## What's hot

Coreset+SVM (論文紹介)
Coreset+SVM (論文紹介)

topology of musical data
topology of musical data
Tatsuki SHIMIZU

IJPC-2 C問題解説
IJPC-2 C問題解説
yutaka1999

M1 gp_Disco
M1 gp_Disco
Takuya Shimojoh

Data Analysis - Chapter two
Data Analysis - Chapter two
Kousuke Takeuhi

Introduction to Persistence Theory
Introduction to Persistence Theory
Tatsuki SHIMIZU

[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...
[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...
Deep Learning JP

Packing

Tatsuki SHIMIZU

UTPC2012 - K
UTPC2012 - K
omeometo

PRMLrevenge_3.3
PRMLrevenge_3.3
Naoya Nakamura

Ninja of Train
Ninja of Train
tomerun

MMDs10.6-7
MMDs10.6-7
mfumi

Warshall froyd
Warshall froyd
MatsuiRyo

2013.12.26 prml勉強会 線形回帰モデル3.2~3.4
2013.12.26 prml勉強会 線形回帰モデル3.2~3.4
Takeshi Sakaki

[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
Deep Learning JP

introductino to persistent homology and topological data analysis
introductino to persistent homology and topological data analysis
Tatsuki SHIMIZU

Tatsuki SHIMIZU

サンプリング定理
サンプリング定理
Toshihisa Tanaka

### What's hot(20)

Coreset+SVM (論文紹介)
Coreset+SVM (論文紹介)

topology of musical data
topology of musical data

IJPC-2 C問題解説
IJPC-2 C問題解説

M1 gp_Disco
M1 gp_Disco

Data Analysis - Chapter two
Data Analysis - Chapter two

Introduction to Persistence Theory
Introduction to Persistence Theory

[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...
[DL Hacks] Deterministic Variational Inference for RobustBayesian Neural Netw...

Packing
Packing

UTPC2012 - K
UTPC2012 - K

PRMLrevenge_3.3
PRMLrevenge_3.3

Ninja of Train
Ninja of Train

MMDs10.6-7
MMDs10.6-7

Warshall froyd
Warshall froyd

2013.12.26 prml勉強会 線形回帰モデル3.2~3.4
2013.12.26 prml勉強会 線形回帰モデル3.2~3.4

[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...

introductino to persistent homology and topological data analysis
introductino to persistent homology and topological data analysis

CMSI計算科学技術特論B(8) オーダーN法1
CMSI計算科学技術特論B(8) オーダーN法1

サンプリング定理
サンプリング定理

Segpair
Segpair
oupc

Magical
Magical
oupc

Gcd
Gcd
oupc

Palin
Palin
oupc

Kth
Kth
oupc

Goto
Goto
oupc

Comment
Comment
oupc

One
One
oupc

Cube
Cube
oupc

Permutation
Permutation
oupc

Trip
Trip
oupc

Paren
Paren
oupc

Sharp2sat
Sharp2sat
oupc

Rmq
Rmq
oupc

Replace
Replace
oupc

Sanpo
Sanpo
oupc

Yoichi Iwata

Segpair
Segpair

Magical
Magical

Gcd
Gcd

Palin
Palin

Kth
Kth

Goto
Goto

Comment
Comment

One
One

Cube
Cube

Permutation
Permutation

1
1

Trip
Trip

Paren
Paren

Sharp2sat
Sharp2sat

Rmq
Rmq

Replace
Replace

Sanpo
Sanpo

## Similar to Sort

katagaitai workshop #7 crypto ナップサック暗号と低密度攻撃
katagaitai workshop #7 crypto ナップサック暗号と低密度攻撃
trmr

Ryunosuke Iwai

MITSUNARI Shigeo

YoheiOkuyama

ディジタル信号処理の課題解説 その3
ディジタル信号処理の課題解説 その3
noname409

ダブル配列の実装方法
ダブル配列の実装方法
Higashiyama Masahiko

Word Sense Induction & Disambiguaon Using Hierarchical Random Graphs (EMNLP2010)
Word Sense Induction & Disambiguaon Using Hierarchical Random Graphs (EMNLP2010)
Koji Matsuda

【Unity道場スペシャル 2017博多】クォータニオン完全マスター
【Unity道場スペシャル 2017博多】クォータニオン完全マスター
Unity Technologies Japan K.K.

