SlideShare a Scribd company logo
A
Seminar Report on
“Spintronics”
submitted for partial fulfilment of award of
BACHELORS OF TECHNOLOGY
degree
in
Electronics and Communication Engineering
by
Shishu Pal
(Roll No.1213331191)
Submitted to
Ms. Kanika Jindal (AP, ECE Deptt.)
Ms. Gitanjali Anand (AP, ECE Deptt.)
Mr.Devendra Pratap(AP, ECE Deptt.)
NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY
GREATER NOIDA
March, 2015
DECLARATION
I hereby declare that the seminar report which is being presented in the entitled “Spintronics,”
in partial fulfillment of the requirements for the award of degree of Bachelors of Technology in
Electronics and Communication Engineering in the Department of Electronics and
Communication Engineering from Noida Institute of Engineering and Technology, Greater
Noida, is an authentic record of my own carried out under the supervision of Mr. Devendra
Pratap Singh and Ms. Kanika Jindal, Assistant Professor, Department of ECE.
Date:17/03/2015 SHISHU PAL
Roll. No. 1213331191
CERTIFICATE
Certified that seminar work entitled “Spintronics ” is a bonafide work carried out in the sixth
semester by “Shishu Pal” in partial fulfilment for the award of Bachelor of Technology in
Electronics and Communication Engineering from Uttar Pradesh Technical University during
the academic year 2013-2014 who carried out the seminar work.
Date: 17/03/2015 Ms.Kanika Jindal
Ms. Gitanjali Anand
Mr. Devendra Pratap Singh
ACKNOWLEDGEMENT
It gives me great pleasure to present my seminar report on “Spintronics”. No work , however
big or small, has ever been done without the contributions of others.
It would be a great pleasure to write a few words, which would although not suffice as the
acknowledgement of this long cherished effort, but in the absence of which this report would
necessarily be incomplete. So these words of acknowledgement come as a small gesture of
gratitude towards all those people, without whom the successful completion of this project would
not have been possible.
I would like to express deep gratitude towards Ms. Gitanjali Anand (Associate Professor of
ECE Dept.) & Ms. Kanika Jindal (Associate Professor of ECE Dept.) who gave me their
valuable suggestions, motivation and the direction to proceed at every stage. They are like a
beam of light for us. Their kind guidance showed us the path of life and is unforgettable. They
extended towards their valuable guidance, indispensable help and inspiration at times in
appreciation I offer them my sincere gratitude.
Last but not least we would like to thank the Department of Electronics and communication
Engineering, NIET, Gr. Noida for providing me with the facilities to lab, and all staff members
of ECE Dept., it would have been impossible for me to complete my project without their
valuable guidance & prompt cooperation.
I have tried my level best to make this seminar report error free ,but I regret for errors, if any.
ABSTRACT
Spintronics is an emergent technology that exploits the quantum propensity of the electrons to
spin as well as making use of their charge state. The spin itself is manifested as a detectable
weak magnetic energy state characterised as ―spin up‖ or ―spin down‖.
Conventional electronic devices rely on the transport of electrical charge carriers – electrons – in
a semiconductor such as silicon. Now, however, device engineers and physicists are inevitably
faced the looming presence of quantum mechanics and are trying to exploit the spin of the
electron rather than its charge. Devices that rely on the electron‘s spin to perform their functions
form the foundations of spintronics (short for spin-based electronics), also known as magneto
electronics. Spintronics devices are smaller than 100 nanometre in size, more versatile and more
robust than those making up silicon chips and circuit elements. The potential market is worth
hundreds of billions of dollar a year.
Spintronics burst on the scene in 1988 when French and German physicists discovered a very
powerful effect called Giant Magneto resistance (GMR). It results from subtle electron-spin
effects in ultra thin multilayer of magnetic materials, which cause huge changes in their electrical
resistance when a magnetic field is applied. This resulted in the first spintronics device in the
form of the spin valve. The incorporation of GMR materials into read heads allowed the storage
capacity of a hard disk to increase from one to 20 gigabits. In 1997, IBM launched GMR read
heads, into a market worth around a billion dollars a year.
The field of spintronics is relatively young and it is difficult to predict how it will evolve. New
physics is still being discovered and new materials being developed, such as magnetic
semiconductors and exotic oxides that manifest an even more extreme effect called Colossal
Magneto resistance.
TABLE OF CONTENTS
CHAPTER NO. TITLE PAGE NO.
DECLARATION ii
CERTIFICATE iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
TABLE OF CONTENTS vi
LIST OF FIGURES vii
1. INTRODUCTION 01
2. MOTIVATION 02
3. TECHNOLOGY DESCRIPTION 03
3.1Gaint Magneto resistance 04
3.2 Construction of GMR 05
3.3 Spin Valve GMR 07
3.4 Memory Chips 08
3.5 GMR Sensor 09
3.6 Spintronics Devices 09
 MRAM 10
 Spin Transistors 11
 Quantum Computer 14
 Spintronics Scanner 16
3.7 Advantages / Disadvantages 19
3.8 Real Time Applications 20
4. CONCLUTION AND FUTURE SCOPE 22
5. Reference 25
LIST OF FIGURES
S.NO. TITLE PAGE NO.
1. Electron spinning 02
2. Magnetic Orientation of electrons 03
.
3. A GMR Device 04
4. Construction of GMR 06
5. GMR based Spin Valves for read head In hard drives 07
6. GMR Sensor 09
7. MRAM 11
8. Spin based transistor 12
9. Spin polarized field effect Transistor 12
INTRODUCTION
Conventional electronic devices rely on the transport of electrical charge carriers –electrons in a
semiconductor such as silicon. Now, however, physicists are trying to exploit the ‗spin‘ of the
electron rather than its charge to create a remarkable new generation of spintronics‘ devices
which will be smaller, more versatile and more robust than those currently making up silicon
chips and circuit elements.
Imagine a data storage device of the size of an atom working at a speed of light. Imagine a
computer memory thousands of times denser and faster than today‘s memories and also imagine
a scanner technique which can detect cancer cells even though they are less in number. The
above-mentioned things can be made possible with the help of an exploding science –
―Spintronics‖.
Spintronics is a technology which deals with spin dependent properties of an electron instead of
or in addition to its charge dependent properties. Conventional electronics devices rely on the
transport of electric charge carries-electrons. But there is other dimensions of an electron other
than its charge and mass i.e. spin. This dimension can be exploited to create a remarkable
generation of spintronics devices. It is believed that in the near future spintronics could be more
revolutionary than any other technology.
As there is rapid progress in the miniaturization of semiconductor electronic devices leads to a
chip features smaller than 100 nanometers in size, device engineers and physicists are inevitable
faced with a looming presence of a quantum property of an electron known as spin, which is
closely related to magnetism. Devices that rely on an electron spin to perform their functions
form the foundations of spintronics.
Information-processing technology has thus far relied on purely charge based devices ranging
from the now quantum, vacuum tube today‘s million transistor microchips. Those conventional
electronic devices move electronic charges around, ignoring the spin that tags along that side on
each electron.
MOTIVATION
The basic principle involved is the usage of spin of the electron in addition to mass and charge of
electron. Electrons like all fundamental particles have a property called spin which can be
orientated in one direction or the other – called ‗spin-up‘ or ‗spin-down‘ –like a top spinning
anticlockwise or clockwise. Spin is the root cause of magnetism and is a kind of intrinsic angular
momentum that a particle cannot gain or lose. The two possible spin states naturally represent
‘0‘and ‘1‘in logical operations. Spin is the characteristics that makes the electron a tiny magnet
complete with north and south poles .The orientation of the tiny magnet ‘s north-south poles
depends on the particle‘s axis of spin.
Fundamentals of spin:
1.In addition to their mass, electrons have an intrinsic quantity of angular momentum called spin,
almost of if they were tiny spinning balls.
2.Associated with the spin is magnetic field like that of a tiny bar magnet lined up with the spin
axis.
Fig.1. Electron spinning
2. Scientists represent the spin with a vector. For a sphere spinning ―west to east‖, the vector
points ― north‖ or ―up‖. It points ―south‖ or ―down‖ for the spin from ―east to west‖.
4. In a magnetic field, electrons with ―spin up‖ and ―spin down‖ have different energies.
5. In an ordinary electronic circuit the spins are oriented at random and have no effect on current
flow.
6. Spintronics devices create spin-polarized currents and use the spin to control current flow.
TECHNOLOGY DESCRIPTION
The use of the spintronics requires that the materials used to fabricate the spin devices should
possess the following requirements to be satisfied by the material:
 Efficient electrical injection of spin – polarized carriers.
 Efficient transmission during transport of carriers through semiconductor.
 Capability to detect or collect spin – polarized current.
SPIN MATERIALS:-
The basic materials used in spin devices for manipulation of spin of electrons are the
ferromagnetic which have the capability to change the spin polarization on application of
magnetic fields.The spin materials can be classified into two groups:
 Ferromagnetic Semiconductors
 Half-Magnetic ferromagnets
Ferromagnetic Semiconductors
These are the materials with complete control over the spin electron. The main advantages of
these types of materials are:
 Combined semiconducting and magnetic properties for multiple functionalities
 Easy growth of ferromagnetic-semiconductor nanostructures.
 Easy spin injection
Half-Magnetic ferromagnets
As name suggests the half – magnetic ferromagnets doesn’t have full control over spin of the
electrons. The spin materials can be obtained as: - Substitution of V, Cr and Mn into GaAs,
InAs,GaSb,GaP and InP.
Fig 2. Magnetic Orientation of electrons
Giant Magneto Resistance
Electrons like all fundamental particles have a property called spin which can be orientated in
one direction or the other – called „spin-up‟ or „spin-down‟ – like a top spinning anticlockwise
or clockwise. When electron spins are aligned (i.e. all spin-up or all spin-down) they create a
large-scale net magnetic moment as seen in magnetic materials like iron and cobalt. Magnetism
is an intrinsic physical property associated with the spins of electrons in a material.
Magnetism is already exploited in recording devices such as computer hard disks Data are
recorded and stored as tiny areas of magnetised iron or chromium oxide. To access the
information, a read head detects the minute changes in magnetic field as the disk spins
underneath it. This induces corresponding changes in the head‟s electrical resistance – an effect
called magneto resistance.
Spintronics burst on the scene in 1988 when French and German physicists discovered a much
more powerful effect called „giant magneto resistance‟ (GMR). It results from subtle electron-
spin effects in ultra-thin „multilayer’s‟ of magnetic materials, which cause huge changes in their
electrical resistance when a magnetic field is applied. GMR is 200 times stronger than ordinary
magneto resistance. IBM soon realised that read heads incorporating GMR materials would be
able to sense much smaller magnetic fields, allowing the storage capacity of a hard disk to
increase from 1 to 20 gigabits. In 1997 IBM launched GMR read heads, into a market worth
about a billion dollars a year.
The basic GMR device consists of a three-layer sandwich of a magnetic metal such as cobalt
with a nonmagnetic metal filling such as silver (see diagram).
Fig 3. A GMR Device
A current passes through the layers consisting of spin-up and spin-down electrons. Those
oriented in the same direction as the electron spins in a magnetic layer pass through quite easily
while those oriented in the opposite direction are scattered.
If orientation of one of the magnetic layers can easily be changed by the presence of a magnetic
field then the device will act as a filter, or „spin valve‟, letting through more electrons when the
spin orientations in the two layers are the same and fewer when orientations are oppositely
aligned. The electrical resistance of the device can therefore be changed dramatically.
The magneto resistant devices can sense the changes in the magnetic field only to a small extent,
which is appropriate to the existing memory devices. When we reduce the size and increase data
storage density, we reduce the bits, so our sensor also has to be small and maintain very, very
high sensitivity. The thought gave rise to the powerful effect called ―Giant Magneto resistance
(GMR).GMR is a quantum mechanical magneto resistance effect observed in thin film structures
composed of alternating ferromagnetic and non magnetic layers. The 2007 Nobel Prize in
physics was awarded to Albert Fret and Peter Gruenberg for the discovery of GMR.
Giant magneto resistance (GMR) came into picture in 1988, which lead the rise of spintronics. It
results from subtle electron-spin effects in ultra-thin ‗multilayer‘ of magnetic materials, which
cause huge changes in their electrical resistance when a magnetic field is applied. GMR is 200
times stronger than ordinary magneto resistance. It was soon realized that read heads
incorporating GMR materials would be able to sense much smaller magnetic fields, allowing the
storage capacity of a hard disk to increase from 1 to 20 gigabits.
Construction of GMR
The basic GMR device consists of a three-layer sandwich of a magnetic metal such as cobalt
with a nonmagnetic metal filling such as silver. Current passes through the layers consisting of
spin-up and spin-down electrons. Those oriented in the same direction as the electron spins in a
magnetic layer pass through quite easily while those oriented in the opposite direction are
scattered. If the orientation of one of the magnetic layers can easily be changed by the presence
of a magnetic field then the device will act as a filter, or ‗spin valve‘, letting through more
electrons when the spin orientations in the two layers are the same and fewer when orientations
are oppositely aligned. The electrical resistance of the device can therefore be changed
dramatically. In an ordinary electric current, the spin points at random and plays no role in
determining the resistance of a wire or the amplification of a transistor circuit. Spintronics
devices in contrast, rely on differences in the transport of ―spin up‖ and ―spin down‖ electrons.
Figure 4: Construction of GMR
A ferromagnet can even affect the flow of a current in a nearby nonmagnetic metal. For example,
in the present-day read heads in computer hard drives, wherein a layer of a nonmagnetic metal is
sandwiched between two ferromagnetic metallic layers, the magnetization of the first layer is
fixed, or pinned, but the second ferromagnetic layer is not. As the read head travels along a track
of data on a computer disk, the small magnetic fields of the recorded 1‘s and 0`s change the
second layer‘s magnetization back and forth parallel or antiparallel to the magnetization of the
pinned layer. In the parallel case, only electrons that are oriented in the favored direction flow
through the conductor easily. In the antiparallel case, all electrons are impeded. The resulting
changes in the current allow GMR read heads to detect weaker fields than their predecessors; so
that data can be stored using more tightly packaged magnetized spots on a disk.
GMR has triggered the rise of a new field of electronics called spintronics which has been used
extensively in the read heads of modern hard drives and magnetic sensors. A hard disk storing
binary information can use the difference in resistance between parallel and antiparallel layer
alignments as a method of storing 1s and 0s.
A high GMR is preferred for optimal data storage density. Current perpendicular-to-plane (CPP)
Spin valve GMR currently yields the highest GMR. Research continues with older current-in-
plane configuration and in the tunnelling magnetoresistance (TMR) spin valves which enable
disk drive densities exceeding 1 Terabyte per squar inch.
Hard disk drive manufacturers have investigated magnetic sensors based on the colossal magneto
