SlideShare a Scribd company logo
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

RETAINING WALL ANALYSIS
In accordance with EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values
Retaining wall details
Stem type;

Cantilever with inclined rear face

Stem height;

hstem = 4700 mm

Stem thickness;

tstem = 300 mm

Slope length to rear of stem;

lslr = 400 mm

Angle to rear face of stem;

α = atan(hstem / lslr) = 85.1 deg

Stem density;

γstem = 25 kN/m

3

Toe length;

ltoe = 3000 mm

Heel length;

lheel = 2500 mm

Base thickness;

tbase = 550 mm

Key position;

pkey = 5700 mm

Key depth;

dkey = 500 mm

Key thickness;

tkey = 500 mm

Base density;

γbase = 25 kN/m

Height of retained soil;

hret = 4000 mm

3

Angle of soil surface;

β = 10 deg

Depth of cover;

dcover = 700 mm

Depth of excavation;

dexc = 700 mm

Height of water;

hwater = 500 mm
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Dr. C. Sachpazis

Water density;

Date

Chk'd by
Date

22/12/2013
γw = 9.8 kN/m

3

Retained soil properties
Soil type;

Organic clay

Moist density;

γmr = 15 kN/m

Saturated density;

γsr = 16 kN/m

Characteristic effective shear resistance angle;

φ'r.k = 29 deg

Characteristic wall friction angle;

δr.k = 16 deg

3

3

Base soil properties
Soil type;

Organic clay

Moist density;

γmb = 17 kN/m

Characteristic cohesion;

c'b.k = 55 kN/m

3
2

2

Characteristic adhesion;

ab.k = 52 kN/m

Characteristic effective shear resistance angle;

φ'b.k = 26 deg

Characteristic wall friction angle;

δb.k = 15 deg

Characteristic base friction angle;

δbb.k = 26 deg

Loading details
Variable surcharge load;

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

SurchargeQ = 10 kN/m

2

App'd by

Date
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

22/12/2013

Chk'd by
Date

App'd by

Date
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

Calculate retaining wall geometry
Base length;

lbase = ltoe + tstem + lslr + lheel = 6200 mm

Base height;

hbase = tbase + dkey = 1050 mm

Saturated soil height;

hsat = hwater + dcover = 1200 mm

Moist soil height;

hmoist = hret - hwater = 3500 mm

Length of surcharge load;

lsur = (lheel + lslr × hsoil / hstem) = 2900 mm

- Distance to vertical component;

xsur_v = lbase - (lheel + lslr × hsoil / hstem) / 2 = 4750 mm

Effective height of wall;

heff = hbase + dcover + hret + lsur × tan(β) = 6261 mm

- Distance to horizontal component;

xsur_h = heff / 2 - dkey = 2631 mm

Area of wall stem;

Astem = hstem × (tstem + lslr / 2) = 2.35 m

2

- Distance to vertical component;

xstem = (hstem × tstem × (ltoe + tstem / 2) + hstem × lslr / 2 × (ltoe + tstem + lslr / 3)) / Astem = 3263 mm

Area of wall base;

Abase = lbase × tbase + dkey × tkey = 3.66 m

- Distance to vertical component;

xbase = (lbase × tbase / 2 + dkey × tkey × (pkey + tkey / 2)) / Abase = 3295 mm

Area of saturated soil;

Asat = hsat × (lheel + lslr × hsat / (2 × hstem)) = 3.061 m

- Distance to vertical component;

xsat_v = lbase - (hsat × lheel / 2 + lslr × hsat / (2 × hstem) × (lheel + lslr × hsat / (3 × hstem))) / Asat = 4924 mm

- Distance to horizontal component;

xsat_h = (hsat + hbase) / 3 - dkey = 250 mm

Area of water;

Awater = hsat × (lheel + lslr × hsat / (2 × hstem)) = 3.061 m

2

2

2

2

2

2

2
lheel

2

- Distance to vertical component;

xwater_v = lbase - (hsat ×

/ 2 + lslr × hsat / (2 × hstem) × (lheel + lslr × hsat / (3 × hstem))) / Asat = 4924 mm

- Distance to horizontal component;

xwater_h = (hsat + hbase) / 3 - dkey = 250 mm

Area of moist soil;

Amoist = (hret - hwater) × (lheel + lslr × (hmoist + 2 × hsat) / (2 × hstem)) + tan(β) × (lheel + lslr × hsoil / hstem) / 2 =

2

2

10.37 m
- Distance to vertical component;

2

2

xmoist_v = lbase - (hmoist × (lheel + lslr × hsat / hstem) / 2 + lslr × hmoist / (2 × hstem) × ((lheel + lslr × hsat / hstem) + lslr ×
3

hmoist / (3 × hstem)) + tan(β) × (lheel + lslr × hsoil / hstem) / 6) / Amoist = 4852 mm
- Distance to horizontal component;

xmoist_h = ((heff - hsat - hbase) × (tbase + hsat + (heff - hsat - hbase) / 3) / 2 + (hsat + hbase) × ((hsat + hbase)/2 - dkey)) /
(hsat + hbase + (heff - hsat - hbase) / 2) = 1785 mm
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Dr. C. Sachpazis

Area of base soil;

Date

Chk'd by
Date

22/12/2013

App'd by

Date

2

Apass = dcover × ltoe = 2.1 m

- Distance to vertical component;

xpass_v = lbase - (dcover × ltoe× (lbase - ltoe / 2)) / Apass = 1500 mm

- Distance to horizontal component;

xpass_h = (dcover + hbase) / 3- dkey = 83 mm

Partial factors on actions - Table A.3 - Combination 1
Permanent unfavourable action;

γG = 1.35

Permanent favourable action;

γGf = 1.00

Variable unfavourable action;

γQ = 1.50

Variable favourable action;

γQf = 0.00

Partial factors for soil parameters – Table A.4 - Combination 1
Angle of shearing resistance;

γφ' = 1.00

Effective cohesion;

γc' = 1.00

Weight density;

γγ = 1.00

Retained soil properties
Design effective shear resistance angle;

φ'r.d = atan(tan(φ'r.k) / γφ') = 29 deg

Design wall friction angle;

δr.d = atan(tan(δr.k) / γφ') = 16 deg

Base soil properties
Design effective shear resistance angle;

φ'b.d = atan(tan(φ'b.k) / γφ') = 26 deg

Design wall friction angle;

δb.d = atan(tan(δb.k) / γφ') = 15 deg

Design base friction angle;

δbb.d = atan(tan(δbb.k) / γφ') = 26 deg

Design effective cohesion;

c'b.d = c'b.k / γc' = 55 kN/m

Design adhesion;

2

2

ab.d = ab.k / γc' = 52 kN/m

Using Coulomb theory
Active pressure coefficient;

2

2

2

KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] )
= 0.400
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Passive pressure coefficient;

Date

Chk'd by
Date

22/12/2013

App'd by

2

Date
2

KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 4.051

Sliding check
Vertical forces on wall
Wall stem;

Fstem = γGf × Astem × γstem = 58.8 kN/m

Wall base;

Fbase = γGf × Abase × γbase = 91.5 kN/m

Saturated retained soil;

Fsat_v = γGf × Asat × (γsr - γw) = 18.9 kN/m

Water;

Fwater_v = γGf × Awater × γw = 30 kN/m

Moist retained soil;

Fmoist_v = γGf × Amoist × γmr = 155.6 kN/m

Total;

Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fwater_v = 354.8 kN/m

Horizontal forces on wall
Surcharge load;

Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 35.1 kN/m

Saturated retained soil;

Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.9 kN/m

Water;

Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 33.5 kN/m

Moist retained soil;

Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) =

2

2

2

129.3 kN/m
Total;

Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 205.9 kN/m

Check stability against sliding
Base soil resistance;

