Lipophilicity in the context of Molecular Design
Peter W Kenny (pwk.pub.2008@gmail.com)
Some things that are hurting Pharma
• Having to exploit targets that are less well-linked to
human disease
• Inability to predict idiosyncratic toxicity
• Inability to measure free (unbound) physiological
concentrations of drug for remote targets (e.g.
intracellular or within blood brain barrier)
Dans la merde: http://fbdd-lit.blogspot.com/2011/09/dans-la-merde.html
Molecular Interactions and Drug Action
Cartoon representation of hydrophobic effect
Polar Surface
Binding Pocket
Cartoon representation of hydrophobic forces
Hydrogen
Bonding
Interactions between drug
molecules in crystal lattice
(Solubility, melting point
polymorphism, crystallinity)
Interactions between drug and
water molecules
(Solubility, distribution,
permeability, potency, toxicity,
efflux, metabolism)
Interactions between drug
molecules & (anti)target(s)
(Potency, toxicity, efflux ,
metabolism, distribution)
Hydrogen Bonding in Drug Discovery & Development
Interactions between water
molecules
(Hydrophobic effect)
bond basicity
 Plot of V/kJmol-1
against r/Å for pyridine on lone pair axis
showing electrostatic potential minimum 1.2Å from nitrogen
-300
-200
-100
0
V
0 1 2 3 4 5
r
Electrostatic potential as function of position for acceptor
V/kJmol-1
r/Å
Comparison of Vmin and pKa as predictors of logKb
logKb
Vmin/(Hartree/electron) pKa
Heteroaromatic nitrogen in five and six-membered rings
Kenny JCS Perkin Trans 2 1994, 199-202
1.01 1.16 0.94 0.40 0.06
2.63 1.53 2.50 1.89 1.82
2.39
Predicted logKb 2.64 1.68 2.51 1.90 2.50
Measured logKb 2.38 1.98 2.36 2.17 1.99
Non-equivalent acceptors provide
validation set
Kenny JCS Perkin Trans 2 1994, 199-202
Fluorine: A weak hydrogen bond acceptor
-0.122 -0.113 -0.071
-0.038
-0.054
-0.086
-0.091
-0.072
-0.104 -0.093
Hydrogen bonding of esters
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
r
Donors: The Va(r) descriptor
Calculate electrostatic
potential (V) at this point
Va(r) as predictor of logKa
Sensitivity to distance from donor hydrogen
Va/(Hartree/electron) Va/(Hartree/electron)
logKa
logKa
r = 0.55 Å r = 1.20 Å
R2 = 0.65
RMSE = 0.43
R2 = 0.93
RMSE = 0.20
Kenny, JCIM, 2009, 49, 1234-1244
Effect of complex formation on Vmin
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
-0.092 -0.103 -0.125 -0.097
-0.078
-0.092 -0.114
-0.113
-0.115 -0.127
H
O
H H
O
H H
O
H
H
O
H
N
H
O
Effect of complex formation on predicted logKa
1.2
(~ Alcohol)
2.0
(~ Phenol)
2.8
(~ 4-CF3Phenol)
Kenny, JCIM, 2009, 49, 1234-1244
Octanol was the first mistake...
Lipophilic & half ionised Hydrophilic
Introduction to partition coefficients
Polarity
N
ClogP ≤ 5 Acc ≤10; Don ≤5
An alternative view of the Rule of 5
Does octanol/water ‘see’ hydrogen bond donors?