resistance effect (CMR) and the giant planar Hall effect. In the lab, such sensors have
demonstrated sensitivity which is orders of magnitude stronger than GMR. In principle, this
could lead to orders of magnitude improvement in hard drive data density.
As of 2003, only GMR has been exploited in commercial disk read-and-write heads because
researchers have not demonstrated the CMR or giant planar hall effects at temperatures above
150K.
Magneto coupler is a device that uses giant magneto resistance (GMR) to couple two electrical
circuits galvanic isolated and works from AC down to DC.
Vibration measurement in MEMS systems.
Detecting DNA or protein binding to capture molecules in a surface layer by measuring the stray
field from super paramagnetic label particles.
Spin Valve GMR
If the orientation of one of the magnetic layers can easily be changed by the presence of a
magnetic field then the device will act as a filter, or ‗spin valve‘, letting through more electrons
when the spin orientations in the two layers are the same and fewer when orientations are
oppositely aligned. The electrical resistance of the device can therefore be changed dramatically.
Fig 5. Standard geometry for GMR based Spin Valve
An electron passing through the spin-valve will be scattered more if the spin of the electrons
opposite to the direction of the magnetisation in the Field.
Memory Chips
Physicists have been quick to see the further possibilities of spin valves. Not only are they highly
sensitive magnetic sensors , they can also be made to act as switches by flipping the
magnetisation in one of the layers. This allows information to be stored as 0s and 1s
(magnetisations of the layers parallel or antiparallel) as in a conventional transistor memory
device. An obvious application is a magnetic version of a random access memory (RAM) device
of the kind used in your computer. The advantage of magnetic random access memory (MRAM)
is that it is „non-volatile‟ – information isn‟t lost when the system is switched off. MRAM
devices would be smaller, faster, cheaper, use less power and would be much more robust in
extreme conditions such as high temperature, or highlevel radiation or interference. The US
electronics company Honeywell has already shown that arrays of linked MRAMS could be made
to work. The potential market for MRAMS is worth 100 billion dollars annually.
Over the past three years or so, researchers around the world have been working hard on a whole
range of MRAM devices. A particularly promising device is the magnetic tunnel junction, which
has two magnetic layers separated by an insulating metal-oxide layer. Electrons can tunnel
through from one layer to the other only when magnetisations of the layers point in the same
direction, otherwise the resistance is high – in fact, 1000 times higher than in the standard spin
valve.
Even more interesting are devices that combine the magnetic layers with semiconductors like
silicon. The advantage is that silicon is still the favourite material of the electronics industry and
likely to remain so. Such hybrid devices could be made to behave more like conventional
transistors. They could be used as non-volatile logic elements which could be reprogrammed
using software during actual processing to create an entirely new type of very fast computing.
The field of spintronics is extremely young and it’s difficult to predict how it will evolve. New
physics is still being discovered and new materials being developed, such as magnetic
semiconductors, and exotic oxides that manifest an even more extreme effect called colossal
magneto resistance. What is certain is that the time-span from a breakthrough in fundamental
physics to first commercial exploitation has been less than 10 years. The business opportunities
for spintronics are still wide open. European research collaborations, some involving the Us,
have a strong lead in developing the underlying physics and technology for this lucrative
fledgling industry.
GMR SENSORS
GMR sensors are already being developed in UK universities. They have a wide range of
applications and the market is worth 8 billion dollars a year. Applications include:
• Fast accurate position and motion sensing of mechanical components in precision engineering
and in robotics
• All kinds of automotive sensors for fuel handling systems, electronic engine control, antiskid
systems, speed control and navigation
• Missile guidance
• Position and motion sensing in computer video games
• Key-hole surgery and post-operative care
Figure 6: GMR Sensor
The magnetic property of a battery changes with SoC. A Sensor reads the change when exposed
to a magnetic field.
SPINTRONICS DEVICES
Spintronic devices are those devices which use the Spintronics technology. Spintronics-devices
combine the advantages of magnetic materials and semiconductors. They are expected to be non-
volatile, versatile, fast and capable of simultaneous data storage and processing, while at the
same time consuming less energy. Spintronics-devices are playing an increasingly significant
role in high-density data storage, microelectronics, sensors, quantum computing and bio-medical
applications, etc.
Electronic Devices v/s Spintronics Devices
Electronic Devices Spintronics devices
1. Based on properties of charge of the 1. Based on intrinsic property spin of electron.
electron
2. Classical property 2. Quantum property
4. Materials: conductors and semiconductors 4. Materials: ferromagnetic materials
5. Based on the number of charges and their 5. Two basic spin states; spin-up and spin-
energy down.
6. Speed is limited and power dissipation is 6. Based on direction of spin and spin and spin
high. coupling, high speed.
Some of the Spintronic devices are:
 Magnetoresistive Random Access Memory(MRAM)
 Spin Transistor
 Quantum Computer
 Spintronic Scanner
MRAM (Magneto resistive Random Access Memory)
An important spintronics device, which is supposed to be one of the first spintronics devices that
have been invented, is MRAM.
Unlike conventional random-access, MRAMs do not lose stored information once the power is
turned off...A MRAM computer uses power, the four page e mail will be right there for you.
Today pc use SRAM and DRAM both known as volatile memory. They can store information
only if we have power. DRAM is a series of capacitors, a charged capacitor represents 1 where
as an uncharged capacitor represents 0. To retain 1 you must constantly feed the capacitor with
power because the charge you put into the capacitor is constantly leaking out.
Fig 8. 256 K MRAM
MRAM is based on integration of magnetic tunnel junction (MJT). Magnetic tunnel junction is a
three-layered device having a thin insulating layer between two metallic ferromagnets. Current
flows through the device by the process of quantum tunneling; a small number of electrons
manage to jump through the barrier even though they are forbidden to be in the insulator. The
tunneling current is obstructed when the two ferromagnetic layers have opposite orientations and
is allowed when their orientations are the same.
MRAM stores bits as magnetic polarities rather than electric charges. When a big polarity points
in one direction it holds1, when its polarity points in other direction it holds 0. These bits need
electricity to change the direction but not to maintain them. MRAM is non volatile so, when you
turn your computer off all the bits retain their 1`s and 0`s.
SPIN TRANSISTORS
Traditional transistors use on-and-off charge currents to create bits- the binary zeroes and ones of
computer information. “Quantum spin field effect” transistor will use up-and-down spin states to
generate the same binary data. One can think of electron spin as an arrow; it can point upward or
downward; “spinup and spin-down can be thought of as a digital system, representing the binary
0 and 1. The quantum transistor employs also called “spin-flip” mechanism to flip an up-spin to
a downspin, or change the binary state from 0 to 1.
One proposed design of a spin FET (spintronic field-effect transistor) has a source and a drain,
separated by a narrow semi conducting channel, the same as in a conventional FET. In the spin
FET, both the source and the drain are ferromagnetic. The source sends spin-polarized electrons
in to the channel, and this spin current flow easily if it reaches the drain unaltered (top).
Fig 9: Spin Based Transistor
A voltage applied to the gate electrode produces an electric field in the channel, which causes the
spins of fastmoving electrons to process, or rotate (bottom). The drain impedes the spin
currentaccording to how far the spins have been rotated. Flipping spins in this way takes much
less energy and is much faster than the conventional FET process of pushing charges out of the
channel with a larger electric filed.
In these devices a non magnetic layer which is used for transmitting and controlling the spin
polarized electrons from source to drain plays a crucial role. For functioning of this device first
the spins have to be injected from source into this non-magnetic layer and then transmitted to the
collector. These non-magnetic layers are also called as semimetals, because they have very larger
spin diffusion lengths.The injected spins which are transmitted through this layer start processing
as illustrated in Figure before they reach the collector due to the spin-orbit coupling effect.
Fig.10 Spin polarized field effect transistor
Vg is the gate voltage. When Vg is zero the injected spins which are transmitted through the
2DEG layer starts processing before they reach the collector, thereby reducing the net spin
polarization. Vg is the gate voltage. When Vg >> 0 the precession of the electrons is controlled
with electric filed thereby allowing the spins to reach at the collector with the same polarization.
Hence the net spin polarization is reduced
Traditional transistors use on-and-off charge currents to create bits—the binary zeroes and ones
of computer information. ―Quantum spin field effect‖ transistor will use up-and-down spin
states to generate the same binary data. One can think of electron spin as an arrow; it can point
upward or downward; ―spin-up and spin-down can be thought of as a digital system,
representing the binary 0 and 1. The quantum transistor employs also called ―spin-flip‖
mechanism to flip an up- spin to a downspin, or change the binary state from 0 to 1.
One proposed design of a spin FET (spintronic field-effect transistor) has a source and a drain,
separated by a narrow semi conducting channel, the same as in a conventional FET.
In the spin FET, both the source and the drain are ferromagnetic. The source sends spin-
polarized electrons in to the channel, and this spin current flow easily if it reaches the drain
unaltered (top). A voltage applied to the gate electrode produces an electric field in the channel,
which causes the spins of fast-moving electrons to process, or rotate (bottom). The drain impedes
the spin current according to how far the spins have been rotated. Flipping spins in this way
takes much less energy and is much faster than the conventional FET process of pushing charges
out of the channel with a larger electric filed.
One advantage over regular transistors is that these spin states can be detected and altered
without necessarily requiring the application of an electric current. This allows for detection
hardware that are much smaller but even more sensitive than today's devices, which rely on
noisy amplifiers to detect the minute charges used on today's data storage devices. The potential
end result is devices that can store more data in less space and consume less power, using less
costly materials. The increased sensitivity of spin transistors is also being researched in creating
more sensitive automotive sensors, a move being encouraged by a push for more
environmentally-friendly vehicles.
A second advantage of a spin transistor is that the spin of an electron is semi-permanent and can
be used as means of creating cost-effective non volatile solid state storage that does not require
the constant application of current to sustain. It is one of the technologies being explored for
Magnetic Random Access Memory (MRAM)
Spin transistors are often used in computers for data processing. They can also be used to
produce a computer's random access memory and are being tested for use in magnetic RAM.
This memory is superfast and information stored on it is held in place after the computer is
powered off, much like a hard disk.
Quantum Computer
The development of classical computers is still making enormous progress and no end of that
seems to be in sight. More over, the design of Quantum Computers seems to be very
questionable and almost surely enormously expensive. All this is true, However, there are four
very good reason for exploring Quantum Computing as much as possible.
 Quantum computing is a challenge . A very fundamental and natural challenge According to
our current knowledge, our physical world is fundamentally quantum mechanical. All
computers are physical devices and all real computations are physical processes.
 Quantum computing seems to be very must and actually our destiny. As miniaturization of
computing devices continues , we are rapidly approaching the microscopic level, where the
laws of the quantum world dominates.
 Quantum computing is the potential . There are already results convincingly demonstrating
that for some important practical problems quantum computers are theoretically
exponentially more powerful than classical computer.
 Finally, the development of quantum computing is a drive and gives new impetus to explore
in more detail and new points of view concepts, potentials, laws and limitations of the
quantum world and to improve our knowledge of the natural world.
The study of information processing laws, limitations and potentials is nowadays in general a
powerful methodology to extend our knowledge, and this seems to be particularly true for
quantum mechanics i.e related spintronics. Several profound insights into the natural world have
already been obtained on this basis.
In a quantum computer, the fundamental unit of information (called a quantum bit or qubit), is
not binary but rather more quaternary in name. This qubit property arises as a direct consequence
of its adherence to the laws of quantum mechanics. A qubit can exist not only in a state
corresponding to the logical state 0 or 1 as in a classical bit, but also in states corresponding to a
blend or superposition of these classical states. In other words, a qubit can exist as a zero, a one
or simultaneously as both 0 and 1, with a numerical coefficient representing the probability for
each state. Each electron spin can represent a bit; for instance, a 1 for spin up and 0 for spin
down. With conventional computers, Engineers go to great lengths to ensure that bits remain in
stable, well-defined states. A quantum computer, in contrast, lies on encoding information within
quantum bits, or qubits, each of which can exist in a superposition of 0 and 1. By having a large
number of qubits in superposition of alternative states, a quantum computer intrinsically contains
a massive parallelism.
Unfortunately, in most physical systems, interactions with the surrounding environment rapidly
disrupt these superposition states. A typical disruption would effectively change a superposition
of 0 and 1 randomly into either a 0 or a 1, as process called decoherence. State-of-the-art qubits
based on the charge of electrons in a semiconductor remain coherent for a few picoseconds at
best and only at temperatures too low for practical applications. The rapid decoherence occurs
because the electric force between charges is strong and long range. In traditional semiconductor
devices, this strong interaction is beneficial, permitting delicate control of current flow with
small electronic fields. To quantum coherent devices, however, it is a disadvantage. As a result,
an experiment was conducted on the qubits, which are based on the electron-spin. Electron-spin
qubits interact only weakly with the environment surrounding them, principally through
magnetic fields that are non-uniform in space or changing in time. Such fields can be effectively
shielded.
The goal of the experiment was to create some of these coherent spin states in a semiconductor
to see how long they could survive. Much to the surprise, the optically excited spin states in
ZnSe remained coherent for several nanoseconds at low temperatures—1,000 times as long as
charge-based qubits. The states even survived for a few nanoseconds at room temperature.
Subsequent studies of electrons in gallium arsenide (GaAs) have shown that, under optimal