2

Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) / 2 = 36.7 kN/m

Base friction;

Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 225 kN/m

Resistance to sliding;

Frest = Fexc_h + Ffriction = 261.7 kN/m

Factor of safety;

FoSsl = Frest / Ftotal_h = 1.271
PASS - Resistance to sliding is greater than sliding force
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

Overturning check
Overturning moments on wall
Surcharge load;

Msur_OT = Fsur_h × xsur_h = 92.4 kNm/m

Saturated retained soil;

Msat_OT = Fsat_h × xsat_h = 2 kNm/m

Water;

Mwater_OT = Fwater_h × xwater_h = 8.4 kNm/m

Moist retained soil;

Mmoist_OT = Fmoist_h × xmoist_h = 230.9 kNm/m

Base soil;

Mexc_OT = -Fexc_h × xexc_h = 5.5 kNm/m

Total;

Mtotal_OT = Msat_OT + Mmoist_OT + Mexc_OT + Mwater_OT + Msur_OT = 339.2 kNm/m

Restoring moments on wall
Wall stem;

Mstem_R = Fstem × xstem = 191.7 kNm/m

Wall base;

Mbase_R = Fbase × xbase = 301.5 kNm/m

Saturated retained soil;

Msat_R = Fsat_v × xsat_v = 93.3 kNm/m

Water;

Mwater_R = Fwater_v × xwater_v = 147.9 kNm/m

Moist retained soil;

Mmoist_R = Fmoist_v × xmoist_v = 754.8 kNm/m

Total;

Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R + Mwater_R = 1489.2 kNm/m

Check stability against overturning
Factor of safety;

FoSot = Mtotal_R / Mtotal_OT = 4.39
PASS - Maximum restoring moment is greater than overturning moment

Bearing pressure check
Vertical forces on wall
Wall stem;

Fstem = γG × Astem × γstem = 79.3 kN/m

Wall base;

Fbase = γG × Abase × γbase = 123.5 kN/m

Surcharge load;

Fsur_v = γQ × SurchargeQ × (lheel + lslr × hsoil / hstem) = 43.5 kN/m

Saturated retained soil;

Fsat_v = γG × Asat × (γsr - γw) = 25.6 kN/m
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Water;

Fwater_v = γG × Awater × γw = 40.5 kN/m

Moist retained soil;

Fmoist_v = γG × Amoist × γmr = 210 kN/m

Base soil;

Fpass_v = γG × Apass × γmb = 48.2 kN/m

Total;

Date

Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 570.7 kN/m

Horizontal forces on wall
Surcharge load;

Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 35.1 kN/m

Saturated retained soil;

Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.9 kN/m

2

2

Water;

Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 33.5 kN/m

Moist retained soil;

Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) =

2

129.3 kN/m
2

Base soil;

Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase) / 2 = -101.9 kN/m

Total;

Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0 kN/m

Moments on wall
Wall stem;

Mstem = Fstem × xstem = 258.8 kNm/m

Wall base;

Mbase = Fbase × xbase = 407 kNm/m

Surcharge load;

Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 114.2 kNm/m

Saturated retained soil;

Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 124 kNm/m

Water;

Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 191.3 kNm/m

Moist retained soil;

Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 788.1 kNm/m

Base soil;

Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 80.8 kNm/m

Total;

Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1964.1 kNm/m

Check bearing pressure
Distance to reaction;

x = Mtotal / Ftotal_v = 3442 mm

Eccentricity of reaction;

e = x - lbase / 2 = 342 mm

Loaded length of base;

lload = 2 × (lbase - x) = 5516 mm
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

2

Bearing pressure at toe;

qtoe = 0 kN/m

Bearing pressure at heel;

qheel = Ftotal_v / lload = 103.4 kN/m

Effective overburden pressure;

q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 4.1 kN/m

2
2

2

Design effective overburden pressure;

q' = q / γγ = 4.1 kN/m

Bearing resistance factors;

Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) = 11.854

2

Nc = (Nq - 1) × cot(φ'b.d) = 22.254
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 10.588
Foundation shape factors;

sq = 1
sγ = 1
sc = 1

Load inclination factors;

H = Ftotal_h = 0 kN/m
V = Ftotal_v = 570.7 kN/m
m=2
m

iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1
(m + 1)

iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]

=1

ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity;

nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb - γw) × lload × Nγ × sγ × iγ = 1482.4 kN/m

Factor of safety;

2

FoSbp = nf / max(qtoe, qheel) = 14.329
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

Partial factors on actions - Table A.3 - Combination 2
Permanent unfavourable action;

γG = 1.00

Permanent favourable action;

γGf = 1.00

Variable unfavourable action;

γQ = 1.30

Variable favourable action;

γQf = 0.00
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

Partial factors for soil parameters – Table A.4 - Combination 2
Angle of shearing resistance;

γφ' = 1.25

Effective cohesion;

γc' = 1.25

Weight density;

γγ = 1.00

Retained soil properties
Design effective shear resistance angle;

φ'r.d = atan(tan(φ'r.k) / γφ') = 23.9 deg

Design wall friction angle;

δr.d = atan(tan(δr.k) / γφ') = 12.9 deg

Base soil properties
Design effective shear resistance angle;

φ'b.d = atan(tan(φ'b.k) / γφ') = 21.3 deg

Design wall friction angle;

δb.d = atan(tan(δb.k) / γφ') = 12.1 deg

Design base friction angle;

δbb.d = atan(tan(δbb.k) / γφ') = 21.3 deg

Design effective cohesion;

c'b.d = c'b.k / γc' = 44 kN/m

Design adhesion;

ab.d = ab.k / γc' = 41.6 kN/m

2
2

Using Coulomb theory
Active pressure coefficient;

2

2

2

KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] )
= 0.489

Passive pressure coefficient;

2

2

KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 2.961

Sliding check
Vertical forces on wall
Wall stem;

Fstem = γGf × Astem × γstem = 58.8 kN/m

Wall base;

Fbase = γGf × Abase × γbase = 91.5 kN/m

Saturated retained soil;

Fsat_v = γGf × Asat × (γsr - γw) = 18.9 kN/m

Water;

Fwater_v = γGf × Awater × γw = 30 kN/m

Moist retained soil;

Fmoist_v = γGf × Amoist × γmr = 155.6 kN/m
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Total;

Date

Chk'd by
Date

22/12/2013

App'd by

Date

Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fwater_v = 354.8 kN/m

Horizontal forces on wall
Surcharge load;

Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 37.9 kN/m

Saturated retained soil;

Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.3 kN/m

Water;

Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 24.8 kN/m

Moist retained soil;

Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) =

2

2

2

119.3 kN/m
Total;

Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 189.3 kN/m

Check stability against sliding
Base soil resistance;

2

Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) / 2 = 27.1 kN/m

Base friction;

Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 180 kN/m

Resistance to sliding;

Frest = Fexc_h + Ffriction = 207.2 kN/m

Factor of safety;

FoSsl = Frest / Ftotal_h = 1.094
PASS - Resistance to sliding is greater than sliding force

Overturning check
Overturning moments on wall
Surcharge load;

Msur_OT = Fsur_h × xsur_h = 99.8 kNm/m

Saturated retained soil;

Msat_OT = Fsat_h × xsat_h = 1.8 kNm/m

Water;

Mwater_OT = Fwater_h × xwater_h = 6.2 kNm/m

Moist retained soil;

Mmoist_OT = Fmoist_h × xmoist_h = 213 kNm/m

Base soil;

Mexc_OT = -Fexc_h × xexc_h = 4.1 kNm/m

Total;

Mtotal_OT = Msat_OT + Mmoist_OT + Mexc_OT + Mwater_OT + Msur_OT = 324.8 kNm/m

Restoring moments on wall
Wall stem;

Mstem_R = Fstem × xstem = 191.7 kNm/m
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

