by Fourneau (1935)
• Specific for streptococci not other pathogenic bacteria
• Only tested in humans by necessity
• Nobel Prize in 1939 to Domagk
4MECHANISM OF ACTION
WOODS (1940)
• Followed up on observation that bacterial extracts blocked bacteriostatic effects of
sulfa
• Suggested that sulfanilamide was a mimic for a bacterial metabolite and that it was
PABA
• First example of a competitive enzyme inhibitor as a drug (inhibitor and substrate)
H2N S NH2
O
O
Sulfanilamide
H2N C
O
O
-
p-aminobenzoic acid
5Sulfanilamide Mechanism
N
N
N
H
N
O P O P O
-
O
O
-
O
O
-
H2N
OH
N
N
N
H
NH2N
OH
H
N C
O
O
-
H2 N C
O
O
-
DHFR
+
Dihydrofolic acid
Dihydropteroate Synthetase
Tetrahydro
folate
Purines
H2N S NH2
O
O
PABS derivative not
A substrate for DHFR
PABA
PABS
1 carbon transfer
DNA
6WHY ARE SULFA DRUGS SELECTIVE ?
SELECTIVE TOXICITY
• Folic acid is a vitamin for humans - we don’t make it
• Therefore, no dihydropteroate synthetase
• Bacteria don’t have a folic uptake system since they make it
• Thus, a selective anti-bacterial agent!
7SULPHONAMIDE RESISTANCE AND PRESENT USE
• Sulfonamide resistance mechanisms
• Increased synthesis of PABA
• Mutant enzyme - binds sulfonamides less well
• Decreased uptake of sulfa drugs
• Synergistic therapy
• Used today to treat P. Carinii pneumonia in HIV
Sulfa + DHFR inhibitor
H2N S NH
O
O
N
O
CH3
N
N
OCH3
OCH3
OCH3
H2N
NH2
sulfamethoxazole trimethoprim
DHFR inhibitor"Septra"
8
CLASSIFICATION
1. Well absorbed short acting sulfonamide:
Sulfadiazine
Sulfamethimazole
Sulfadimidine
Sulfamethiazole
Sulfafurazole (Sulfaisoxazole)
Sulfosamidine
2. Well absorbed intermediate acting sulfonamide:
Sulfaphenazole
Sulfamethoxazole
9
3. Well absorbed long acting sulfonamide:
Sulfadimethoxin
Sulfamethoxin
Sulfamethoxy diazine
Sulfamethoxy pyridazine
4. Well absorbed ultra long acting sulfonamide:
Sulfadoxine
Sulphalene
5. Sulfonamide employed for ophthalmic infection
Sulfacetamide
Sulfafurazole
10
5. Sulfonamide employed for ophthalmic infection:
Sulfacetamide
Sulfafurazole
6. Sulfonamide employed for burn therapy:
Mefenide
Silver sulfadiazine
7. Sulfonamide employed for G.I.T. infection:
Succinyl sulfathiazole
Pthalyl sulfathiazole
Sulfaguanidine
11
8. Folate reductase inhibitors:
Trimethoprim
9. Sulfones
Dapsone
12
NH2 SO2 NH2
p-amino benzene sulfonamide
Sulfanilamide
NH2 SO2 NH C CH3
O
p-amino phenyl sulfonyl acetamide
N-acetyl-sulfanilamide
N-acetyl-p-aminobenzene sulfonamide
13
NH2 SO2 NH
N
N
N-pyrimidin-2-yl sulfanilamide
2-p-amino benzene sulfonamido pyrimidine
NH2 SO2 N
N
N
.Ag
+
-
14
NH2 SO2 NH
N
N
CH3
NH2 SO2 NH
N
N
CH3
CH3
Sulfamerazine
Sulfadimidine (Sulfamethazine)
15
NH2 SO2 NH
N N
OCH 3
NH2 SO2 NH N
N
OCH 3
OCH 3Sulfodimethoxine
Sulfamethoxy pyridazine
16
NH2 SO2 NH
O
N
CH3
NH2 SO2 NH N
O
CH3 CH3
Sulfaisoxazole (Sulfafurazole)
Sulfamethoxazole
17
NH SO2 NH
N
S
COOH
C
O
NH SO2 NH
N
S
H2C COOH
H2C CO
sulfathiazole
Succinyl Sulfathiazole
18
NH2 SO2 NH