conditions, spin coherence in a semiconductor is possible
Spintronics Scanner
Cancer cells are the somatic cells which are grown into abnormal size. The Cancer cells have
different electromagnetic sample when compared to normal cells. For many types of Cancer, it is
easier to treat and cure the Cancer if it is found early. There are many different types of Cancer,
but most Cancers begin with abnormal cells growing out of control, forming a lump that's called
a tumour. The tumour can continue to grow until the Cancer begins to spread to other parts of the
body. If the tumour is found when it is still very small, curing the Cancer can be easy. However,
the longer the tumour goes unnoticed, the greater the chance that the Cancer has spread. This
makes treatment more difficult. Tumour developed in human body, is removed by performing a
surgery. Even if a single cell is present after the surgery, it would again develop into a tumour. In
order to prevent this, an efficient route for detecting the Cancer cells is required. Here, in this
paper, we introduce a new route for detecting the Cancer cells after a surgery. This accurate
detection of the existence of Cancer cells at the beginning stage itself entertains the prevention of
further development of the tumour.
This spintronics scanning technique is an efficient technique to detect cancer cells even when
they are less in number.
An innovative approach to detect the cancer cells with the help of Spintronics: The following
setup is used for the detection of cancer cells in a human body:
(a) Polarized electron source
(b) Spin detector
(c) Magnetic Field
Polarized electron source:
A beam of electrons is said to be polarized if their spins point, on average, in a specific direction.
There are several ways to employ spin on electrons and to control them. The requirement for this
paper is an electron beam with all its electrons polarized in a specific direction. The following
are the ways to meet the above said requirement: Photoemission from negative electron affinity
GaAs Chemi-ionization of optically pumped meta stable Helium An optically pumped electron
spin filter A Wein style injector in the electron source A spin filter is more efficient electron
polarizer which uses an ordinary electron source along with a gaseous layer of Rb. Free
electrons diffuse under the action of an electric field through Rb vapour that has been spin
polarized in optical pumping. Through spin exchange collisions with the Rb, the free electrons
become polarized and are extracted to form a beam. To reduce the emission of depolarizing
radiation, N2 is used to quench the excited Rb atoms during the optical pumping cycle.
Spin detectors:
There are many ways by which the spin of the electrons can be detected efficiently. The spin
polarization of the electron beam can be analyzed by using:
(a)Mott polar meter (b)Compton polar meter (c)Miller type polar meter
Typical Mott polar meters require electron energies of ~100 kV. But Mini Mott polar meter uses
energies of ~25 k eV, requiring a smaller overall design. The Mini Mott polar meter has three
major sections: the electron transport system, the target chamber, and the detectors. The first
section the electrons enter is the transport system. An Engel lens configuration was used here.
Two sets of four deflectors were used as the first and last lens. The electrons next enter the target
chamber. The chamber consists of a cylindrical target within a polished stainless steel
hemisphere. A common material used for the high-Z nuclei target is gold. Low-Z nuclei help
minimize unwanted scattering, so aluminium was chosen. Scattered electrons then exit the target
chamber and are collected in the detectors. Thus there are many methods for detecting the spin
polarization of electrons.
External Magnetic Field:
An external magnetic field is required during this experiment. The magnetic field is applied after
the surgery has undergone. First, it is applied to an unaffected part of the body and then to the
surgery undergone part of the body. It is already mentioned that the magnetic field could easily
alter the polarization of electrons.
This technique using spintronics is suggested by us to identify tumour cells after surgery. The
procedure for doing this experiment is as follows:
Optical Spin Filter:
After surgery and the removal of the tumour, the patient is exposed to a strong magnetic field.
Now the polarized electron beam is applied over the unaffected part and spin orientation of
electrons are determined using polar meter. Then the same polarized beam is targeted over the
affected part of the body and from the reflected beam, change in spin is determined. Based on
these two values of spin orientation, the presence of tumour cells can be detected even if they are
very few in number. Hence, we suggest this method for the detection purpose. A detailed view of
this innovative approach is given as follows.
Spin Orientation of the unaffected part of the body: Applying Magnetic Field:
When the magnetic field is applied to the unaffected part of the human body, the normal somatic
cells absorbs the magnetic energy and retains it.
Determining the Spin orientation: -When the electrons get incident on the cells the magnetic
energy absorbed by the cells alters the spin orientation of the electrons.
These electrons get reflected and it is detected by the Mott polar meter. Then the change in spin
orientation of the electrons is measured as Sx.
Spin Orientation of the surgery undergone part of the body: Applying Magnetic Filter:
In the surgery undergone part of the body an external magnetic field is applied. The cancer cells
which are present, if any, will absorb more magnetic energy than the normal cells since they
differ in their electromagnetic pattern.
Determining the spin Orientation:
Now an electron beam which is polarized is incident on the surgery undergone part of the body.
The magnetic energy absorbed by the cancer cell alter the spin orientation of the electron beam.
Since cancer cells absorb more magnetic energy, the change in orientation caused by them is also
more. If no cancer cells are present the amount of change is equal to the previous case. The change
in spin is measured by the polar meter as Sy.
Inference:
If the change in the spin in the unaffected part of the body is same as that of the surgery
undergone part, i.e.
If Sx=Sy Then,
There are no cancer cells in the surgery undergone part of the body and all the cells have been
removed by the surgery.
If the change in spin in the unaffected part is not equal to the change caused by the surgery
undergone part of the body, i.e.
If Sx not equals Sy Then,
There are some cancer cells in the surgery undergone part of the body and the cancer cells are
not completely removed by the surgery. The steps involved are:
1) The patient is exposed to a strong magnetic field so that his body cell gets magnetized.
2) A beam of electrons with polarized spin is introduced on the unaffected part of the body and
the change in spin is detected by a polar meter.
3) A beam of electrons with polarized spin is introduced on the part which had undergone
surgery. And the corresponding change in spin be Y
4) If X - Y = 0, it indicates that cancer cells have been removed from the body, if not it indicates
the presence of traces of cancer cells and it has to be treated again for ensuring complete
safety to the patient.
Thus this technique efficiently identifies the presence of cancer cells in that part of the body that
has undergone surgery to prevent any further development.
ADVANTAGES OF SPINTRONICS
As most of the spintronics devices/applications are on paper all the advantages are just defined
based on theoretical findings and they may have some dis-advantages which will/may be known
after they are fabricated and used. Some of the advantages of spintronics are:
 The spin devices act as multi-functional units
 Low power consumption.
 Compact and Faster Devices
 Larger storage capacity
 The MRAM has all the properties of DRAM ,SRAM and ROM and hence single memory
chip can be used instead of three memory chips
 Spintronics does not require unique and specialized semiconductors; can be implemented
or with common metals, such as Copper, Aluminium and Silver.
Since Spins don‟t change when power is turned off, the memory remains non-volatile.
Disadvantages of Spintronics
 Controlling the spin for long distances
 Silicon causes electrons to lose their spin state.
Major challenges are:.
 Transport of spin polarized carriers across relevant length scales
 Manipulation of both electron and nuclear spins on sufficiently fast time scales
Real Time Applications
The applications of spin devices and hence spintronics are vast since it provides many
advantages such as speed and size. . Some of the potential applications are:
 Spin LED
 Spin FET
 MRAM
MRAM:-
The MRAM is the form of the RAM and is acronym for Magnetic Random Access Memory.
MRAM basically uses a spin device known as Magnetic Tunnel Junction. The property of
Tunnel magneto résistance [MTR] of the MTJ is used in MRAM. The relative change of MTR
can reach 70% at room temperature. The figure below shows the structure of the MTJ as well as
MRAM.
The MRAM is presently under development and is expected to reach similar densities and access
times as the current SRAM and DRAM, but their main advantages on these volatile
semiconductor- based memories is that they retain data even after losing power and hence to
helps to decrease the boot – up time of computers.
As shown in the figure each junction can store a bit of data. If the polarization of spin is in
parallel at both the layers, the resistance will be less and we say that a bit “0” is stored. And if
the spin polarization is anti – parallel then resistance is high and we say a bit “1” is stored. The
main advantage of MRAM is that it can attain a writing speed of 1000 times to that of the present
RAM’s.
SPIN FET:-
The figure above the structure and working of Spin FET. As shown the Source and Drain areas
are fabricated using Ferro-magnetic material and the channel is fabricated using the
semiconductor material. The additional gating effect is via the magnetic field.
The working of the spin FET is illustrated in the upper part of the figure. It illustrates the physics
of devices where both injection of spins into semiconductor and detection of spin information are
electrical. The ideal situation is when the spin lifetime is much longer than spent by the carriers
in semiconductor.
As shown a spin polarized current is then easily transmitted in the parallel configuration of
emitter and collector, whereas the anti-parallel one leads to spin accumulation and current
blockade.
SPIN LED:-
The figure above shows the structure of spin LED. The LED has a heterostructure as shown.
Spin – polarized electrons are injected from a paramagnetic DMS into a GaAs/AlGaAs LED,
which leads to emission of circularly polarized light. An injection efficiency of 90% spin
polarized current has been demonstrated with this structure.
Some other applications-
 Laptop hard drives
 4GB Compact Flash card
 iPod nano
CONCLUSION AND FUTURE SCOPE
Conclusion:-
In this report we have seen the advantages of spintronics devices over the present electronic
devices. As said earlier this is the technology which will replace the present electronics era and
provides the advantages of speed, size, compactness so on. If the applications such as LED and
MRAM can be realized we can attain high efficiency of output in the case of LED and we can
attain high writing speed and reading efficiency in the case of MRAM.
Spintronics is one of the most exciting and challenging areas in nanotechnology, important to
both fundamental scientific research and industrial applications. These spintronics-devices,
combining the advantages of magnetic materials and semiconductors, are expected to be non-
volatile, versatile, fast and capable of simultaneous data storage and processing, while at the
same time consuming less energy.
They are playing an increasingly significant role in high-density data storage, microelectronics,
sensors, quantum computing and bio-medical applications, etc.
It is expected that the impact of spintronics to the microelectronics industry might be comparable
to the development of the transistor 50 years ago.
Though the area of spintronics has some drawbacks which will be realized when the spin devices
will be fabricated we may still avoid these drawbacks to large extent.
One drawback of this emerging technology is that since the spintronics is mainly based on the
magnetic properties of the material, the magnetic field of the earth may affect the magnetic field
inside the spin devices and cause errors. One main disadvantages of this is that the data stored in
a MRAM may be altered and hence can lead to errors.
Hopefully, this and many unknown effects will be found out and efforts are made to avoid such
effects and lead to more reliable, more functional, with greater speed of operation of spin devices
will be achieved.
Future Scope :-
Spintronics is still in its infancy and it‟s difficult to predict how it will evolve.
New physics is being discovered and new materials are being developed, such as magnetic
semiconductors
Several experiments have been carried out for progress in transporting spins over long distances
and in high electric fields that will probably prove successful in the near future.
Spintronics in INDIIA -
The technology wherein both the charge and spin of an electron is used to carry information has
generated excitement for its potential in a wide range of applications.
"The first applications of spintronics having been demonstrated, there is tremendous interest in
the development of the next spintronics device.
Spintronics biggest potential lies in embedded memories and non-volatile memory devices such
as magneto resistive random access memory (MRAM), which will revolutionize the memory
market.
Other applications include the use of spintronics in quantum computation and the development
of the quantum computer. Spin transistors are also could well challenge the monopoly of
semiconductor electronics.
Research in spintronics faces several challenges, especially handling-related issues. Because
spintronics devices use magnetism and materials such as nickel, iron, cobalt — with alloys not
commonly used in normal
semiconductor electronics — there are difficulties in etching and patterning as well as in
integrating the magnetic material into a silicon process for manufacturing MRAMs.
The behaviour of the magnetic element on a chip in both read and write modes could be quite a
hurdle it is required to make MRAMs reliable.
Today everyone already has a spintronics device on their desktop, as all modern computers use
the spin valve in order to read and write data on their hard drive. It was followed immediately by
the discovery of Tunnelling Magneto resistance (TMR) leading to the magnetic tunnel junction
that has been utilized for the next generation computer memory known as Magnetic Random
Access Memory (MRAM), another spintronics device for computers. Therefore, the initial
driving force for spintronics has been the improvement of computer technology. At present the
research has been concentrating on the fabrication of spin transistors and spin logics devices
integrating magnetic and semiconductors, with the aim of improving the existing capabilities of
electronic transistors and logics devices so that the future computation and thus the future
computer could become faster and consume less energy.
There are four main areas in spintronics:
1)Understanding the fundamental physics, such as spin-dependant transports across the
magnetic/ semiconductor interfaces and spin coherence length in semiconductors.
2) Synthesising suitable spintronics materials with Curie temperatures above room temperature,
large spin polarisation at the Fermi level and matching conductivity between the magnetic and
semiconductor materials.
3) Fabricating devices with nanometre feature sizes and developing new techniques for mass
production.
4) Integrating spin-devices with current microelectronics and computing.
REFERENCES
1) N Taniguchi, “On the basic concepts of Nano Technology” Proc. Intl conference prod
engage, Tokyo (Journal Paper)
2) www.physik.uni-regensburg.de/.../Spintronics
3) http://www.slideshare.net
4) Das Sarma, S., et al. 2000. Theoretical perspectives on spintronics and spin-polarized
transport. IEEE Transactions on Magnetics
Books:-
5) Rainer Wiser (2nd edition), “Nano electronics and information technology - Advanced
electronic materials & devices”
6) Electronic measurement and control of spin transport (Technical Publication)
.
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report
Spintronics  Report