Wall base;

App'd by

Date

Mbase_R = Fbase × xbase = 301.5 kNm/m

Saturated retained soil;

Msat_R = Fsat_v × xsat_v = 93.3 kNm/m

Water;

Mwater_R = Fwater_v × xwater_v = 147.9 kNm/m

Moist retained soil;

Mmoist_R = Fmoist_v × xmoist_v = 754.8 kNm/m

Total;

Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R + Mwater_R = 1489.2 kNm/m

Check stability against overturning
Factor of safety;

FoSot = Mtotal_R / Mtotal_OT = 4.584
PASS - Maximum restoring moment is greater than overturning moment

Bearing pressure check
Vertical forces on wall
Wall stem;

Fstem = γG × Astem × γstem = 58.8 kN/m

Wall base;

Fbase = γG × Abase × γbase = 91.5 kN/m

Surcharge load;

Fsur_v = γQ × SurchargeQ × (lheel + lslr × hsoil / hstem) = 37.7 kN/m

Saturated retained soil;

Fsat_v = γG × Asat × (γsr - γw) = 18.9 kN/m

Water;

Fwater_v = γG × Awater × γw = 30 kN/m

Moist retained soil;

Fmoist_v = γG × Amoist × γmr = 155.6 kN/m

Base soil;

Fpass_v = γG × Apass × γmb = 35.7 kN/m

Total;

Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 428.2 kN/m

Horizontal forces on wall
Surcharge load;

Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 37.9 kN/m

Saturated retained soil;

Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.3 kN/m

Water;

Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 24.8 kN/m

Moist retained soil;

Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) =

2

2

2

119.3 kN/m
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

2

Base soil;

Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase) / 2 = -75.4 kN/m

Total;

Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0 kN/m

Moments on wall
Wall stem;

Mstem = Fstem × xstem = 191.7 kNm/m

Wall base;

Mbase = Fbase × xbase = 301.5 kNm/m

Surcharge load;

Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 79.3 kNm/m

Saturated retained soil;

Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 91.5 kNm/m

Water;

Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 141.7 kNm/m

Moist retained soil;

Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 541.8 kNm/m

Base soil;

Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 59.8 kNm/m

Total;

Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1407.3 kNm/m

Check bearing pressure
Distance to reaction;

x = Mtotal / Ftotal_v = 3287 mm

Eccentricity of reaction;

e = x - lbase / 2 = 187 mm

Loaded length of base;

lload = 2 × (lbase - x) = 5826 mm

Bearing pressure at toe;

qtoe = 0 kN/m

Bearing pressure at heel;

qheel = Ftotal_v / lload = 73.5 kN/m

Effective overburden pressure;

q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 4.1 kN/m

Design effective overburden pressure;

q' = q / γγ = 4.1 kN/m

Bearing resistance factors;

Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) = 7.298

2
2

2
2

Nc = (Nq - 1) × cot(φ'b.d) = 16.141
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 4.915
Foundation shape factors;

sq = 1
sγ = 1
sc = 1

2
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Load inclination factors;

Date

Chk'd by
Date

22/12/2013

App'd by

Date

H = Ftotal_h = 0 kN/m
V = Ftotal_v = 428.2 kN/m
m=2
m

iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1
(m + 1)

iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]

=1

ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity;

nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb - γw) × lload × Nγ × sγ × iγ = 843 kN/m

Factor of safety;

2

FoSbp = nf / max(qtoe, qheel) = 11.471
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN
In accordance with EN1992-1-1:2004 incorporating Corrigendum dated
January 2008 and the recommended values
Concrete details - Table 3.1 - Strength and deformation characteristics for concrete
Concrete strength class;

C32/40

Characteristic compressive cylinder strength;

fck = 32 N/mm

Characteristic compressive cube strength;

fck,cube = 40 N/mm

Mean value of compressive cylinder strength;

fcm = fck + 8 N/mm = 40 N/mm

Mean value of axial tensile strength;

fctm = 0.3 N/mm × (fck / 1 N/mm )

2
2
2

2

2
2 2/3

= 3.0 N/mm

2

2

5% fractile of axial tensile strength;

fctk,0.05 = 0.7 × fctm = 2.1 N/mm

Secant modulus of elasticity of concrete;

Ecm = 22 kN/mm × (fcm / 10 N/mm )

Partial factor for concrete - Table 2.1N;

γC = 1.50

2

2 0.3

2

= 33346 N/mm
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

Compressive strength coefficient - cl.3.1.6(1);

fcd = αcc × fck / γC = 21.3 N/mm

Maximum aggregate size;

Date

αcc = 1.00

Design compressive concrete strength - exp.3.15;

App'd by

hagg = 20 mm

2

Reinforcement details
2

Characteristic yield strength of reinforcement;

fyk = 500 N/mm

Modulus of elasticity of reinforcement;

Es = 200000 N/mm

Partial factor for reinforcing steel - Table 2.1N;

γS = 1.15

Design yield strength of reinforcement;

fyd = fyk / γS = 435 N/mm

2

2

Cover to reinforcement
Front face of stem;

csf = 40 mm

Rear face of stem;

csr = 50 mm

Top face of base;

cbt = 50 mm

Bottom face of base;

cbb = 75 mm

Check stem design at base of stem
Depth of section;

h = 700 mm

Rectangular section in flexure - Section 6.1
Design bending moment combination 1;

M = 243.2 kNm/m

Depth to tension reinforcement;

d = h - csr - φsr / 2 = 640 mm
2

K = M / (d × fck) = 0.019
K' = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 608 mm

Depth of neutral axis;

x = 2.5 × (d – z) = 80 mm

Area of tension reinforcement required;

Asr.req = M / (fyd × z) = 920 mm /m

Tension reinforcement provided;

20 dia.bars @ 200 c/c

2
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013
2

App'd by

Date

2

Area of tension reinforcement provided;

Asr.prov = π × φsr / (4 × ssr) = 1571 mm /m

Minimum area of reinforcement - exp.9.1N;

Asr.min = max(0.26 × fctm / fyk, 0.0013) × d = 1006 mm /m

Maximum area of reinforcement - cl.9.2.1.1(3);

2

2

Asr.max = 0.04 × h = 28000 mm /m
max(Asr.req, Asr.min) / Asr.prov = 0.641
PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 146.7 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Asr.prov × z) = 153.6 N/mm

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 150000 mm /m

2

2

2

Mean value of concrete tensile strength;

fct.eff = fctm = 3.0 N/mm

Reinforcement ratio;

ρp.eff = Asr.prov / Ac.eff = 0.010

Modular ratio;

αe = Es / Ecm = 5.998

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × csr + k1 × k2 × k4 × φsr / ρp.eff = 495 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es
wk = 0.228 mm
wk / wmax = 0.76
PASS - Maximum crack width is less than limiting crack width
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

Rectangular section in shear - Section 6.2
Design shear force;

V = 135.6 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.559

Longitudinal reinforcement ratio;

ρl = min(Asr.prov / d, 0.02) = 0.002
1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

0.5

× fck
2

2

= 0.385 N/mm
4

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d
VRd.c = 246.7 kN/m
V / VRd.c = 0.550
PASS - Design shear resistance exceeds design shear force

Horizontal reinforcement parallel to face of stem - Section 9.6
2

Minimum area of reinforcement – cl.9.6.3(1);

Asx.req = max(0.25 × Asr.prov, 0.001 × (tstem + lslr)) = 700 mm /m

Maximum spacing of reinforcement – cl.9.6.3(2);

ssx_max = 400 mm

Transverse reinforcement provided;

16 dia.bars @ 200 c/c

Area of transverse reinforcement provided;

Asx.prov = π × φsx / (4 × ssx) = 1005 mm /m

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design
Depth of section;

h = 550 mm

Rectangular section in flexure - Section 6.1
Design bending moment combination 2;