PRML輪講用資料10章(パターン認識と機械学習,近似推論法)
PRML輪講用資料10章(パターン認識と機械学習,近似推論法)
Toshiyuki Shimono

keiodig

RCCSRENKEI

[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
Deep Learning JP

C++によるソート入門
C++によるソート入門
AimingStudy

20181214 clebsch gordan_mizuta
20181214 clebsch gordan_mizuta
Rei Mizuta

Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用
Seiya Tokui

Toru Tamaki

Algorithm 速いアルゴリズムを書くための基礎
Algorithm 速いアルゴリズムを書くための基礎
Kenji Otsuka

Back propagation
Back propagation
T2C_

### Similar to Sort(20)

katagaitai workshop #7 crypto ナップサック暗号と低密度攻撃
katagaitai workshop #7 crypto ナップサック暗号と低密度攻撃

ディジタル信号処理の課題解説 その3
ディジタル信号処理の課題解説 その3

ダブル配列の実装方法
ダブル配列の実装方法

Word Sense Induction & Disambiguaon Using Hierarchical Random Graphs (EMNLP2010)
Word Sense Induction & Disambiguaon Using Hierarchical Random Graphs (EMNLP2010)

【Unity道場スペシャル 2017博多】クォータニオン完全マスター
【Unity道場スペシャル 2017博多】クォータニオン完全マスター

PRML輪講用資料10章(パターン認識と機械学習,近似推論法)
PRML輪講用資料10章(パターン認識と機械学習,近似推論法)

[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介

C++によるソート入門
C++によるソート入門

20181214 clebsch gordan_mizuta
20181214 clebsch gordan_mizuta

Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用

Algorithm 速いアルゴリズムを書くための基礎
Algorithm 速いアルゴリズムを書くための基礎

Back propagation
Back propagation

## More from oupc

Knapsack
Knapsack
oupc

Game
Game
oupc

Four op
Four op
oupc

Divisor
Divisor
oupc

Division
Division
oupc

Anagram
Anagram
oupc

Comment
Comment
oupc

Knapsack
Knapsack

Game
Game

Four op
Four op

Divisor
Divisor

Division
Division

Anagram
Anagram

A
A

Comment
Comment

### Sort

• 2. 問題概要  配列を値の交換によってソートしたい。  i と j を交換するのに C[i][j] のコストが必要になる。  順列 p をソートするのに必要な最小コスト =: f(p)  f(p) の最大値を求める。
• 3. 着眼点  f(p) を効率よく求めるのは案外大変 ( 参考 : Silly Sort )  最も愚直にコストを求めるには、 p からソートされた 状態へ Dijkstra を使う。  f(p) を求めるのに N! 程度のコストが必要になり、 全ての p について求めると (N!)^2 で TLE する。  逆に、ソートされた状態からの距離を考えれば Dijkstra を 1 回行うだけでよい。
• 4. 解法  N! 通りの全ての順列をノードとするグラフを考える。  ソートされた順列を始点として Dijkstra 法などで各 ノードまでの距離を求める。  距離の最大値が答えとなる。
• 5. グラフとして見る 0, 1, 2 0, 2, 1 1, 0, 2 1, 2, 0 2, 0, 1 2, 1, 0 C[0][1] C[0][2] C[1][2]
• 6. 実装  各順列までの距離をどのようなデータ構造で持つ か？ 1. 連想配列で配列をキーにする 2. 順列をビット列に落とす (3 * 7 bit あれば十分 ) 3. 順列に対する最小完全ハッシュ関数を利用す る ( 変換に N^2 かかるのがネック )  1 や 3 だと実装次第で TLE することもあるようで す。定数が重いとかではなく計算量が増加します。
• 7. 解答例  宮村 (C++) 95 行 1644 byte  橋本 (Java) 90 行 1800 byte
Current LanguageEnglish
Español
Portugues
Français
Deutsche