The document presents a unified approach for measuring semantic similarity between texts at multiple levels (sense, word, text) using semantic signatures. It generates semantic signatures through multi-seeded random walks over the WordNet graph. It then aligns and disambiguates words and senses to extract sense "seeds" for the signatures. Finally, it calculates signature similarity using measures like cosine similarity, weighted overlap, and top-k Jaccard. The approach provides a unified framework for semantic similarity that can be applied to various NLP tasks.