M = 138.1 kNm/m

Depth to tension reinforcement;

d = h - cbb - φbb / 2 = 465 mm
2

K = M / (d × fck) = 0.020
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm;

0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 442 mm
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

Depth of neutral axis;

Abb.req = M / (fyd × z) = 719 mm /m

Tension reinforcement provided;

20 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Abb.prov = π × φbb / (4 × sbb) = 1571 mm /m

Minimum area of reinforcement - exp.9.1N;

Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 731 mm /m

Maximum area of reinforcement - cl.9.2.1.1(3);

Date

x = 2.5 × (d – z) = 58 mm

Area of tension reinforcement required;

App'd by

Abb.max = 0.04 × h = 22000 mm /m

2

2

2

2

2

max(Abb.req, Abb.min) / Abb.prov = 0.465
PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 85.4 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Abb.prov × z) = 123 N/mm

2

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 163958 mm /m

Mean value of concrete tensile strength;

fct.eff = fctm = 3.0 N/mm

Reinforcement ratio;

ρp.eff = Abb.prov / Ac.eff = 0.010

2

2

Modular ratio;

αe = Es / Ecm = 5.998

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 610 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es
wk = 0.225 mm
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

wk / wmax = 0.75
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
Design shear force;

V = 135.7 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.656

Longitudinal reinforcement ratio;

ρl = min(Abb.prov / d, 0.02) = 0.003
1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

0.5

2

× fck

= 0.422 N/mm

2

4

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d
VRd.c = 204.3 kN/m
V / VRd.c = 0.664
PASS - Design shear resistance exceeds design shear force

Rectangular section in flexure - Section 6.1
Design bending moment combination 1;

M = 126.1 kNm/m

Depth to tension reinforcement;

d = h - cbt - φbt / 2 = 492 mm
2

K = M / (d × fck) = 0.016
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm;

0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 467 mm

Depth of neutral axis;

x = 2.5 × (d – z) = 62 mm

Area of tension reinforcement required;

Abt.req = M / (fyd × z) = 621 mm /m

2

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Abt.prov = π × φbt / (4 × sbt) = 1005 mm /m

Minimum area of reinforcement - exp.9.1N;

Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 774 mm /m

Maximum area of reinforcement - cl.9.2.1.1(3);

2

2

2

2

Abt.max = 0.04 × h = 22000 mm /m
max(Abt.req, Abt.min) / Abt.prov = 0.77
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 68.9 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Abt.prov × z) = 146.7 N/mm

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 145000 mm /m

2

2

2

Mean value of concrete tensile strength;

fct.eff = fctm = 3.0 N/mm

Reinforcement ratio;

ρp.eff = Abt.prov / Ac.eff = 0.007

Modular ratio;

αe = Es / Ecm = 5.998

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 562 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es
wk = 0.247 mm
wk / wmax = 0.825
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
Design shear force;

V = 90.4 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.638

Longitudinal reinforcement ratio;

ρl = min(Abt.prov / d, 0.02) = 0.002
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013
1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

0.5

× fck
2

App'd by

Date

2

= 0.415 N/mm
4

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d
VRd.c = 204.1 kN/m
V / VRd.c = 0.443
PASS - Design shear resistance exceeds design shear force

Check key design
Depth of section;

h = 500 mm

Rectangular section in flexure - Section 6.1
Design bending moment combination 0;

M = 7.1 kNm/m

Depth to tension reinforcement;

d = h - cbb - φk / 2 = 417 mm
2

K = M / (d × fck) = 0.001
K' = 0.196
K' > K - No compression reinforcement is required
0.5

Lever arm;

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 396 mm

Depth of neutral axis;

x = 2.5 × (d – z) = 52 mm

Area of tension reinforcement required;

Ak.req = M / (fyd × z) = 41 mm /m

2

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Ak.prov = π × φk / (4 × sk) = 1005 mm /m

Minimum area of reinforcement - exp.9.1N;

Ak.min = max(0.26 × fctm / fyk, 0.0013) × d = 656 mm /m

Maximum area of reinforcement - cl.9.2.1.1(3);

Ak.max = 0.04 × h = 20000 mm /m

2

2

2

2

max(Ak.req, Ak.min) / Ak.prov = 0.652
PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

Serviceability bending moment;

Date

Msls = 7.1 kNm/m

Tensile stress in reinforcement;

App'd by

σs = Msls / (Ak.prov × z) = 17.7 N/mm

2

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 149292 mm /m

2

2

Mean value of concrete tensile strength;

fct.eff = fctm = 3.0 N/mm

Reinforcement ratio;

ρp.eff = Ak.prov / Ac.eff = 0.007

Modular ratio;

αe = Es / Ecm = 5.998

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × cbb + k1 × k2 × k4 × φk / ρp.eff = 659 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es
wk = 0.035 mm
wk / wmax = 0.117
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
Design shear force;

V = 26 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.693

Longitudinal reinforcement ratio;

ρl = min(Ak.prov / d, 0.02) = 0.002
1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

0.5

× fck
2

2

= 0.436 N/mm
4

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d
VRd.c = 181.8 kN/m
V / VRd.c = 0.143
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

Chk'd by
Date

22/12/2013

App'd by

Date

PASS - Design shear resistance exceeds design shear force

Secondary transverse reinforcement to base - Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2);

2

Abx.req = 0.2 × Abb.prov = 314 mm /m

Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm
Transverse reinforcement provided;

12 dia.bars @ 200 c/c

Area of transverse reinforcement provided;

Abx.prov = π × φbx / (4 × sbx) = 565 mm /m

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Job Ref.

Project: Sloped rear face retaining wall Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February 2009 and the
recommended values
Section
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev. 1

Civil & Geotechnical Engineering

GEODOMISI Ltd. - Dr. Costas Sachpazis

Calc. by

Dr. C. Sachpazis

Date

22/12/2013

Chk'd by
Date

App'd by

Date

More Related Content

What's hot

Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Dr.Costas Sachpazis
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Dr.Costas Sachpazis
 
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Dr.Costas Sachpazis
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Dr.Costas Sachpazis
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Dr.Costas Sachpazis
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Dr.Costas Sachpazis
 
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Dr.Costas Sachpazis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Dr.Costas Sachpazis
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Dr.Costas Sachpazis
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Dr.Costas Sachpazis
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Dr.Costas Sachpazis
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
Dr.Costas Sachpazis
 

What's hot (20)

Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
 
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 

Viewers also liked

Retaining Walls
Retaining WallsRetaining Walls
Retaining Walls
Mereia Kali
 
Retaining wall design_example
Retaining wall design_exampleRetaining wall design_example
Retaining wall design_example
alibunar
 
Retaining wall
Retaining wallRetaining wall
Retaining walls
Retaining wallsRetaining walls
Retaining walls
Penchala Vineeth
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
Rahul
 
Whitemud Drive Retaining Wall
Whitemud Drive Retaining WallWhitemud Drive Retaining Wall
Whitemud Drive Retaining Wall
Jim McMullan
 
Review of Analysis of Retaining Wall Under Static and Seismic Loading
Review of Analysis of Retaining Wall Under Static and Seismic LoadingReview of Analysis of Retaining Wall Under Static and Seismic Loading
Review of Analysis of Retaining Wall Under Static and Seismic Loading
ijsrd.com
 
Nchrp rpt 611-seismic analysis and design of retaining walls
Nchrp rpt 611-seismic analysis and design of retaining wallsNchrp rpt 611-seismic analysis and design of retaining walls
Nchrp rpt 611-seismic analysis and design of retaining walls
Jose Carlos Calisto da Silva
 
Anchors rock anchors
Anchors rock anchorsAnchors rock anchors
Anchors rock anchors
Dr Fereidoun Dejahang
 