More Related Content

What's hot

Spintronics : New Era in Nano Tecnology technology
Spintronics : New Era in Nano Tecnology technologySpintronics : New Era in Nano Tecnology technology
Spintronics : New Era in Nano Tecnology technology
Balajikrishna Nethi
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppt
tedoado
 
spintronics ppt
spintronics pptspintronics ppt
spintronics ppt
shishu pal
 
Introduction to Spintronics by Ch.Ravikumar
Introduction to Spintronics by Ch.RavikumarIntroduction to Spintronics by Ch.Ravikumar
Introduction to Spintronics by Ch.Ravikumar
Ravikumar Chilmula
 
Spintronics Technology
Spintronics TechnologySpintronics Technology
Spintronics Technology
FelixSK1
 
Spintronics
SpintronicsSpintronics
Spintronics
Mustahid Ali
 
Spintronics
SpintronicsSpintronics
Spintronics
M. Javad Zallaghi
 
Spintronics
SpintronicsSpintronics
Spintronics
Akshay Krishna K R
 
Spintronics Introduction (Basic)
Spintronics Introduction (Basic)Spintronics Introduction (Basic)
Spintronics Introduction (Basic)
Hardik Patel
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
jamilahmedawan
 
Giant Magnetoresistance(GMR) & Spintronics
Giant Magnetoresistance(GMR) & SpintronicsGiant Magnetoresistance(GMR) & Spintronics
Giant Magnetoresistance(GMR) & Spintronics
altafmahmood1
 
Nanogenerator
NanogeneratorNanogenerator
Nanogenerator
Navin Kumar
 
Nanogenerator
Nanogenerator Nanogenerator
Nanogenerator Amit Kumar
 
Gmr
GmrGmr
Spintronics
SpintronicsSpintronics
Spintronics
SampadaZalte
 

What's hot (20)

Spintronics : New Era in Nano Tecnology technology
Spintronics : New Era in Nano Tecnology technologySpintronics : New Era in Nano Tecnology technology
Spintronics : New Era in Nano Tecnology technology
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppt
 
spintronics ppt
spintronics pptspintronics ppt
spintronics ppt
 
Introduction to Spintronics by Ch.Ravikumar
Introduction to Spintronics by Ch.RavikumarIntroduction to Spintronics by Ch.Ravikumar
Introduction to Spintronics by Ch.Ravikumar
 
Spintronics
Spintronics Spintronics
Spintronics
 
Spintronics Technology
Spintronics TechnologySpintronics Technology
Spintronics Technology
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics Introduction (Basic)
Spintronics Introduction (Basic)Spintronics Introduction (Basic)
Spintronics Introduction (Basic)
 
Spintronics ppt
Spintronics pptSpintronics ppt
Spintronics ppt
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Giant Magnetoresistance(GMR) & Spintronics
Giant Magnetoresistance(GMR) & SpintronicsGiant Magnetoresistance(GMR) & Spintronics
Giant Magnetoresistance(GMR) & Spintronics
 
Nanogenerator
NanogeneratorNanogenerator
Nanogenerator
 
Spintronics ppt
Spintronics pptSpintronics ppt
Spintronics ppt
 
Nanogenerator
Nanogenerator Nanogenerator
Nanogenerator
 
Vats ppt
Vats pptVats ppt
Vats ppt
 
Gmr
GmrGmr
Gmr
 
Spintronics
SpintronicsSpintronics
Spintronics
 

Viewers also liked

Spintronics & MRAM
Spintronics & MRAMSpintronics & MRAM
Spintronics & MRAM
Khushal Yadav
 
Final seminar ppt
Final seminar pptFinal seminar ppt
Final seminar ppt
Saylee joshi
 
Report on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & SpintronicsReport on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & Spintronics
altafmahmood1
 
Spintronics
SpintronicsSpintronics
Spintronics
Sameer Patel
 
Mobile
MobileMobile
Digital voltmeter using 89c51 microcontroller
Digital voltmeter using 89c51 microcontrollerDigital voltmeter using 89c51 microcontroller
Digital voltmeter using 89c51 microcontroller
Saylee joshi
 
Mobile Voting System Using Advanced NFC Technology
Mobile Voting System Using Advanced NFC TechnologyMobile Voting System Using Advanced NFC Technology
Mobile Voting System Using Advanced NFC Technology
ijsrd.com
 
E voting system using mobile sms
E voting system using mobile smsE voting system using mobile sms
E voting system using mobile sms
eSAT Journals
 
Infini band
Infini bandInfini band
Infini band
mohammed_msc2012
 
Audio spotlighting
Audio spotlightingAudio spotlighting
Audio spotlighting
Nagappa Kannur
 
IPTV India Progress Report 2009 by Knowledgefaber - Market Analysis
IPTV India Progress Report 2009 by Knowledgefaber - Market AnalysisIPTV India Progress Report 2009 by Knowledgefaber - Market Analysis
IPTV India Progress Report 2009 by Knowledgefaber - Market Analysis
Amit Goel
 
Iptv report
Iptv reportIptv report
Iptv report
Ravi Keerthi
 
project loon
project loonproject loon
project loon
Ganesh Gaikwad
 
SpinFET
SpinFETSpinFET
SpinFET
IIT Bombay
 
Smart card technology
Smart card technologySmart card technology
Smart card technology
Pushkar Dutt
 
Iptv
IptvIptv
Basics of IPTV
Basics of IPTVBasics of IPTV
Basics of IPTV
Ritul Sonania
 

Viewers also liked (19)

Chitti%2027
Chitti%2027Chitti%2027
Chitti%2027
 
Spintronics & MRAM
Spintronics & MRAMSpintronics & MRAM
Spintronics & MRAM
 
Final seminar ppt
Final seminar pptFinal seminar ppt
Final seminar ppt
 
Report on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & SpintronicsReport on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & Spintronics
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Mobile
MobileMobile
Mobile
 