--0.06 -0.23 -0.24
--1.01 -0.66
Sangster lab database of octanol/water partition coefficients: http://logkow.cisti.nrc.ca/logkow/index.jsp
--1.05
Octanol/Water Alkane/Water
Octanol/water is not the only partitioning system
logPoct = 2.1
logPalk = 1.9
DlogP = 0.2
logPoct = 1.5
logPalk = -0.8
DlogP = 2.3
logPoct = 2.5
logPalk = -1.8
DlogP = 4.3
Differences in octanol/water and alkane/water logP values
reflect hydrogen bonding between solute and octanol
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
1.0 1.1 0.8 1.3 1.7
0.8 1.5
Measured values of DlogP
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
1.6 1.1
DlogP
(corrected)
Vmin/(Hartree/electron)
DlogP
(corrected)
Vmin/(Hartree/electron)
N or ether O
Carbonyl O
logPalk as perturbation of logPoct
Prediction of contribution of acceptors to DlogP
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
DlogP = DlogP0 x exp(-kVmin)
logPoct = 0.89
predicted logPalk = -4.2
PSA/Å2 = 53
logPoct = 1.58
predicted logPalk = -1.4
PSA/Å2 = 65
Lipophilicity/polarity of Morphine & Heroin
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
logPhxdlogPoct
log(Cbrain/Cblood)
DlogP
Prediction of blood/brain partitioning
R2 = 0.66
RMSE = 0.54
R2 = 0.82
RMSE = 0.39
R2 = 0.88
RMSE = 0.32
Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
logPalk as perturbation of value for saturated hydrocarbon
MSA/Å2
Alkanes
Alkanols
Summary
• Lipophilicity is relevant to both permeability and affinity
• Octanol/water is not the only partitioning system and
alkane/water may be more relevant in Drug Discovery
• Hydrogen bonding is an important determinant of lipophilicity
• Hydrogen bonding is essentially electrostatic in nature and
molecular electrostatic potential is a useful predictor of hydrogen
bond acidity & basicity
Measuring hydrogen bond strength
Acceptors
Donors
pKHB logKb
logKa
(CH3CCl3)(CCl4)
Taft et al , JACS 1969, 91, 4801-4808
Laurence & Berthelot, Perspect. Drug. Discov. Des.
2000, 18, 39-60.
Abraham et al, JCS Perkin Trans 2 1989, 1355-1375
(CH3CCl3)
Abraham et al, JCS Perkin Trans 2 1989, 1355-1375
logKb: Heteroaromatic nitrogen
Azines
pKa 5.22 9.70 2.24 1.23 0.65
logKb 2.52 3.54 2.53 1.67 1.46
Azoles
pKa 7.25 2.09 0.80 -2.03
logKb 3.68 2.22 1.67 1.06
Abraham et al, JCS Perkin Trans 2 1989, 1355-1375

Lipophilicity in the context of molecular design

  • 1.
    Lipophilicity in thecontext of Molecular Design Peter W Kenny (pwk.pub.2008@gmail.com)
  • 2.
    Some things thatare hurting Pharma • Having to exploit targets that are less well-linked to human disease • Inability to predict idiosyncratic toxicity • Inability to measure free (unbound) physiological concentrations of drug for remote targets (e.g. intracellular or within blood brain barrier) Dans la merde: http://fbdd-lit.blogspot.com/2011/09/dans-la-merde.html
  • 3.
  • 4.
    Cartoon representation ofhydrophobic effect Polar Surface Binding Pocket
  • 5.
    Cartoon representation ofhydrophobic forces
  • 6.
    Hydrogen Bonding Interactions between drug moleculesin crystal lattice (Solubility, melting point polymorphism, crystallinity) Interactions between drug and water molecules (Solubility, distribution, permeability, potency, toxicity, efflux, metabolism) Interactions between drug molecules & (anti)target(s) (Potency, toxicity, efflux , metabolism, distribution) Hydrogen Bonding in Drug Discovery & Development Interactions between water molecules (Hydrophobic effect)
  • 7.
    bond basicity  Plotof V/kJmol-1 against r/Å for pyridine on lone pair axis showing electrostatic potential minimum 1.2Å from nitrogen -300 -200 -100 0 V 0 1 2 3 4 5 r Electrostatic potential as function of position for acceptor V/kJmol-1 r/Å
  • 8.
    Comparison of Vminand pKa as predictors of logKb logKb Vmin/(Hartree/electron) pKa Heteroaromatic nitrogen in five and six-membered rings Kenny JCS Perkin Trans 2 1994, 199-202
  • 9.
    1.01 1.16 0.940.40 0.06 2.63 1.53 2.50 1.89 1.82 2.39 Predicted logKb 2.64 1.68 2.51 1.90 2.50 Measured logKb 2.38 1.98 2.36 2.17 1.99 Non-equivalent acceptors provide validation set Kenny JCS Perkin Trans 2 1994, 199-202
  • 10.
    Fluorine: A weakhydrogen bond acceptor -0.122 -0.113 -0.071 -0.038
  • 11.