Design problem retaining wall
Design problem retaining wallDesign problem retaining wall
Design problem retaining wall
Rizwan Khurram
 
Reinforced and prestressed concrete kong & evans
Reinforced and prestressed concrete   kong & evansReinforced and prestressed concrete   kong & evans
Reinforced and prestressed concrete kong & evans
bridemcdamian
 
OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...
OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...
OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...
IAEME Publication
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
51412
 
Counterfort Retaining Wall
Counterfort Retaining WallCounterfort Retaining Wall
Counterfort Retaining Wall
Kaizer Dave
 
Modes of failure of retaining walls
Modes of failure of retaining wallsModes of failure of retaining walls
Modes of failure of retaining walls
Ritesh Chinchawade
 
Prestressed Concrete
Prestressed ConcretePrestressed Concrete
Prestressed Concrete
Ravi Savani
 
Theory of structures
Theory of structuresTheory of structures
A study on the construction process (Precast concrete, In-situ cast concrete,...
A study on the construction process (Precast concrete, In-situ cast concrete,...A study on the construction process (Precast concrete, In-situ cast concrete,...
A study on the construction process (Precast concrete, In-situ cast concrete,...
Bhaddin Al-Naqshabandi
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
Lovepreet Guron
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
Mandy Suzanne
 

Viewers also liked (20)

Retaining Walls
Retaining WallsRetaining Walls
Retaining Walls
 
Retaining wall design_example
Retaining wall design_exampleRetaining wall design_example
Retaining wall design_example
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
 
Whitemud Drive Retaining Wall
Whitemud Drive Retaining WallWhitemud Drive Retaining Wall
Whitemud Drive Retaining Wall
 
Review of Analysis of Retaining Wall Under Static and Seismic Loading
Review of Analysis of Retaining Wall Under Static and Seismic LoadingReview of Analysis of Retaining Wall Under Static and Seismic Loading
Review of Analysis of Retaining Wall Under Static and Seismic Loading
 
Nchrp rpt 611-seismic analysis and design of retaining walls
Nchrp rpt 611-seismic analysis and design of retaining wallsNchrp rpt 611-seismic analysis and design of retaining walls
Nchrp rpt 611-seismic analysis and design of retaining walls
 
Anchors rock anchors
Anchors rock anchorsAnchors rock anchors
Anchors rock anchors
 
Design problem retaining wall
Design problem retaining wallDesign problem retaining wall
Design problem retaining wall
 
Reinforced and prestressed concrete kong & evans
Reinforced and prestressed concrete   kong & evansReinforced and prestressed concrete   kong & evans
Reinforced and prestressed concrete kong & evans
 
OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...
OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...
OPTIMUM DESIGN OF SEMI-GRAVITY RETAINING WALL SUBJECTED TO STATIC AND SEISMIC...
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
Counterfort Retaining Wall
Counterfort Retaining WallCounterfort Retaining Wall
Counterfort Retaining Wall
 
Modes of failure of retaining walls
Modes of failure of retaining wallsModes of failure of retaining walls
Modes of failure of retaining walls
 
Prestressed Concrete
Prestressed ConcretePrestressed Concrete
Prestressed Concrete
 
Theory of structures
Theory of structuresTheory of structures
Theory of structures
 
A study on the construction process (Precast concrete, In-situ cast concrete,...
A study on the construction process (Precast concrete, In-situ cast concrete,...A study on the construction process (Precast concrete, In-situ cast concrete,...
A study on the construction process (Precast concrete, In-situ cast concrete,...
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Sachpazis: Sloped rear face retaining wall example

Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Dr.Costas Sachpazis
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Dr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Dr.Costas Sachpazis
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Dr.Costas Sachpazis
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing example
abdullahmohideen
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Dr.Costas Sachpazis
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Dr.Costas Sachpazis
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Dr.Costas Sachpazis
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Dr.Costas Sachpazis
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Dr.Costas Sachpazis
 
Sachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainSachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drain
Dr.Costas Sachpazis
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
IAEME Publication
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
Dr.Costas Sachpazis
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptx
Samirsinh Parmar
 

Similar to Sachpazis: Sloped rear face retaining wall example (15)

Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing example
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Sachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainSachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drain
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptx
 

More from Dr.Costas Sachpazis

Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Dr.Costas Sachpazis
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Dr.Costas Sachpazis
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Dr.Costas Sachpazis
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Dr.Costas Sachpazis
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
Dr.Costas Sachpazis
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
Dr.Costas Sachpazis
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
Dr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Dr.Costas Sachpazis
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Dr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
Dr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
Dr.Costas Sachpazis
 

More from Dr.Costas Sachpazis (20)

Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 

Recently uploaded

一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
bo44ban1
 
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHINHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NishantRathi18
 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
Knight Moves
 
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
wkip62b
 
一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理
一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理
一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理
21uul8se
 
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
qo1as76n
 
Practical eLearning Makeovers for Everyone
Practical eLearning Makeovers for EveryonePractical eLearning Makeovers for Everyone
Practical eLearning Makeovers for Everyone
Bianca Woods
 
Manual ISH (International Society of Hypertension)
Manual ISH (International Society of Hypertension)Manual ISH (International Society of Hypertension)
Manual ISH (International Society of Hypertension)
bagmai
 
一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样
tobbk6s8
 
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdfSECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
eloprejohn333
 
Divertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8djDivertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8dj
lunaemel03
 
CocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdfCocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdf
PabloMartelLpez
 
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Designforuminternational
 
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
pmgdscunsri
 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
Virtual Real Design
 
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
k7nm6tk
 
International Upcycling Research Network advisory board meeting 4
International Upcycling Research Network advisory board meeting 4International Upcycling Research Network advisory board meeting 4
International Upcycling Research Network advisory board meeting 4
Kyungeun Sung
 
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANEEASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
Febless Hernane
 
Virtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburghVirtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburgh
millarj46
 
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
3vgr39kx
 

Recently uploaded (20)

一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
 
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHINHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
 
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
 
一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理
一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理
一比一原版亚利桑那大学毕业证(UA毕业证书)如何办理
 
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
 
Practical eLearning Makeovers for Everyone
Practical eLearning Makeovers for EveryonePractical eLearning Makeovers for Everyone
Practical eLearning Makeovers for Everyone
 
Manual ISH (International Society of Hypertension)
Manual ISH (International Society of Hypertension)Manual ISH (International Society of Hypertension)
Manual ISH (International Society of Hypertension)
 
一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样
 
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdfSECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
 
Divertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8djDivertidamente SLIDE.pptxufururururuhrurid8dj
Divertidamente SLIDE.pptxufururururuhrurid8dj
 
CocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdfCocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdf
 
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
 
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
Maximize Your Content with Beautiful Assets : Content & Asset for Landing Page
 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
 
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
 
International Upcycling Research Network advisory board meeting 4
International Upcycling Research Network advisory board meeting 4International Upcycling Research Network advisory board meeting 4
International Upcycling Research Network advisory board meeting 4
 
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANEEASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
 
Virtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburghVirtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburgh
 