N
Sulfapyridine
N SO2 NH
N
NOH
HOOC
Sulfasalazine
19
Timethoprim
NH2 SO2 NH CO
Sulfabenzamide
N
N
NH2 CH2
CH3
CH3
CH3NH2
20
Sulfomethizole
NH2 SO2 NH
N
S
N
CH3
NH2 SO2 NH
N
N
H3CO
Sulfalene
21GENERAL METHOD OF SYNTHESIS
Conc. H 2SO4
Conc. HNO 3
NO2 Reduction
Sn/HCl
NH2
(CH3CO) 2O
NH C CH3
O
HSO 3Cl
NH C CH3
O
SO2 Cl
NH3
NH C CH3
O
SO2 NH2
22
NH C CH3
O
SO2 NH2
N N
Cl NH2
NH C CH3
O
SO2 NH
N N
Cl
1. NaOH
2. Na/CH3OH
NH2 SO2 NH
N N
OCH 3
SYNTHESIS OF SULPHAMETHOXY PYRIDAZINE
23SYNTHESIS OF TRIMETHOPRIM
CH3
CH3
CH3
CHO
H2C CH2 O
CN
C2H5
Ethanol
CH3
CH3
CH3
CH CH
CN
CH2 O C2H5
CH3
CH3
CH3
CH2 HC
CH(OC 2H5)2
CN
NH2 C NH2
NH
.HCl
CH3OH
N
N
NH2 CH2
CH3
CH3
CH3NH2

SULPHONAMIDES

  • 1.
    SULPHONAMIDES NISHU SINGLA ASSISTANT PROFESSOR DEPT.OF PHARMACEUTICAL CHEMISTRY ISF COLLEGE OF PHARMACY WEBSITE: - WWW.ISFCP.ORG EMAIL: NISHU131989@GMAIL.COM ISF College of Pharmacy, Moga Ghal Kalan,nGT Road, Moga- 142001, Punjab, INDIA Internal Quality Assurance Cell - (IQAC)
  • 2.
    HISTORY OF DRUGDISCOVERY 2 • In 1935, Gerhard Domagk discovered the first sulphonamide--prontosil rubrum. Four years later he received the Noble Prize. • Developed mouse model of sepsis with Streptococcus hemolyticus infection • Lethal model with most mice dead in 24 hours • Tested azo-dyes directly in this model. • Others had shown some azo dyes to be active in vitro against a number of bacteria but not to have any in vivo activity N NH2N NH2 Chrysoidin N NH2N S O O NH2 NH2 Prontosil Red
  • 3.
    3DISCOVERY OF SULFONAMIDES -Prontosil“Red” - Azo-dye • Pre-treatment of bacteria before infection, no effect, but subsequent administration to mice - survival! • In vivo activity but no in vitro activity! N NH2N S O O NH2 NH2 H2N S NH2 O O Prontosil Red Sulfanilamide in vivo • Pro-drug - active in vitro after reduction • Sulfanilamide first shown active in vitro by Fourneau (1935) • Specific for streptococci not other pathogenic bacteria • Only tested in humans by necessity • Nobel Prize in 1939 to Domagk
  • 4.
    4MECHANISM OF ACTION WOODS(1940) • Followed up on observation that bacterial extracts blocked bacteriostatic effects of sulfa • Suggested that sulfanilamide was a mimic for a bacterial metabolite and that it was PABA • First example of a competitive enzyme inhibitor as a drug (inhibitor and substrate) H2N S NH2 O O Sulfanilamide H2N C O O - p-aminobenzoic acid
  • 5.
    5Sulfanilamide Mechanism N N N H N O PO P O - O O - O O - H2N OH N N N H NH2N OH H N C O O - H2 N C O O - DHFR + Dihydrofolic acid Dihydropteroate Synthetase Tetrahydro folate Purines H2N S NH2 O O PABS derivative not A substrate for DHFR PABA PABS 1 carbon transfer DNA
  • 6.
    6WHY ARE SULFADRUGS SELECTIVE ? SELECTIVE TOXICITY • Folic acid is a vitamin for humans - we don’t make it • Therefore, no dihydropteroate synthetase • Bacteria don’t have a folic uptake system since they make it • Thus, a selective anti-bacterial agent!