Digital voltmeter using 89c51 microcontroller
Digital voltmeter using 89c51 microcontrollerDigital voltmeter using 89c51 microcontroller
Digital voltmeter using 89c51 microcontroller
 
Mobile Voting System Using Advanced NFC Technology
Mobile Voting System Using Advanced NFC TechnologyMobile Voting System Using Advanced NFC Technology
Mobile Voting System Using Advanced NFC Technology
 
E voting system using mobile sms
E voting system using mobile smsE voting system using mobile sms
E voting system using mobile sms
 
Infini band
Infini bandInfini band
Infini band
 
Audio spotlighting
Audio spotlightingAudio spotlighting
Audio spotlighting
 
IPTV India Progress Report 2009 by Knowledgefaber - Market Analysis
IPTV India Progress Report 2009 by Knowledgefaber - Market AnalysisIPTV India Progress Report 2009 by Knowledgefaber - Market Analysis
IPTV India Progress Report 2009 by Knowledgefaber - Market Analysis
 
Iptv report
Iptv reportIptv report
Iptv report
 
project loon
project loonproject loon
project loon
 
Report on rfid
Report on rfidReport on rfid
Report on rfid
 
SpinFET
SpinFETSpinFET
SpinFET
 
Smart card technology
Smart card technologySmart card technology
Smart card technology
 
Iptv
IptvIptv
Iptv
 
Basics of IPTV
Basics of IPTVBasics of IPTV
Basics of IPTV
 

Similar to Spintronics Report

VTU Seminar report front pages LATEST
VTU Seminar report front pages LATESTVTU Seminar report front pages LATEST
VTU Seminar report front pages LATEST
athiathi3
 
Spin valve sransistor
Spin valve sransistorSpin valve sransistor
Spin valve sransistorSree M
 
VTU Seminar FULL report LATEST
VTU Seminar FULL report LATESTVTU Seminar FULL report LATEST
VTU Seminar FULL report LATEST
athiathi3
 
Spintronics combination of nanotechnology & superconductivity
Spintronics combination of nanotechnology & superconductivitySpintronics combination of nanotechnology & superconductivity
Spintronics combination of nanotechnology & superconductivity
Alexander Decker
 
Spintronics
SpintronicsSpintronics
Spintronics
Ravikanth Akella
 
new punit wireless
new punit wirelessnew punit wireless
new punit wirelessPunit Jangir
 
solarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptxsolarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptx
Aditya Bhardwaj
 
A seminar report on Nuclear Micro Battery
A seminar report on Nuclear Micro BatteryA seminar report on Nuclear Micro Battery
A seminar report on Nuclear Micro Battery
Utkarsh Kumar
 
Wireless Mobile Charging Using Microwaves
Wireless Mobile Charging Using MicrowavesWireless Mobile Charging Using Microwaves
Wireless Mobile Charging Using Microwaves
Jishid Km
 
Ele cproject final
Ele cproject finalEle cproject final
Ele cproject final
CHETHANA JOHANS
 
06 chapter1
06 chapter106 chapter1
06 chapter1
KULDEEP KUMAR
 
Spin valve transistor
Spin valve transistorSpin valve transistor
Spin valve transistor
Eeshan Mishra
 
Microwave power transmission via solar power satellite
Microwave power transmission via solar power satelliteMicrowave power transmission via solar power satellite
Microwave power transmission via solar power satellite
sangeeta gangannavar
 
A Review on Magnetic Levitation Vehicles
A Review on Magnetic Levitation VehiclesA Review on Magnetic Levitation Vehicles
A Review on Magnetic Levitation Vehicles
ijtsrd
 
Spintronics Technology
Spintronics TechnologySpintronics Technology
Spintronics Technology
MAS Lighting Industries
 
Physics report-12.pdfdddddddddddddddddddddddddddddddddddddddddddddd
Physics report-12.pdfddddddddddddddddddddddddddddddddddddddddddddddPhysics report-12.pdfdddddddddddddddddddddddddddddddddddddddddddddd
Physics report-12.pdfdddddddddddddddddddddddddddddddddddddddddddddd
mylifemychoicemyrule
 

Similar to Spintronics Report (20)

Spintronics hard copy
Spintronics hard copySpintronics hard copy
Spintronics hard copy
 
VTU Seminar report front pages LATEST
VTU Seminar report front pages LATESTVTU Seminar report front pages LATEST
VTU Seminar report front pages LATEST
 
Spin valve sransistor
Spin valve sransistorSpin valve sransistor
Spin valve sransistor
 
Spintronics
SpintronicsSpintronics
Spintronics
 
VTU Seminar FULL report LATEST
VTU Seminar FULL report LATESTVTU Seminar FULL report LATEST
VTU Seminar FULL report LATEST
 
Spintronics combination of nanotechnology & superconductivity
Spintronics combination of nanotechnology & superconductivitySpintronics combination of nanotechnology & superconductivity
Spintronics combination of nanotechnology & superconductivity
 
Spintronics
SpintronicsSpintronics
Spintronics
 
new punit wireless
new punit wirelessnew punit wireless
new punit wireless
 
solarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptxsolarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptx
 
A seminar report on Nuclear Micro Battery
A seminar report on Nuclear Micro BatteryA seminar report on Nuclear Micro Battery
A seminar report on Nuclear Micro Battery
 
Wireless Mobile Charging Using Microwaves
Wireless Mobile Charging Using MicrowavesWireless Mobile Charging Using Microwaves
Wireless Mobile Charging Using Microwaves
 
Ele cproject final
Ele cproject finalEle cproject final
Ele cproject final
 
06 chapter1
06 chapter106 chapter1
06 chapter1
 
Spin valve transistor
Spin valve transistorSpin valve transistor
Spin valve transistor
 
Microwave power transmission via solar power satellite
Microwave power transmission via solar power satelliteMicrowave power transmission via solar power satellite
Microwave power transmission via solar power satellite
 
A Review on Magnetic Levitation Vehicles
A Review on Magnetic Levitation VehiclesA Review on Magnetic Levitation Vehicles
A Review on Magnetic Levitation Vehicles
 
Spintronics Technology
Spintronics TechnologySpintronics Technology
Spintronics Technology
 
Physics report-12.pdfdddddddddddddddddddddddddddddddddddddddddddddd
Physics report-12.pdfddddddddddddddddddddddddddddddddddddddddddddddPhysics report-12.pdfdddddddddddddddddddddddddddddddddddddddddddddd
Physics report-12.pdfdddddddddddddddddddddddddddddddddddddddddddddd
 
report
reportreport
report
 
spintronics divya
spintronics divyaspintronics divya
spintronics divya
 

Recently uploaded

Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 

Recently uploaded (20)

Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 

Spintronics Report

  • 1. A Seminar Report on “Spintronics” submitted for partial fulfilment of award of BACHELORS OF TECHNOLOGY degree in Electronics and Communication Engineering by Shishu Pal (Roll No.1213331191) Submitted to Ms. Kanika Jindal (AP, ECE Deptt.) Ms. Gitanjali Anand (AP, ECE Deptt.) Mr.Devendra Pratap(AP, ECE Deptt.) NOIDA INSTITUTE OF ENGINEERING & TECHNOLOGY GREATER NOIDA March, 2015
  • 2. DECLARATION I hereby declare that the seminar report which is being presented in the entitled “Spintronics,” in partial fulfillment of the requirements for the award of degree of Bachelors of Technology in Electronics and Communication Engineering in the Department of Electronics and Communication Engineering from Noida Institute of Engineering and Technology, Greater Noida, is an authentic record of my own carried out under the supervision of Mr. Devendra Pratap Singh and Ms. Kanika Jindal, Assistant Professor, Department of ECE. Date:17/03/2015 SHISHU PAL Roll. No. 1213331191
  • 3. CERTIFICATE Certified that seminar work entitled “Spintronics ” is a bonafide work carried out in the sixth semester by “Shishu Pal” in partial fulfilment for the award of Bachelor of Technology in Electronics and Communication Engineering from Uttar Pradesh Technical University during the academic year 2013-2014 who carried out the seminar work. Date: 17/03/2015 Ms.Kanika Jindal Ms. Gitanjali Anand Mr. Devendra Pratap Singh
  • 4. ACKNOWLEDGEMENT It gives me great pleasure to present my seminar report on “Spintronics”. No work , however big or small, has ever been done without the contributions of others. It would be a great pleasure to write a few words, which would although not suffice as the acknowledgement of this long cherished effort, but in the absence of which this report would necessarily be incomplete. So these words of acknowledgement come as a small gesture of gratitude towards all those people, without whom the successful completion of this project would not have been possible. I would like to express deep gratitude towards Ms. Gitanjali Anand (Associate Professor of ECE Dept.) & Ms. Kanika Jindal (Associate Professor of ECE Dept.) who gave me their valuable suggestions, motivation and the direction to proceed at every stage. They are like a beam of light for us. Their kind guidance showed us the path of life and is unforgettable. They extended towards their valuable guidance, indispensable help and inspiration at times in appreciation I offer them my sincere gratitude. Last but not least we would like to thank the Department of Electronics and communication Engineering, NIET, Gr. Noida for providing me with the facilities to lab, and all staff members of ECE Dept., it would have been impossible for me to complete my project without their valuable guidance & prompt cooperation. I have tried my level best to make this seminar report error free ,but I regret for errors, if any.
  • 5. ABSTRACT Spintronics is an emergent technology that exploits the quantum propensity of the electrons to spin as well as making use of their charge state. The spin itself is manifested as a detectable weak magnetic energy state characterised as ―spin up‖ or ―spin down‖. Conventional electronic devices rely on the transport of electrical charge carriers – electrons – in a semiconductor such as silicon. Now, however, device engineers and physicists are inevitably faced the looming presence of quantum mechanics and are trying to exploit the spin of the electron rather than its charge. Devices that rely on the electron‘s spin to perform their functions form the foundations of spintronics (short for spin-based electronics), also known as magneto electronics. Spintronics devices are smaller than 100 nanometre in size, more versatile and more robust than those making up silicon chips and circuit elements. The potential market is worth hundreds of billions of dollar a year. Spintronics burst on the scene in 1988 when French and German physicists discovered a very powerful effect called Giant Magneto resistance (GMR). It results from subtle electron-spin effects in ultra thin multilayer of magnetic materials, which cause huge changes in their electrical resistance when a magnetic field is applied. This resulted in the first spintronics device in the form of the spin valve. The incorporation of GMR materials into read heads allowed the storage capacity of a hard disk to increase from one to 20 gigabits. In 1997, IBM launched GMR read heads, into a market worth around a billion dollars a year. The field of spintronics is relatively young and it is difficult to predict how it will evolve. New physics is still being discovered and new materials being developed, such as magnetic semiconductors and exotic oxides that manifest an even more extreme effect called Colossal Magneto resistance.
  • 6. TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. DECLARATION ii CERTIFICATE iii ACKNOWLEDGEMENTS iv ABSTRACT v TABLE OF CONTENTS vi LIST OF FIGURES vii 1. INTRODUCTION 01 2. MOTIVATION 02 3. TECHNOLOGY DESCRIPTION 03 3.1Gaint Magneto resistance 04 3.2 Construction of GMR 05 3.3 Spin Valve GMR 07 3.4 Memory Chips 08 3.5 GMR Sensor 09 3.6 Spintronics Devices 09  MRAM 10  Spin Transistors 11  Quantum Computer 14  Spintronics Scanner 16 3.7 Advantages / Disadvantages 19 3.8 Real Time Applications 20 4. CONCLUTION AND FUTURE SCOPE 22 5. Reference 25
  • 7. LIST OF FIGURES S.NO. TITLE PAGE NO. 1. Electron spinning 02 2. Magnetic Orientation of electrons 03 . 3. A GMR Device 04 4. Construction of GMR 06 5. GMR based Spin Valves for read head In hard drives 07 6. GMR Sensor 09 7. MRAM 11 8. Spin based transistor 12 9. Spin polarized field effect Transistor 12
  • 8. INTRODUCTION Conventional electronic devices rely on the transport of electrical charge carriers –electrons in a semiconductor such as silicon. Now, however, physicists are trying to exploit the ‗spin‘ of the electron rather than its charge to create a remarkable new generation of spintronics‘ devices which will be smaller, more versatile and more robust than those currently making up silicon chips and circuit elements. Imagine a data storage device of the size of an atom working at a speed of light. Imagine a computer memory thousands of times denser and faster than today‘s memories and also imagine a scanner technique which can detect cancer cells even though they are less in number. The above-mentioned things can be made possible with the help of an exploding science – ―Spintronics‖. Spintronics is a technology which deals with spin dependent properties of an electron instead of or in addition to its charge dependent properties. Conventional electronics devices rely on the transport of electric charge carries-electrons. But there is other dimensions of an electron other than its charge and mass i.e. spin. This dimension can be exploited to create a remarkable generation of spintronics devices. It is believed that in the near future spintronics could be more revolutionary than any other technology. As there is rapid progress in the miniaturization of semiconductor electronic devices leads to a chip features smaller than 100 nanometers in size, device engineers and physicists are inevitable faced with a looming presence of a quantum property of an electron known as spin, which is closely related to magnetism. Devices that rely on an electron spin to perform their functions form the foundations of spintronics. Information-processing technology has thus far relied on purely charge based devices ranging from the now quantum, vacuum tube today‘s million transistor microchips. Those conventional electronic devices move electronic charges around, ignoring the spin that tags along that side on each electron.
  • 9. MOTIVATION The basic principle involved is the usage of spin of the electron in addition to mass and charge of electron. Electrons like all fundamental particles have a property called spin which can be orientated in one direction or the other – called ‗spin-up‘ or ‗spin-down‘ –like a top spinning anticlockwise or clockwise. Spin is the root cause of magnetism and is a kind of intrinsic angular momentum that a particle cannot gain or lose. The two possible spin states naturally represent ‘0‘and ‘1‘in logical operations. Spin is the characteristics that makes the electron a tiny magnet complete with north and south poles .The orientation of the tiny magnet ‘s north-south poles depends on the particle‘s axis of spin. Fundamentals of spin: 1.In addition to their mass, electrons have an intrinsic quantity of angular momentum called spin, almost of if they were tiny spinning balls. 2.Associated with the spin is magnetic field like that of a tiny bar magnet lined up with the spin axis. Fig.1. Electron spinning 2. Scientists represent the spin with a vector. For a sphere spinning ―west to east‖, the vector points ― north‖ or ―up‖. It points ―south‖ or ―down‖ for the spin from ―east to west‖. 4. In a magnetic field, electrons with ―spin up‖ and ―spin down‖ have different energies. 5. In an ordinary electronic circuit the spins are oriented at random and have no effect on current flow. 6. Spintronics devices create spin-polarized currents and use the spin to control current flow.
  • 10. TECHNOLOGY DESCRIPTION The use of the spintronics requires that the materials used to fabricate the spin devices should possess the following requirements to be satisfied by the material:  Efficient electrical injection of spin – polarized carriers.  Efficient transmission during transport of carriers through semiconductor.  Capability to detect or collect spin – polarized current. SPIN MATERIALS:- The basic materials used in spin devices for manipulation of spin of electrons are the ferromagnetic which have the capability to change the spin polarization on application of magnetic fields.The spin materials can be classified into two groups:  Ferromagnetic Semiconductors  Half-Magnetic ferromagnets Ferromagnetic Semiconductors These are the materials with complete control over the spin electron. The main advantages of these types of materials are:  Combined semiconducting and magnetic properties for multiple functionalities  Easy growth of ferromagnetic-semiconductor nanostructures.  Easy spin injection Half-Magnetic ferromagnets As name suggests the half – magnetic ferromagnets doesn’t have full control over spin of the electrons. The spin materials can be obtained as: - Substitution of V, Cr and Mn into GaAs, InAs,GaSb,GaP and InP. Fig 2. Magnetic Orientation of electrons
  • 11. Giant Magneto Resistance Electrons like all fundamental particles have a property called spin which can be orientated in one direction or the other – called „spin-up‟ or „spin-down‟ – like a top spinning anticlockwise or clockwise. When electron spins are aligned (i.e. all spin-up or all spin-down) they create a large-scale net magnetic moment as seen in magnetic materials like iron and cobalt. Magnetism is an intrinsic physical property associated with the spins of electrons in a material. Magnetism is already exploited in recording devices such as computer hard disks Data are recorded and stored as tiny areas of magnetised iron or chromium oxide. To access the information, a read head detects the minute changes in magnetic field as the disk spins underneath it. This induces corresponding changes in the head‟s electrical resistance – an effect called magneto resistance. Spintronics burst on the scene in 1988 when French and German physicists discovered a much more powerful effect called „giant magneto resistance‟ (GMR). It results from subtle electron- spin effects in ultra-thin „multilayer’s‟ of magnetic materials, which cause huge changes in their electrical resistance when a magnetic field is applied. GMR is 200 times stronger than ordinary magneto resistance. IBM soon realised that read heads incorporating GMR materials would be able to sense much smaller magnetic fields, allowing the storage capacity of a hard disk to increase from 1 to 20 gigabits. In 1997 IBM launched GMR read heads, into a market worth about a billion dollars a year. The basic GMR device consists of a three-layer sandwich of a magnetic metal such as cobalt with a nonmagnetic metal filling such as silver (see diagram). Fig 3. A GMR Device
  • 12. A current passes through the layers consisting of spin-up and spin-down electrons. Those oriented in the same direction as the electron spins in a magnetic layer pass through quite easily while those oriented in the opposite direction are scattered. If orientation of one of the magnetic layers can easily be changed by the presence of a magnetic field then the device will act as a filter, or „spin valve‟, letting through more electrons when the spin orientations in the two layers are the same and fewer when orientations are oppositely aligned. The electrical resistance of the device can therefore be changed dramatically. The magneto resistant devices can sense the changes in the magnetic field only to a small extent, which is appropriate to the existing memory devices. When we reduce the size and increase data storage density, we reduce the bits, so our sensor also has to be small and maintain very, very high sensitivity. The thought gave rise to the powerful effect called ―Giant Magneto resistance (GMR).GMR is a quantum mechanical magneto resistance effect observed in thin film structures composed of alternating ferromagnetic and non magnetic layers. The 2007 Nobel Prize in physics was awarded to Albert Fret and Peter Gruenberg for the discovery of GMR. Giant magneto resistance (GMR) came into picture in 1988, which lead the rise of spintronics. It results from subtle electron-spin effects in ultra-thin ‗multilayer‘ of magnetic materials, which cause huge changes in their electrical resistance when a magnetic field is applied. GMR is 200 times stronger than ordinary magneto resistance. It was soon realized that read heads incorporating GMR materials would be able to sense much smaller magnetic fields, allowing the storage capacity of a hard disk to increase from 1 to 20 gigabits. Construction of GMR The basic GMR device consists of a three-layer sandwich of a magnetic metal such as cobalt with a nonmagnetic metal filling such as silver. Current passes through the layers consisting of spin-up and spin-down electrons. Those oriented in the same direction as the electron spins in a magnetic layer pass through quite easily while those oriented in the opposite direction are scattered. If the orientation of one of the magnetic layers can easily be changed by the presence of a magnetic field then the device will act as a filter, or ‗spin valve‘, letting through more electrons when the spin orientations in the two layers are the same and fewer when orientations are oppositely aligned. The electrical resistance of the device can therefore be changed dramatically. In an ordinary electric current, the spin points at random and plays no role in determining the resistance of a wire or the amplification of a transistor circuit. Spintronics devices in contrast, rely on differences in the transport of ―spin up‖ and ―spin down‖ electrons.
  • 13. Figure 4: Construction of GMR A ferromagnet can even affect the flow of a current in a nearby nonmagnetic metal. For example, in the present-day read heads in computer hard drives, wherein a layer of a nonmagnetic metal is sandwiched between two ferromagnetic metallic layers, the magnetization of the first layer is fixed, or pinned, but the second ferromagnetic layer is not. As the read head travels along a track of data on a computer disk, the small magnetic fields of the recorded 1‘s and 0`s change the second layer‘s magnetization back and forth parallel or antiparallel to the magnetization of the pinned layer. In the parallel case, only electrons that are oriented in the favored direction flow through the conductor easily. In the antiparallel case, all electrons are impeded. The resulting changes in the current allow GMR read heads to detect weaker fields than their predecessors; so that data can be stored using more tightly packaged magnetized spots on a disk. GMR has triggered the rise of a new field of electronics called spintronics which has been used extensively in the read heads of modern hard drives and magnetic sensors. A hard disk storing binary information can use the difference in resistance between parallel and antiparallel layer alignments as a method of storing 1s and 0s. A high GMR is preferred for optimal data storage density. Current perpendicular-to-plane (CPP) Spin valve GMR currently yields the highest GMR. Research continues with older current-in- plane configuration and in the tunnelling magnetoresistance (TMR) spin valves which enable disk drive densities exceeding 1 Terabyte per squar inch. Hard disk drive manufacturers have investigated magnetic sensors based on the colossal magneto resistance effect (CMR) and the giant planar Hall effect. In the lab, such sensors have demonstrated sensitivity which is orders of magnitude stronger than GMR. In principle, this could lead to orders of magnitude improvement in hard drive data density.