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
 

Sachpazis: Sloped rear face retaining wall example

  • 1. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date RETAINING WALL ANALYSIS In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Retaining wall details Stem type; Cantilever with inclined rear face Stem height; hstem = 4700 mm Stem thickness; tstem = 300 mm Slope length to rear of stem; lslr = 400 mm Angle to rear face of stem; α = atan(hstem / lslr) = 85.1 deg Stem density; γstem = 25 kN/m 3 Toe length; ltoe = 3000 mm Heel length; lheel = 2500 mm Base thickness; tbase = 550 mm Key position; pkey = 5700 mm Key depth; dkey = 500 mm Key thickness; tkey = 500 mm Base density; γbase = 25 kN/m Height of retained soil; hret = 4000 mm 3 Angle of soil surface; β = 10 deg Depth of cover; dcover = 700 mm Depth of excavation; dexc = 700 mm Height of water; hwater = 500 mm
  • 2. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Dr. C. Sachpazis Water density; Date Chk'd by Date 22/12/2013 γw = 9.8 kN/m 3 Retained soil properties Soil type; Organic clay Moist density; γmr = 15 kN/m Saturated density; γsr = 16 kN/m Characteristic effective shear resistance angle; φ'r.k = 29 deg Characteristic wall friction angle; δr.k = 16 deg 3 3 Base soil properties Soil type; Organic clay Moist density; γmb = 17 kN/m Characteristic cohesion; c'b.k = 55 kN/m 3 2 2 Characteristic adhesion; ab.k = 52 kN/m Characteristic effective shear resistance angle; φ'b.k = 26 deg Characteristic wall friction angle; δb.k = 15 deg Characteristic base friction angle; δbb.k = 26 deg Loading details Variable surcharge load; Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis SurchargeQ = 10 kN/m 2 App'd by Date
  • 3. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date 22/12/2013 Chk'd by Date App'd by Date
  • 4. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date Calculate retaining wall geometry Base length; lbase = ltoe + tstem + lslr + lheel = 6200 mm Base height; hbase = tbase + dkey = 1050 mm Saturated soil height; hsat = hwater + dcover = 1200 mm Moist soil height; hmoist = hret - hwater = 3500 mm Length of surcharge load; lsur = (lheel + lslr × hsoil / hstem) = 2900 mm - Distance to vertical component; xsur_v = lbase - (lheel + lslr × hsoil / hstem) / 2 = 4750 mm Effective height of wall; heff = hbase + dcover + hret + lsur × tan(β) = 6261 mm - Distance to horizontal component; xsur_h = heff / 2 - dkey = 2631 mm Area of wall stem; Astem = hstem × (tstem + lslr / 2) = 2.35 m 2 - Distance to vertical component; xstem = (hstem × tstem × (ltoe + tstem / 2) + hstem × lslr / 2 × (ltoe + tstem + lslr / 3)) / Astem = 3263 mm Area of wall base; Abase = lbase × tbase + dkey × tkey = 3.66 m - Distance to vertical component; xbase = (lbase × tbase / 2 + dkey × tkey × (pkey + tkey / 2)) / Abase = 3295 mm Area of saturated soil; Asat = hsat × (lheel + lslr × hsat / (2 × hstem)) = 3.061 m - Distance to vertical component; xsat_v = lbase - (hsat × lheel / 2 + lslr × hsat / (2 × hstem) × (lheel + lslr × hsat / (3 × hstem))) / Asat = 4924 mm - Distance to horizontal component; xsat_h = (hsat + hbase) / 3 - dkey = 250 mm Area of water; Awater = hsat × (lheel + lslr × hsat / (2 × hstem)) = 3.061 m 2 2 2 2 2 2 2 lheel 2 - Distance to vertical component; xwater_v = lbase - (hsat × / 2 + lslr × hsat / (2 × hstem) × (lheel + lslr × hsat / (3 × hstem))) / Asat = 4924 mm - Distance to horizontal component; xwater_h = (hsat + hbase) / 3 - dkey = 250 mm Area of moist soil; Amoist = (hret - hwater) × (lheel + lslr × (hmoist + 2 × hsat) / (2 × hstem)) + tan(β) × (lheel + lslr × hsoil / hstem) / 2 = 2 2 10.37 m - Distance to vertical component; 2 2 xmoist_v = lbase - (hmoist × (lheel + lslr × hsat / hstem) / 2 + lslr × hmoist / (2 × hstem) × ((lheel + lslr × hsat / hstem) + lslr × 3 hmoist / (3 × hstem)) + tan(β) × (lheel + lslr × hsoil / hstem) / 6) / Amoist = 4852 mm - Distance to horizontal component; xmoist_h = ((heff - hsat - hbase) × (tbase + hsat + (heff - hsat - hbase) / 3) / 2 + (hsat + hbase) × ((hsat + hbase)/2 - dkey)) / (hsat + hbase + (heff - hsat - hbase) / 2) = 1785 mm
  • 5. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Dr. C. Sachpazis Area of base soil; Date Chk'd by Date 22/12/2013 App'd by Date 2 Apass = dcover × ltoe = 2.1 m - Distance to vertical component; xpass_v = lbase - (dcover × ltoe× (lbase - ltoe / 2)) / Apass = 1500 mm - Distance to horizontal component; xpass_h = (dcover + hbase) / 3- dkey = 83 mm Partial factors on actions - Table A.3 - Combination 1 Permanent unfavourable action; γG = 1.35 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.50 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 1 Angle of shearing resistance; γφ' = 1.00 Effective cohesion; γc' = 1.00 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 29 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 16 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 26 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 15 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 26 deg Design effective cohesion; c'b.d = c'b.k / γc' = 55 kN/m Design adhesion; 2 2 ab.d = ab.k / γc' = 52 kN/m Using Coulomb theory Active pressure coefficient; 2 2 2 KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] ) = 0.400
  • 6. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Passive pressure coefficient; Date Chk'd by Date 22/12/2013 App'd by 2 Date 2 KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 4.051 Sliding check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 58.8 kN/m Wall base; Fbase = γGf × Abase × γbase = 91.5 kN/m Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 18.9 kN/m Water; Fwater_v = γGf × Awater × γw = 30 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 155.6 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fwater_v = 354.8 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 35.1 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.9 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 33.5 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 2 2 2 129.3 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 205.9 kN/m Check stability against sliding Base soil resistance; 2 Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) / 2 = 36.7 kN/m Base friction; Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 225 kN/m Resistance to sliding; Frest = Fexc_h + Ffriction = 261.7 kN/m Factor of safety; FoSsl = Frest / Ftotal_h = 1.271 PASS - Resistance to sliding is greater than sliding force
  • 7. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date Overturning check Overturning moments on wall Surcharge load; Msur_OT = Fsur_h × xsur_h = 92.4 kNm/m Saturated retained soil; Msat_OT = Fsat_h × xsat_h = 2 kNm/m Water; Mwater_OT = Fwater_h × xwater_h = 8.4 kNm/m Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 230.9 kNm/m Base soil; Mexc_OT = -Fexc_h × xexc_h = 5.5 kNm/m Total; Mtotal_OT = Msat_OT + Mmoist_OT + Mexc_OT + Mwater_OT + Msur_OT = 339.2 kNm/m Restoring moments on wall Wall stem; Mstem_R = Fstem × xstem = 191.7 kNm/m Wall base; Mbase_R = Fbase × xbase = 301.5 kNm/m Saturated retained soil; Msat_R = Fsat_v × xsat_v = 93.3 kNm/m Water; Mwater_R = Fwater_v × xwater_v = 147.9 kNm/m Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 754.8 kNm/m Total; Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R + Mwater_R = 1489.2 kNm/m Check stability against overturning Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 4.39 PASS - Maximum restoring moment is greater than overturning moment Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 79.3 kN/m Wall base; Fbase = γG × Abase × γbase = 123.5 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × (lheel + lslr × hsoil / hstem) = 43.5 kN/m Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 25.6 kN/m
  • 8. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Water; Fwater_v = γG × Awater × γw = 40.5 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 210 kN/m Base soil; Fpass_v = γG × Apass × γmb = 48.2 kN/m Total; Date Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 570.7 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 35.1 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.9 kN/m 2 2 Water; Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 33.5 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 2 129.3 kN/m 2 Base soil; Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase) / 2 = -101.9 kN/m Total; Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 258.8 kNm/m Wall base; Mbase = Fbase × xbase = 407 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 114.2 kNm/m Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 124 kNm/m Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 191.3 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 788.1 kNm/m Base soil; Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 80.8 kNm/m Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1964.1 kNm/m Check bearing pressure Distance to reaction; x = Mtotal / Ftotal_v = 3442 mm Eccentricity of reaction; e = x - lbase / 2 = 342 mm Loaded length of base; lload = 2 × (lbase - x) = 5516 mm