    -0.054 -0.086 -0.091 -0.072 -0.104 -0.093 Hydrogen bondingof esters Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
  • 12.
    r Donors: The Va(r)descriptor Calculate electrostatic potential (V) at this point
  • 13.
    Va(r) as predictorof logKa Sensitivity to distance from donor hydrogen Va/(Hartree/electron) Va/(Hartree/electron) logKa logKa r = 0.55 Å r = 1.20 Å R2 = 0.65 RMSE = 0.43 R2 = 0.93 RMSE = 0.20 Kenny, JCIM, 2009, 49, 1234-1244
  • 14.
    Effect of complexformation on Vmin Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730 -0.092 -0.103 -0.125 -0.097 -0.078 -0.092 -0.114 -0.113 -0.115 -0.127
  • 15.
    H O H H O H H O H H O H N H O Effectof complex formation on predicted logKa 1.2 (~ Alcohol) 2.0 (~ Phenol) 2.8 (~ 4-CF3Phenol) Kenny, JCIM, 2009, 49, 1234-1244
  • 16.
    Octanol was thefirst mistake...
  • 17.
    Lipophilic & halfionised Hydrophilic Introduction to partition coefficients
  • 18.
    Polarity N ClogP ≤ 5Acc ≤10; Don ≤5 An alternative view of the Rule of 5
  • 19.
    Does octanol/water ‘see’hydrogen bond donors? --0.06 -0.23 -0.24 --1.01 -0.66 Sangster lab database of octanol/water partition coefficients: http://logkow.cisti.nrc.ca/logkow/index.jsp --1.05
  • 20.
    Octanol/Water Alkane/Water Octanol/water isnot the only partitioning system
  • 21.
    logPoct = 2.1 logPalk= 1.9 DlogP = 0.2 logPoct = 1.5 logPalk = -0.8 DlogP = 2.3 logPoct = 2.5 logPalk = -1.8 DlogP = 4.3 Differences in octanol/water and alkane/water logP values reflect hydrogen bonding between solute and octanol Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
  • 22.
    1.0 1.1 0.81.3 1.7 0.8 1.5 Measured values of DlogP Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730 1.6 1.1
  • 23.
    DlogP (corrected) Vmin/(Hartree/electron) DlogP (corrected) Vmin/(Hartree/electron) N or etherO Carbonyl O logPalk as perturbation of logPoct Prediction of contribution of acceptors to DlogP Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730 DlogP = DlogP0 x exp(-kVmin)
  • 24.
    logPoct = 0.89 predictedlogPalk = -4.2 PSA/Å2 = 53 logPoct = 1.58 predicted logPalk = -1.4 PSA/Å2 = 65 Lipophilicity/polarity of Morphine & Heroin Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
  • 25.
    logPhxdlogPoct log(Cbrain/Cblood) DlogP Prediction of blood/brainpartitioning R2 = 0.66 RMSE = 0.54 R2 = 0.82 RMSE = 0.39 R2 = 0.88 RMSE = 0.32 Toulmin et al, J. Med. Chem. 2008, 51, 3720-3730
  • 26.
    logPalk as perturbationof value for saturated hydrocarbon MSA/Å2 Alkanes Alkanols
  • 27.
    Summary • Lipophilicity isrelevant to both permeability and affinity • Octanol/water is not the only partitioning system and alkane/water may be more relevant in Drug Discovery • Hydrogen bonding is an important determinant of lipophilicity • Hydrogen bonding is essentially electrostatic in nature and molecular electrostatic potential is a useful predictor of hydrogen bond acidity & basicity
  • 28.
    Measuring hydrogen bondstrength Acceptors Donors pKHB logKb logKa (CH3CCl3)(CCl4) Taft et al , JACS 1969, 91, 4801-4808 Laurence & Berthelot, Perspect. Drug. Discov. Des. 2000, 18, 39-60. Abraham et al, JCS Perkin Trans 2 1989, 1355-1375 (CH3CCl3) Abraham et al, JCS Perkin Trans 2 1989, 1355-1375
  • 29.
    logKb: Heteroaromatic nitrogen Azines pKa5.22 9.70 2.24 1.23 0.65 logKb 2.52 3.54 2.53 1.67 1.46 Azoles pKa 7.25 2.09 0.80 -2.03 logKb 3.68 2.22 1.67 1.06 Abraham et al, JCS Perkin Trans 2 1989, 1355-1375