  • 14. As of 2003, only GMR has been exploited in commercial disk read-and-write heads because researchers have not demonstrated the CMR or giant planar hall effects at temperatures above 150K. Magneto coupler is a device that uses giant magneto resistance (GMR) to couple two electrical circuits galvanic isolated and works from AC down to DC. Vibration measurement in MEMS systems. Detecting DNA or protein binding to capture molecules in a surface layer by measuring the stray field from super paramagnetic label particles. Spin Valve GMR If the orientation of one of the magnetic layers can easily be changed by the presence of a magnetic field then the device will act as a filter, or ‗spin valve‘, letting through more electrons when the spin orientations in the two layers are the same and fewer when orientations are oppositely aligned. The electrical resistance of the device can therefore be changed dramatically. Fig 5. Standard geometry for GMR based Spin Valve An electron passing through the spin-valve will be scattered more if the spin of the electrons opposite to the direction of the magnetisation in the Field.
  • 15. Memory Chips Physicists have been quick to see the further possibilities of spin valves. Not only are they highly sensitive magnetic sensors , they can also be made to act as switches by flipping the magnetisation in one of the layers. This allows information to be stored as 0s and 1s (magnetisations of the layers parallel or antiparallel) as in a conventional transistor memory device. An obvious application is a magnetic version of a random access memory (RAM) device of the kind used in your computer. The advantage of magnetic random access memory (MRAM) is that it is „non-volatile‟ – information isn‟t lost when the system is switched off. MRAM devices would be smaller, faster, cheaper, use less power and would be much more robust in extreme conditions such as high temperature, or highlevel radiation or interference. The US electronics company Honeywell has already shown that arrays of linked MRAMS could be made to work. The potential market for MRAMS is worth 100 billion dollars annually. Over the past three years or so, researchers around the world have been working hard on a whole range of MRAM devices. A particularly promising device is the magnetic tunnel junction, which has two magnetic layers separated by an insulating metal-oxide layer. Electrons can tunnel through from one layer to the other only when magnetisations of the layers point in the same direction, otherwise the resistance is high – in fact, 1000 times higher than in the standard spin valve. Even more interesting are devices that combine the magnetic layers with semiconductors like silicon. The advantage is that silicon is still the favourite material of the electronics industry and likely to remain so. Such hybrid devices could be made to behave more like conventional transistors. They could be used as non-volatile logic elements which could be reprogrammed using software during actual processing to create an entirely new type of very fast computing. The field of spintronics is extremely young and it’s difficult to predict how it will evolve. New physics is still being discovered and new materials being developed, such as magnetic semiconductors, and exotic oxides that manifest an even more extreme effect called colossal magneto resistance. What is certain is that the time-span from a breakthrough in fundamental physics to first commercial exploitation has been less than 10 years. The business opportunities for spintronics are still wide open. European research collaborations, some involving the Us, have a strong lead in developing the underlying physics and technology for this lucrative fledgling industry.
  • 16. GMR SENSORS GMR sensors are already being developed in UK universities. They have a wide range of applications and the market is worth 8 billion dollars a year. Applications include: • Fast accurate position and motion sensing of mechanical components in precision engineering and in robotics • All kinds of automotive sensors for fuel handling systems, electronic engine control, antiskid systems, speed control and navigation • Missile guidance • Position and motion sensing in computer video games • Key-hole surgery and post-operative care Figure 6: GMR Sensor The magnetic property of a battery changes with SoC. A Sensor reads the change when exposed to a magnetic field. SPINTRONICS DEVICES Spintronic devices are those devices which use the Spintronics technology. Spintronics-devices combine the advantages of magnetic materials and semiconductors. They are expected to be non- volatile, versatile, fast and capable of simultaneous data storage and processing, while at the same time consuming less energy. Spintronics-devices are playing an increasingly significant role in high-density data storage, microelectronics, sensors, quantum computing and bio-medical applications, etc.
  • 17. Electronic Devices v/s Spintronics Devices Electronic Devices Spintronics devices 1. Based on properties of charge of the 1. Based on intrinsic property spin of electron. electron 2. Classical property 2. Quantum property 4. Materials: conductors and semiconductors 4. Materials: ferromagnetic materials 5. Based on the number of charges and their 5. Two basic spin states; spin-up and spin- energy down. 6. Speed is limited and power dissipation is 6. Based on direction of spin and spin and spin high. coupling, high speed. Some of the Spintronic devices are:  Magnetoresistive Random Access Memory(MRAM)  Spin Transistor  Quantum Computer  Spintronic Scanner MRAM (Magneto resistive Random Access Memory) An important spintronics device, which is supposed to be one of the first spintronics devices that have been invented, is MRAM. Unlike conventional random-access, MRAMs do not lose stored information once the power is turned off...A MRAM computer uses power, the four page e mail will be right there for you. Today pc use SRAM and DRAM both known as volatile memory. They can store information only if we have power. DRAM is a series of capacitors, a charged capacitor represents 1 where as an uncharged capacitor represents 0. To retain 1 you must constantly feed the capacitor with power because the charge you put into the capacitor is constantly leaking out. Fig 8. 256 K MRAM
  • 18. MRAM is based on integration of magnetic tunnel junction (MJT). Magnetic tunnel junction is a three-layered device having a thin insulating layer between two metallic ferromagnets. Current flows through the device by the process of quantum tunneling; a small number of electrons manage to jump through the barrier even though they are forbidden to be in the insulator. The tunneling current is obstructed when the two ferromagnetic layers have opposite orientations and is allowed when their orientations are the same. MRAM stores bits as magnetic polarities rather than electric charges. When a big polarity points in one direction it holds1, when its polarity points in other direction it holds 0. These bits need electricity to change the direction but not to maintain them. MRAM is non volatile so, when you turn your computer off all the bits retain their 1`s and 0`s. SPIN TRANSISTORS Traditional transistors use on-and-off charge currents to create bits- the binary zeroes and ones of computer information. “Quantum spin field effect” transistor will use up-and-down spin states to generate the same binary data. One can think of electron spin as an arrow; it can point upward or downward; “spinup and spin-down can be thought of as a digital system, representing the binary 0 and 1. The quantum transistor employs also called “spin-flip” mechanism to flip an up-spin to a downspin, or change the binary state from 0 to 1. One proposed design of a spin FET (spintronic field-effect transistor) has a source and a drain, separated by a narrow semi conducting channel, the same as in a conventional FET. In the spin FET, both the source and the drain are ferromagnetic. The source sends spin-polarized electrons in to the channel, and this spin current flow easily if it reaches the drain unaltered (top). Fig 9: Spin Based Transistor
  • 19. A voltage applied to the gate electrode produces an electric field in the channel, which causes the spins of fastmoving electrons to process, or rotate (bottom). The drain impedes the spin currentaccording to how far the spins have been rotated. Flipping spins in this way takes much less energy and is much faster than the conventional FET process of pushing charges out of the channel with a larger electric filed. In these devices a non magnetic layer which is used for transmitting and controlling the spin polarized electrons from source to drain plays a crucial role. For functioning of this device first the spins have to be injected from source into this non-magnetic layer and then transmitted to the collector. These non-magnetic layers are also called as semimetals, because they have very larger spin diffusion lengths.The injected spins which are transmitted through this layer start processing as illustrated in Figure before they reach the collector due to the spin-orbit coupling effect. Fig.10 Spin polarized field effect transistor Vg is the gate voltage. When Vg is zero the injected spins which are transmitted through the 2DEG layer starts processing before they reach the collector, thereby reducing the net spin polarization. Vg is the gate voltage. When Vg >> 0 the precession of the electrons is controlled with electric filed thereby allowing the spins to reach at the collector with the same polarization. Hence the net spin polarization is reduced
  • 20. Traditional transistors use on-and-off charge currents to create bits—the binary zeroes and ones of computer information. ―Quantum spin field effect‖ transistor will use up-and-down spin states to generate the same binary data. One can think of electron spin as an arrow; it can point upward or downward; ―spin-up and spin-down can be thought of as a digital system, representing the binary 0 and 1. The quantum transistor employs also called ―spin-flip‖ mechanism to flip an up- spin to a downspin, or change the binary state from 0 to 1. One proposed design of a spin FET (spintronic field-effect transistor) has a source and a drain, separated by a narrow semi conducting channel, the same as in a conventional FET. In the spin FET, both the source and the drain are ferromagnetic. The source sends spin- polarized electrons in to the channel, and this spin current flow easily if it reaches the drain unaltered (top). A voltage applied to the gate electrode produces an electric field in the channel, which causes the spins of fast-moving electrons to process, or rotate (bottom). The drain impedes the spin current according to how far the spins have been rotated. Flipping spins in this way takes much less energy and is much faster than the conventional FET process of pushing charges out of the channel with a larger electric filed. One advantage over regular transistors is that these spin states can be detected and altered without necessarily requiring the application of an electric current. This allows for detection hardware that are much smaller but even more sensitive than today's devices, which rely on noisy amplifiers to detect the minute charges used on today's data storage devices. The potential end result is devices that can store more data in less space and consume less power, using less costly materials. The increased sensitivity of spin transistors is also being researched in creating more sensitive automotive sensors, a move being encouraged by a push for more environmentally-friendly vehicles. A second advantage of a spin transistor is that the spin of an electron is semi-permanent and can be used as means of creating cost-effective non volatile solid state storage that does not require the constant application of current to sustain. It is one of the technologies being explored for Magnetic Random Access Memory (MRAM) Spin transistors are often used in computers for data processing. They can also be used to produce a computer's random access memory and are being tested for use in magnetic RAM. This memory is superfast and information stored on it is held in place after the computer is powered off, much like a hard disk.
  • 21. Quantum Computer The development of classical computers is still making enormous progress and no end of that seems to be in sight. More over, the design of Quantum Computers seems to be very questionable and almost surely enormously expensive. All this is true, However, there are four very good reason for exploring Quantum Computing as much as possible.  Quantum computing is a challenge . A very fundamental and natural challenge According to our current knowledge, our physical world is fundamentally quantum mechanical. All computers are physical devices and all real computations are physical processes.  Quantum computing seems to be very must and actually our destiny. As miniaturization of computing devices continues , we are rapidly approaching the microscopic level, where the laws of the quantum world dominates.  Quantum computing is the potential . There are already results convincingly demonstrating that for some important practical problems quantum computers are theoretically exponentially more powerful than classical computer.  Finally, the development of quantum computing is a drive and gives new impetus to explore in more detail and new points of view concepts, potentials, laws and limitations of the quantum world and to improve our knowledge of the natural world. The study of information processing laws, limitations and potentials is nowadays in general a powerful methodology to extend our knowledge, and this seems to be particularly true for quantum mechanics i.e related spintronics. Several profound insights into the natural world have already been obtained on this basis. In a quantum computer, the fundamental unit of information (called a quantum bit or qubit), is not binary but rather more quaternary in name. This qubit property arises as a direct consequence of its adherence to the laws of quantum mechanics. A qubit can exist not only in a state corresponding to the logical state 0 or 1 as in a classical bit, but also in states corresponding to a blend or superposition of these classical states. In other words, a qubit can exist as a zero, a one or simultaneously as both 0 and 1, with a numerical coefficient representing the probability for each state. Each electron spin can represent a bit; for instance, a 1 for spin up and 0 for spin down. With conventional computers, Engineers go to great lengths to ensure that bits remain in stable, well-defined states. A quantum computer, in contrast, lies on encoding information within quantum bits, or qubits, each of which can exist in a superposition of 0 and 1. By having a large number of qubits in superposition of alternative states, a quantum computer intrinsically contains a massive parallelism.
  • 22. Unfortunately, in most physical systems, interactions with the surrounding environment rapidly disrupt these superposition states. A typical disruption would effectively change a superposition of 0 and 1 randomly into either a 0 or a 1, as process called decoherence. State-of-the-art qubits based on the charge of electrons in a semiconductor remain coherent for a few picoseconds at best and only at temperatures too low for practical applications. The rapid decoherence occurs because the electric force between charges is strong and long range. In traditional semiconductor devices, this strong interaction is beneficial, permitting delicate control of current flow with small electronic fields. To quantum coherent devices, however, it is a disadvantage. As a result, an experiment was conducted on the qubits, which are based on the electron-spin. Electron-spin qubits interact only weakly with the environment surrounding them, principally through magnetic fields that are non-uniform in space or changing in time. Such fields can be effectively shielded. The goal of the experiment was to create some of these coherent spin states in a semiconductor to see how long they could survive. Much to the surprise, the optically excited spin states in ZnSe remained coherent for several nanoseconds at low temperatures—1,000 times as long as charge-based qubits. The states even survived for a few nanoseconds at room temperature. Subsequent studies of electrons in gallium arsenide (GaAs) have shown that, under optimal conditions, spin coherence in a semiconductor is possible Spintronics Scanner Cancer cells are the somatic cells which are grown into abnormal size. The Cancer cells have different electromagnetic sample when compared to normal cells. For many types of Cancer, it is easier to treat and cure the Cancer if it is found early. There are many different types of Cancer, but most Cancers begin with abnormal cells growing out of control, forming a lump that's called a tumour. The tumour can continue to grow until the Cancer begins to spread to other parts of the body. If the tumour is found when it is still very small, curing the Cancer can be easy. However, the longer the tumour goes unnoticed, the greater the chance that the Cancer has spread. This makes treatment more difficult. Tumour developed in human body, is removed by performing a surgery. Even if a single cell is present after the surgery, it would again develop into a tumour. In order to prevent this, an efficient route for detecting the Cancer cells is required. Here, in this paper, we introduce a new route for detecting the Cancer cells after a surgery. This accurate detection of the existence of Cancer cells at the beginning stage itself entertains the prevention of further development of the tumour.