  • 9. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date 2 Bearing pressure at toe; qtoe = 0 kN/m Bearing pressure at heel; qheel = Ftotal_v / lload = 103.4 kN/m Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 4.1 kN/m 2 2 2 Design effective overburden pressure; q' = q / γγ = 4.1 kN/m Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) = 11.854 2 Nc = (Nq - 1) × cot(φ'b.d) = 22.254 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 10.588 Foundation shape factors; sq = 1 sγ = 1 sc = 1 Load inclination factors; H = Ftotal_h = 0 kN/m V = Ftotal_v = 570.7 kN/m m=2 m iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1 (m + 1) iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] =1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb - γw) × lload × Nγ × sγ × iγ = 1482.4 kN/m Factor of safety; 2 FoSbp = nf / max(qtoe, qheel) = 14.329 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Partial factors on actions - Table A.3 - Combination 2 Permanent unfavourable action; γG = 1.00 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.30 Variable favourable action; γQf = 0.00
  • 10. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date Partial factors for soil parameters – Table A.4 - Combination 2 Angle of shearing resistance; γφ' = 1.25 Effective cohesion; γc' = 1.25 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 23.9 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 12.9 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 21.3 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 12.1 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 21.3 deg Design effective cohesion; c'b.d = c'b.k / γc' = 44 kN/m Design adhesion; ab.d = ab.k / γc' = 41.6 kN/m 2 2 Using Coulomb theory Active pressure coefficient; 2 2 2 KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] ) = 0.489 Passive pressure coefficient; 2 2 KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 2.961 Sliding check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 58.8 kN/m Wall base; Fbase = γGf × Abase × γbase = 91.5 kN/m Saturated retained soil; Fsat_v = γGf × Asat × (γsr - γw) = 18.9 kN/m Water; Fwater_v = γGf × Awater × γw = 30 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 155.6 kN/m
  • 11. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Total; Date Chk'd by Date 22/12/2013 App'd by Date Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fwater_v = 354.8 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 37.9 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.3 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 24.8 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 2 2 2 119.3 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 189.3 kN/m Check stability against sliding Base soil resistance; 2 Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) / 2 = 27.1 kN/m Base friction; Ffriction = ab.d × b + Ftotal_v × tan(δbb.d) = 180 kN/m Resistance to sliding; Frest = Fexc_h + Ffriction = 207.2 kN/m Factor of safety; FoSsl = Frest / Ftotal_h = 1.094 PASS - Resistance to sliding is greater than sliding force Overturning check Overturning moments on wall Surcharge load; Msur_OT = Fsur_h × xsur_h = 99.8 kNm/m Saturated retained soil; Msat_OT = Fsat_h × xsat_h = 1.8 kNm/m Water; Mwater_OT = Fwater_h × xwater_h = 6.2 kNm/m Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 213 kNm/m Base soil; Mexc_OT = -Fexc_h × xexc_h = 4.1 kNm/m Total; Mtotal_OT = Msat_OT + Mmoist_OT + Mexc_OT + Mwater_OT + Msur_OT = 324.8 kNm/m Restoring moments on wall Wall stem; Mstem_R = Fstem × xstem = 191.7 kNm/m
  • 12. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 Wall base; App'd by Date Mbase_R = Fbase × xbase = 301.5 kNm/m Saturated retained soil; Msat_R = Fsat_v × xsat_v = 93.3 kNm/m Water; Mwater_R = Fwater_v × xwater_v = 147.9 kNm/m Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 754.8 kNm/m Total; Mtotal_R = Mstem_R + Mbase_R + Msat_R + Mmoist_R + Mwater_R = 1489.2 kNm/m Check stability against overturning Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 4.584 PASS - Maximum restoring moment is greater than overturning moment Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 58.8 kN/m Wall base; Fbase = γG × Abase × γbase = 91.5 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × (lheel + lslr × hsoil / hstem) = 37.7 kN/m Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 18.9 kN/m Water; Fwater_v = γG × Awater × γw = 30 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 155.6 kN/m Base soil; Fpass_v = γG × Apass × γmb = 35.7 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 428.2 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d + (90 - α)) × γQ × SurchargeQ × heff = 37.9 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d + (90 - α)) × (γsr - γw) × (hsat + hbase) / 2 = 7.3 kN/m Water; Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 24.8 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d + (90 - α)) × γmr × ((heff - hsat - hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 2 2 2 119.3 kN/m
  • 13. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date 2 Base soil; Fpass_h = -γGf × KP × cos(δb.d) × γmb × (dcover + hbase) / 2 = -75.4 kN/m Total; Ftotal_h = max(Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h - (ab.d × b + Ftotal_v × tan(δbb.d)), 0 kN/m) = 0 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 191.7 kNm/m Wall base; Mbase = Fbase × xbase = 301.5 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 79.3 kNm/m Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 91.5 kNm/m Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 141.7 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 541.8 kNm/m Base soil; Mpass = Fpass_v × xpass_v - Fpass_h × xpass_h = 59.8 kNm/m Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1407.3 kNm/m Check bearing pressure Distance to reaction; x = Mtotal / Ftotal_v = 3287 mm Eccentricity of reaction; e = x - lbase / 2 = 187 mm Loaded length of base; lload = 2 × (lbase - x) = 5826 mm Bearing pressure at toe; qtoe = 0 kN/m Bearing pressure at heel; qheel = Ftotal_v / lload = 73.5 kN/m Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 4.1 kN/m Design effective overburden pressure; q' = q / γγ = 4.1 kN/m Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) = 7.298 2 2 2 2 Nc = (Nq - 1) × cot(φ'b.d) = 16.141 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 4.915 Foundation shape factors; sq = 1 sγ = 1 sc = 1 2
  • 14. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Load inclination factors; Date Chk'd by Date 22/12/2013 App'd by Date H = Ftotal_h = 0 kN/m V = Ftotal_v = 428.2 kN/m m=2 m iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1 (m + 1) iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] =1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb - γw) × lload × Nγ × sγ × iγ = 843 kN/m Factor of safety; 2 FoSbp = nf / max(qtoe, qheel) = 11.471 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure RETAINING WALL DESIGN In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the recommended values Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; C32/40 Characteristic compressive cylinder strength; fck = 32 N/mm Characteristic compressive cube strength; fck,cube = 40 N/mm Mean value of compressive cylinder strength; fcm = fck + 8 N/mm = 40 N/mm Mean value of axial tensile strength; fctm = 0.3 N/mm × (fck / 1 N/mm ) 2 2 2 2 2 2 2/3 = 3.0 N/mm 2 2 5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 2.1 N/mm Secant modulus of elasticity of concrete; Ecm = 22 kN/mm × (fcm / 10 N/mm ) Partial factor for concrete - Table 2.1N; γC = 1.50 2 2 0.3 2 = 33346 N/mm