  • 7.
    7SULPHONAMIDE RESISTANCE ANDPRESENT USE • Sulfonamide resistance mechanisms • Increased synthesis of PABA • Mutant enzyme - binds sulfonamides less well • Decreased uptake of sulfa drugs • Synergistic therapy • Used today to treat P. Carinii pneumonia in HIV Sulfa + DHFR inhibitor H2N S NH O O N O CH3 N N OCH3 OCH3 OCH3 H2N NH2 sulfamethoxazole trimethoprim DHFR inhibitor"Septra"
  • 8.
    8 CLASSIFICATION 1. Well absorbedshort acting sulfonamide: Sulfadiazine Sulfamethimazole Sulfadimidine Sulfamethiazole Sulfafurazole (Sulfaisoxazole) Sulfosamidine 2. Well absorbed intermediate acting sulfonamide: Sulfaphenazole Sulfamethoxazole
  • 9.
    9 3. Well absorbedlong acting sulfonamide: Sulfadimethoxin Sulfamethoxin Sulfamethoxy diazine Sulfamethoxy pyridazine 4. Well absorbed ultra long acting sulfonamide: Sulfadoxine Sulphalene 5. Sulfonamide employed for ophthalmic infection Sulfacetamide Sulfafurazole
  • 10.
    10 5. Sulfonamide employedfor ophthalmic infection: Sulfacetamide Sulfafurazole 6. Sulfonamide employed for burn therapy: Mefenide Silver sulfadiazine 7. Sulfonamide employed for G.I.T. infection: Succinyl sulfathiazole Pthalyl sulfathiazole Sulfaguanidine
  • 11.
    11 8. Folate reductaseinhibitors: Trimethoprim 9. Sulfones Dapsone
  • 12.
    12 NH2 SO2 NH2 p-aminobenzene sulfonamide Sulfanilamide NH2 SO2 NH C CH3 O p-amino phenyl sulfonyl acetamide N-acetyl-sulfanilamide N-acetyl-p-aminobenzene sulfonamide
  • 13.
    13 NH2 SO2 NH N N N-pyrimidin-2-ylsulfanilamide 2-p-amino benzene sulfonamido pyrimidine NH2 SO2 N N N .Ag + -
  • 14.
    14 NH2 SO2 NH N N CH3 NH2SO2 NH N N CH3 CH3 Sulfamerazine Sulfadimidine (Sulfamethazine)
  • 15.
    15 NH2 SO2 NH NN OCH 3 NH2 SO2 NH N N OCH 3 OCH 3Sulfodimethoxine Sulfamethoxy pyridazine
  • 16.
    16 NH2 SO2 NH O N CH3 NH2SO2 NH N O CH3 CH3 Sulfaisoxazole (Sulfafurazole) Sulfamethoxazole
  • 17.
    17 NH SO2 NH N S COOH C O NHSO2 NH N S H2C COOH H2C CO sulfathiazole Succinyl Sulfathiazole
  • 18.
    18 NH2 SO2 NH N Sulfapyridine NSO2 NH N NOH HOOC Sulfasalazine
  • 19.
    19 Timethoprim NH2 SO2 NHCO Sulfabenzamide N N NH2 CH2 CH3 CH3 CH3NH2
  • 20.
  • 21.
    21GENERAL METHOD OFSYNTHESIS Conc. H 2SO4 Conc. HNO 3 NO2 Reduction Sn/HCl NH2 (CH3CO) 2O NH C CH3 O HSO 3Cl NH C CH3 O SO2 Cl NH3 NH C CH3 O SO2 NH2
  • 22.
    22 NH C CH3 O SO2NH2 N N Cl NH2 NH C CH3 O SO2 NH N N Cl 1. NaOH 2. Na/CH3OH NH2 SO2 NH N N OCH 3 SYNTHESIS OF SULPHAMETHOXY PYRIDAZINE
  • 23.
    23SYNTHESIS OF TRIMETHOPRIM CH3 CH3 CH3 CHO H2CCH2 O CN C2H5 Ethanol CH3 CH3 CH3 CH CH CN CH2 O C2H5 CH3 CH3 CH3 CH2 HC CH(OC 2H5)2 CN NH2 C NH2 NH .HCl CH3OH N N NH2 CH2 CH3 CH3 CH3NH2