  • 23. This spintronics scanning technique is an efficient technique to detect cancer cells even when they are less in number. An innovative approach to detect the cancer cells with the help of Spintronics: The following setup is used for the detection of cancer cells in a human body: (a) Polarized electron source (b) Spin detector (c) Magnetic Field Polarized electron source: A beam of electrons is said to be polarized if their spins point, on average, in a specific direction. There are several ways to employ spin on electrons and to control them. The requirement for this paper is an electron beam with all its electrons polarized in a specific direction. The following are the ways to meet the above said requirement: Photoemission from negative electron affinity GaAs Chemi-ionization of optically pumped meta stable Helium An optically pumped electron spin filter A Wein style injector in the electron source A spin filter is more efficient electron polarizer which uses an ordinary electron source along with a gaseous layer of Rb. Free electrons diffuse under the action of an electric field through Rb vapour that has been spin polarized in optical pumping. Through spin exchange collisions with the Rb, the free electrons become polarized and are extracted to form a beam. To reduce the emission of depolarizing radiation, N2 is used to quench the excited Rb atoms during the optical pumping cycle. Spin detectors: There are many ways by which the spin of the electrons can be detected efficiently. The spin polarization of the electron beam can be analyzed by using: (a)Mott polar meter (b)Compton polar meter (c)Miller type polar meter Typical Mott polar meters require electron energies of ~100 kV. But Mini Mott polar meter uses energies of ~25 k eV, requiring a smaller overall design. The Mini Mott polar meter has three major sections: the electron transport system, the target chamber, and the detectors. The first section the electrons enter is the transport system. An Engel lens configuration was used here. Two sets of four deflectors were used as the first and last lens. The electrons next enter the target chamber. The chamber consists of a cylindrical target within a polished stainless steel hemisphere. A common material used for the high-Z nuclei target is gold. Low-Z nuclei help minimize unwanted scattering, so aluminium was chosen. Scattered electrons then exit the target chamber and are collected in the detectors. Thus there are many methods for detecting the spin polarization of electrons.
  • 24. External Magnetic Field: An external magnetic field is required during this experiment. The magnetic field is applied after the surgery has undergone. First, it is applied to an unaffected part of the body and then to the surgery undergone part of the body. It is already mentioned that the magnetic field could easily alter the polarization of electrons. This technique using spintronics is suggested by us to identify tumour cells after surgery. The procedure for doing this experiment is as follows: Optical Spin Filter: After surgery and the removal of the tumour, the patient is exposed to a strong magnetic field. Now the polarized electron beam is applied over the unaffected part and spin orientation of electrons are determined using polar meter. Then the same polarized beam is targeted over the affected part of the body and from the reflected beam, change in spin is determined. Based on these two values of spin orientation, the presence of tumour cells can be detected even if they are very few in number. Hence, we suggest this method for the detection purpose. A detailed view of this innovative approach is given as follows. Spin Orientation of the unaffected part of the body: Applying Magnetic Field: When the magnetic field is applied to the unaffected part of the human body, the normal somatic cells absorbs the magnetic energy and retains it. Determining the Spin orientation: -When the electrons get incident on the cells the magnetic energy absorbed by the cells alters the spin orientation of the electrons. These electrons get reflected and it is detected by the Mott polar meter. Then the change in spin orientation of the electrons is measured as Sx. Spin Orientation of the surgery undergone part of the body: Applying Magnetic Filter: In the surgery undergone part of the body an external magnetic field is applied. The cancer cells which are present, if any, will absorb more magnetic energy than the normal cells since they differ in their electromagnetic pattern. Determining the spin Orientation: Now an electron beam which is polarized is incident on the surgery undergone part of the body. The magnetic energy absorbed by the cancer cell alter the spin orientation of the electron beam. Since cancer cells absorb more magnetic energy, the change in orientation caused by them is also more. If no cancer cells are present the amount of change is equal to the previous case. The change in spin is measured by the polar meter as Sy.
  • 25. Inference: If the change in the spin in the unaffected part of the body is same as that of the surgery undergone part, i.e. If Sx=Sy Then, There are no cancer cells in the surgery undergone part of the body and all the cells have been removed by the surgery. If the change in spin in the unaffected part is not equal to the change caused by the surgery undergone part of the body, i.e. If Sx not equals Sy Then, There are some cancer cells in the surgery undergone part of the body and the cancer cells are not completely removed by the surgery. The steps involved are: 1) The patient is exposed to a strong magnetic field so that his body cell gets magnetized. 2) A beam of electrons with polarized spin is introduced on the unaffected part of the body and the change in spin is detected by a polar meter. 3) A beam of electrons with polarized spin is introduced on the part which had undergone surgery. And the corresponding change in spin be Y 4) If X - Y = 0, it indicates that cancer cells have been removed from the body, if not it indicates the presence of traces of cancer cells and it has to be treated again for ensuring complete safety to the patient. Thus this technique efficiently identifies the presence of cancer cells in that part of the body that has undergone surgery to prevent any further development. ADVANTAGES OF SPINTRONICS As most of the spintronics devices/applications are on paper all the advantages are just defined based on theoretical findings and they may have some dis-advantages which will/may be known after they are fabricated and used. Some of the advantages of spintronics are:  The spin devices act as multi-functional units  Low power consumption.  Compact and Faster Devices  Larger storage capacity
  • 26.  The MRAM has all the properties of DRAM ,SRAM and ROM and hence single memory chip can be used instead of three memory chips  Spintronics does not require unique and specialized semiconductors; can be implemented or with common metals, such as Copper, Aluminium and Silver. Since Spins don‟t change when power is turned off, the memory remains non-volatile. Disadvantages of Spintronics  Controlling the spin for long distances  Silicon causes electrons to lose their spin state. Major challenges are:.  Transport of spin polarized carriers across relevant length scales  Manipulation of both electron and nuclear spins on sufficiently fast time scales Real Time Applications The applications of spin devices and hence spintronics are vast since it provides many advantages such as speed and size. . Some of the potential applications are:  Spin LED  Spin FET  MRAM MRAM:- The MRAM is the form of the RAM and is acronym for Magnetic Random Access Memory.
  • 27. MRAM basically uses a spin device known as Magnetic Tunnel Junction. The property of Tunnel magneto résistance [MTR] of the MTJ is used in MRAM. The relative change of MTR can reach 70% at room temperature. The figure below shows the structure of the MTJ as well as MRAM. The MRAM is presently under development and is expected to reach similar densities and access times as the current SRAM and DRAM, but their main advantages on these volatile semiconductor- based memories is that they retain data even after losing power and hence to helps to decrease the boot – up time of computers. As shown in the figure each junction can store a bit of data. If the polarization of spin is in parallel at both the layers, the resistance will be less and we say that a bit “0” is stored. And if the spin polarization is anti – parallel then resistance is high and we say a bit “1” is stored. The main advantage of MRAM is that it can attain a writing speed of 1000 times to that of the present RAM’s. SPIN FET:- The figure above the structure and working of Spin FET. As shown the Source and Drain areas are fabricated using Ferro-magnetic material and the channel is fabricated using the semiconductor material. The additional gating effect is via the magnetic field. The working of the spin FET is illustrated in the upper part of the figure. It illustrates the physics of devices where both injection of spins into semiconductor and detection of spin information are electrical. The ideal situation is when the spin lifetime is much longer than spent by the carriers in semiconductor.
  • 28. As shown a spin polarized current is then easily transmitted in the parallel configuration of emitter and collector, whereas the anti-parallel one leads to spin accumulation and current blockade. SPIN LED:- The figure above shows the structure of spin LED. The LED has a heterostructure as shown. Spin – polarized electrons are injected from a paramagnetic DMS into a GaAs/AlGaAs LED, which leads to emission of circularly polarized light. An injection efficiency of 90% spin polarized current has been demonstrated with this structure. Some other applications-  Laptop hard drives  4GB Compact Flash card  iPod nano CONCLUSION AND FUTURE SCOPE Conclusion:- In this report we have seen the advantages of spintronics devices over the present electronic devices. As said earlier this is the technology which will replace the present electronics era and provides the advantages of speed, size, compactness so on. If the applications such as LED and MRAM can be realized we can attain high efficiency of output in the case of LED and we can attain high writing speed and reading efficiency in the case of MRAM.
  • 29. Spintronics is one of the most exciting and challenging areas in nanotechnology, important to both fundamental scientific research and industrial applications. These spintronics-devices, combining the advantages of magnetic materials and semiconductors, are expected to be non- volatile, versatile, fast and capable of simultaneous data storage and processing, while at the same time consuming less energy. They are playing an increasingly significant role in high-density data storage, microelectronics, sensors, quantum computing and bio-medical applications, etc. It is expected that the impact of spintronics to the microelectronics industry might be comparable to the development of the transistor 50 years ago. Though the area of spintronics has some drawbacks which will be realized when the spin devices will be fabricated we may still avoid these drawbacks to large extent. One drawback of this emerging technology is that since the spintronics is mainly based on the magnetic properties of the material, the magnetic field of the earth may affect the magnetic field inside the spin devices and cause errors. One main disadvantages of this is that the data stored in a MRAM may be altered and hence can lead to errors. Hopefully, this and many unknown effects will be found out and efforts are made to avoid such effects and lead to more reliable, more functional, with greater speed of operation of spin devices will be achieved. Future Scope :- Spintronics is still in its infancy and it‟s difficult to predict how it will evolve. New physics is being discovered and new materials are being developed, such as magnetic semiconductors Several experiments have been carried out for progress in transporting spins over long distances and in high electric fields that will probably prove successful in the near future. Spintronics in INDIIA - The technology wherein both the charge and spin of an electron is used to carry information has generated excitement for its potential in a wide range of applications. "The first applications of spintronics having been demonstrated, there is tremendous interest in the development of the next spintronics device. Spintronics biggest potential lies in embedded memories and non-volatile memory devices such as magneto resistive random access memory (MRAM), which will revolutionize the memory market.
  • 30. Other applications include the use of spintronics in quantum computation and the development of the quantum computer. Spin transistors are also could well challenge the monopoly of semiconductor electronics. Research in spintronics faces several challenges, especially handling-related issues. Because spintronics devices use magnetism and materials such as nickel, iron, cobalt — with alloys not commonly used in normal semiconductor electronics — there are difficulties in etching and patterning as well as in integrating the magnetic material into a silicon process for manufacturing MRAMs. The behaviour of the magnetic element on a chip in both read and write modes could be quite a hurdle it is required to make MRAMs reliable. Today everyone already has a spintronics device on their desktop, as all modern computers use the spin valve in order to read and write data on their hard drive. It was followed immediately by the discovery of Tunnelling Magneto resistance (TMR) leading to the magnetic tunnel junction that has been utilized for the next generation computer memory known as Magnetic Random Access Memory (MRAM), another spintronics device for computers. Therefore, the initial driving force for spintronics has been the improvement of computer technology. At present the research has been concentrating on the fabrication of spin transistors and spin logics devices integrating magnetic and semiconductors, with the aim of improving the existing capabilities of electronic transistors and logics devices so that the future computation and thus the future computer could become faster and consume less energy. There are four main areas in spintronics: 1)Understanding the fundamental physics, such as spin-dependant transports across the magnetic/ semiconductor interfaces and spin coherence length in semiconductors. 2) Synthesising suitable spintronics materials with Curie temperatures above room temperature, large spin polarisation at the Fermi level and matching conductivity between the magnetic and semiconductor materials. 3) Fabricating devices with nanometre feature sizes and developing new techniques for mass production. 4) Integrating spin-devices with current microelectronics and computing.
  • 31. REFERENCES 1) N Taniguchi, “On the basic concepts of Nano Technology” Proc. Intl conference prod engage, Tokyo (Journal Paper) 2) www.physik.uni-regensburg.de/.../Spintronics 3) http://www.slideshare.net 4) Das Sarma, S., et al. 2000. Theoretical perspectives on spintronics and spin-polarized transport. IEEE Transactions on Magnetics Books:- 5) Rainer Wiser (2nd edition), “Nano electronics and information technology - Advanced electronic materials & devices” 6) Electronic measurement and control of spin transport (Technical Publication) .