  • 15. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 Compressive strength coefficient - cl.3.1.6(1); fcd = αcc × fck / γC = 21.3 N/mm Maximum aggregate size; Date αcc = 1.00 Design compressive concrete strength - exp.3.15; App'd by hagg = 20 mm 2 Reinforcement details 2 Characteristic yield strength of reinforcement; fyk = 500 N/mm Modulus of elasticity of reinforcement; Es = 200000 N/mm Partial factor for reinforcing steel - Table 2.1N; γS = 1.15 Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm 2 2 Cover to reinforcement Front face of stem; csf = 40 mm Rear face of stem; csr = 50 mm Top face of base; cbt = 50 mm Bottom face of base; cbb = 75 mm Check stem design at base of stem Depth of section; h = 700 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1; M = 243.2 kNm/m Depth to tension reinforcement; d = h - csr - φsr / 2 = 640 mm 2 K = M / (d × fck) = 0.019 K' = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 608 mm Depth of neutral axis; x = 2.5 × (d – z) = 80 mm Area of tension reinforcement required; Asr.req = M / (fyd × z) = 920 mm /m Tension reinforcement provided; 20 dia.bars @ 200 c/c 2
  • 16. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 2 App'd by Date 2 Area of tension reinforcement provided; Asr.prov = π × φsr / (4 × ssr) = 1571 mm /m Minimum area of reinforcement - exp.9.1N; Asr.min = max(0.26 × fctm / fyk, 0.0013) × d = 1006 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 2 Asr.max = 0.04 × h = 28000 mm /m max(Asr.req, Asr.min) / Asr.prov = 0.641 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 146.7 kNm/m Tensile stress in reinforcement; σs = Msls / (Asr.prov × z) = 153.6 N/mm Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 150000 mm /m 2 2 2 Mean value of concrete tensile strength; fct.eff = fctm = 3.0 N/mm Reinforcement ratio; ρp.eff = Asr.prov / Ac.eff = 0.010 Modular ratio; αe = Es / Ecm = 5.998 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × csr + k1 × k2 × k4 × φsr / ρp.eff = 495 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.228 mm wk / wmax = 0.76 PASS - Maximum crack width is less than limiting crack width
  • 17. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date Rectangular section in shear - Section 6.2 Design shear force; V = 135.6 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.559 Longitudinal reinforcement ratio; ρl = min(Asr.prov / d, 0.02) = 0.002 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 0.5 × fck 2 2 = 0.385 N/mm 4 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 246.7 kN/m V / VRd.c = 0.550 PASS - Design shear resistance exceeds design shear force Horizontal reinforcement parallel to face of stem - Section 9.6 2 Minimum area of reinforcement – cl.9.6.3(1); Asx.req = max(0.25 × Asr.prov, 0.001 × (tstem + lslr)) = 700 mm /m Maximum spacing of reinforcement – cl.9.6.3(2); ssx_max = 400 mm Transverse reinforcement provided; 16 dia.bars @ 200 c/c Area of transverse reinforcement provided; Asx.prov = π × φsx / (4 × ssx) = 1005 mm /m 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Check base design Depth of section; h = 550 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 2; M = 138.1 kNm/m Depth to tension reinforcement; d = h - cbb - φbb / 2 = 465 mm 2 K = M / (d × fck) = 0.020 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 442 mm
  • 18. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 Depth of neutral axis; Abb.req = M / (fyd × z) = 719 mm /m Tension reinforcement provided; 20 dia.bars @ 200 c/c Area of tension reinforcement provided; Abb.prov = π × φbb / (4 × sbb) = 1571 mm /m Minimum area of reinforcement - exp.9.1N; Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 731 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); Date x = 2.5 × (d – z) = 58 mm Area of tension reinforcement required; App'd by Abb.max = 0.04 × h = 22000 mm /m 2 2 2 2 2 max(Abb.req, Abb.min) / Abb.prov = 0.465 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 85.4 kNm/m Tensile stress in reinforcement; σs = Msls / (Abb.prov × z) = 123 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 163958 mm /m Mean value of concrete tensile strength; fct.eff = fctm = 3.0 N/mm Reinforcement ratio; ρp.eff = Abb.prov / Ac.eff = 0.010 2 2 Modular ratio; αe = Es / Ecm = 5.998 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 610 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.225 mm
  • 19. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date wk / wmax = 0.75 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 135.7 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.656 Longitudinal reinforcement ratio; ρl = min(Abb.prov / d, 0.02) = 0.003 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 0.5 2 × fck = 0.422 N/mm 2 4 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 204.3 kN/m V / VRd.c = 0.664 PASS - Design shear resistance exceeds design shear force Rectangular section in flexure - Section 6.1 Design bending moment combination 1; M = 126.1 kNm/m Depth to tension reinforcement; d = h - cbt - φbt / 2 = 492 mm 2 K = M / (d × fck) = 0.016 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 467 mm Depth of neutral axis; x = 2.5 × (d – z) = 62 mm Area of tension reinforcement required; Abt.req = M / (fyd × z) = 621 mm /m 2 Tension reinforcement provided; 16 dia.bars @ 200 c/c Area of tension reinforcement provided; Abt.prov = π × φbt / (4 × sbt) = 1005 mm /m Minimum area of reinforcement - exp.9.1N; Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 774 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 2 2 2 Abt.max = 0.04 × h = 22000 mm /m max(Abt.req, Abt.min) / Abt.prov = 0.77
  • 20. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 68.9 kNm/m Tensile stress in reinforcement; σs = Msls / (Abt.prov × z) = 146.7 N/mm Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 145000 mm /m 2 2 2 Mean value of concrete tensile strength; fct.eff = fctm = 3.0 N/mm Reinforcement ratio; ρp.eff = Abt.prov / Ac.eff = 0.007 Modular ratio; αe = Es / Ecm = 5.998 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 562 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.247 mm wk / wmax = 0.825 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 90.4 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.638 Longitudinal reinforcement ratio; ρl = min(Abt.prov / d, 0.02) = 0.002
  • 21. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 0.5 × fck 2 App'd by Date 2 = 0.415 N/mm 4 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 204.1 kN/m V / VRd.c = 0.443 PASS - Design shear resistance exceeds design shear force Check key design Depth of section; h = 500 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 0; M = 7.1 kNm/m Depth to tension reinforcement; d = h - cbb - φk / 2 = 417 mm 2 K = M / (d × fck) = 0.001 K' = 0.196 K' > K - No compression reinforcement is required 0.5 Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 396 mm Depth of neutral axis; x = 2.5 × (d – z) = 52 mm Area of tension reinforcement required; Ak.req = M / (fyd × z) = 41 mm /m 2 Tension reinforcement provided; 16 dia.bars @ 200 c/c Area of tension reinforcement provided; Ak.prov = π × φk / (4 × sk) = 1005 mm /m Minimum area of reinforcement - exp.9.1N; Ak.min = max(0.26 × fctm / fyk, 0.0013) × d = 656 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); Ak.max = 0.04 × h = 20000 mm /m 2 2 2 2 max(Ak.req, Ak.min) / Ak.prov = 0.652 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3
  • 22. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 Serviceability bending moment; Date Msls = 7.1 kNm/m Tensile stress in reinforcement; App'd by σs = Msls / (Ak.prov × z) = 17.7 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 149292 mm /m 2 2 Mean value of concrete tensile strength; fct.eff = fctm = 3.0 N/mm Reinforcement ratio; ρp.eff = Ak.prov / Ac.eff = 0.007 Modular ratio; αe = Es / Ecm = 5.998 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φk / ρp.eff = 659 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.035 mm wk / wmax = 0.117 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 26 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.693 Longitudinal reinforcement ratio; ρl = min(Ak.prov / d, 0.02) = 0.002 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 0.5 × fck 2 2 = 0.436 N/mm 4 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 181.8 kN/m V / VRd.c = 0.143
  • 23. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date Chk'd by Date 22/12/2013 App'd by Date PASS - Design shear resistance exceeds design shear force Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); 2 Abx.req = 0.2 × Abb.prov = 314 mm /m Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm Transverse reinforcement provided; 12 dia.bars @ 200 c/c Area of transverse reinforcement provided; Abx.prov = π × φbx / (4 × sbx) = 565 mm /m 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required
  • 24. Job Ref. Project: Sloped rear face retaining wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Section Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. 1 Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Calc. by Dr. C. Sachpazis Date 22/12/2013 Chk'd by Date App'd by Date