SlideShare a Scribd company logo
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
STEEL MEMBER FIRE RESISTANCE DESIGN (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005,
September 2006 and March 2009 and the recommended values
Design summary
Description Unit Applied Allowable Utilisation Result
Shear in fire condition kN 102.6 480.3 0.214 PASS
Bending in fire condition kNm 165.3 176.1 0.939 PASS
Steel member temperature C 409.8 436.9 0.938 PASS
Time to crit. temperature min 30.0 33.0 0.909 PASS
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Partial factors - Section 6.1
Resistance of cross-sections; M0 = 1.00
Resistance of cross-sections in fire situation; M,fi = 1.00
Section details
Section type; IPN 280 (Arcelor)
Steel grade - EN 10025-2:2004; S275
Nominal thickness of element; tnom= 15.2 mm
Nominal yield strength; fy = 275 N/mm2
Nominal ultimate tensile strength; fu = 410 N/mm2
Modulus of elasticity; E = 210000 N/mm2
Fire protection details
Beam exposure; Under a concrete slab
Beam fire protection; Insulated - Hollow encasement
Required fire resistance; R30
Analysis results
Design vertical shear VEd = 180.00 kN
Design bending moment MEd,y = 290.00 kNm
Classification of cross sections - Section 5.5 - Ambient temperature
 = [235 N/mm2 / fy]= 0.92
Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)
Width of section; c = d = 224.4 mm
c / tw = 22.2 = 24   <= 72  ; Class 1
Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section; c = (b - tw - 2  r1) / 2 = 44.4 mm
c / tf = 2.9 = 3.2   <= 9  ; Class 1
Section is class 1
Shear resistance – Section 6.2.6
Height of web; hw= h - 2  tf = 250 mm
 = 1.2
Shear area - cl. 6.2.6(3); Av = max(A - 2  b  tf + (tw + 2  r1)  tf,   hw  tw) = 3025 mm2
Design shear resistance; Vc,Rd = Vpl,Rd = Av  (fy / (3)) / M0 = 480.31 kN
Shear reduction factor - cl. 6.2.8(2); Shear,red = 0 = 0.00
Bending moment resistance – Section 6.2.5 & 6.2.8
Design bending resistance - exp. 6.13 MRd,y = Mpl,Rd,y = Wpl.y  fy / M0
MRd,y = 176.07 kNm
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Effects of actions in fire situation – Section 2.4.2
Reduction factor - cl. 2.4.2(3); fi = 0.57
Design bending moment; Mfi,Ed,y = fi  MEd,y = 165.30 kNm
Design vertical shear; Vfi,Ed = fi  VEd = 102.60 kN
Classification of cross sections - Section 5.5 - Fire situation
 = 0.85  [235 N/mm2
/ fy]= 0.79
Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)
Width of section; c = d = 224.4 mm
c / tw = 22.2 = 28.3   <= 72  ; Class 1
Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section; c = (b - tw - 2  r1) / 2 = 44.4 mm
c / tf = 2.9 = 3.7   <= 9  ; Class 1
Section is class 1
Shear resistance – Fire situation
Strength reduction factor for steel - Table 3.1; ky,,web = 1.0
Design shear resistance - cl. 4.2.3.3(6); Vfi,t,Rd = ky,,web  Vc,Rd  M0 / M,fi = 480.31 kN
Degree of utilisation - cl. 4.2.4(3); 0,Shear = max(Vfi,Ed / Vfi,t,Rd, 0.013) = 0.214
Vfi,Ed / Vfi,t,Rd = 0.214
PASS - Shear resistance exceeds design shear in fire condition
Bending moment resistance
Strength reduction factor for steel -Table 3.1; ky, = 1.0
Adaptation factor - cl 4.2.3.3(7); k1 = 0.85
Adaptation factor - cl 4.2.3.3(8); k2 = 1.00
Design bending resistance - ; Mfi,Rd,y = min(ky,  MRd,y  M0 / M,fi /(k1  k2), MRd,y) =176.07 kNm
Degree of utilisation - cl. 4.2.4(3); 0,Bending = max(Mfi,Ed,y / Mfi,Rd,y, 0.013) = 0.939
Mfi,Ed,y / Mfi,Rd,y = 0.939
PASS - Bending resistance exceeds design bending in fire condition
Degree of Utilisation
Degree of utilisation - cl. 4.2.4(3); 0 = max(0,Shear,0,Bending) = 0.939
Critical temperature - Section 4.2.4
Critical temperature - exp. 4.22; a,crit = 39.19  Ln(1/(0.9674  0
3.833
) - 1) + 482 = 437
Protected beam - Section 4.2.5.2
Density of steel; s = 7850 kg/m3
Appropriate area of fire material per length; Am = b + 2  h = 679.0 mm
Volume of protected beam per length; V = A = 6178399.5 mm3
/m
Section factor - Table 4.3; SF = Am / V = 109.90 m-1
Time interval; t = 30 s
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Fire protection
Fire protection material thickness; dp = 10 mm
Fire protection material density; p = 800 kg/m3
Fire protection material thermal conductivity; p = 0.2 W/m
Fire protection material specific heat; Cp = 1700 J/kg
Temperature development
Initial time; t0 = 0 min
Initial temperature of steel (C); m.0 = 20
Iteration 1
Time; t1 = t0+t = 0.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.1 = 20 + 345  log(8 t1/(1 min) + 1) = 261.14
Gas temperature increment; .g.1 = g.1 - g.0 = 241.14
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.1 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.0 - 1.6910-3 (Jkg-1)  m.0
2+ 2.2210-6 (Jkg-1)  m.0
3
ca.1 = 439.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.1 = Cp  p / (ca.1  s)  dp  SF = 0.43
Increase of temeperature (3-1-2, exp. 4.27)
.m.1 = max(p  SF/(dp  ca.1  s)  (g.1 - m.0) / ( 1 + storage.1 / 3)  t - (exp(storage.1/10) -1)  .g.1, 0)
.m.1 = 0.00
Member temperature; m.1 = m.0+.m.1 = 20.00
Iteration 2
Time; t2 = t1+t = 1.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.2 = 20 + 345  log(8 t2/(1 min) + 1) = 349.21
Gas temperature increment; .g.2 = g.2 - g.1 = 88.07
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.2 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.1 - 1.6910-3
(Jkg-1
)  m.1
2
+ 2.2210-6
(Jkg-1
)  m.1
3
ca.2 = 439.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.2 = Cp  p / (ca.2  s)  dp  SF = 0.43
Increase of temeperature (3-1-2, exp. 4.27)
.m.2 = max(p  SF/(dp  ca.2  s)  (g.2 - m.1) / ( 1 + storage.2 / 3)  t - (exp(storage.2/10) -1)  .g.2, 0)
.m.2 = 1.60
Member temperature; m.2 = m.1+.m.2 = 21.60
Iteration 3
Time; t3 = t2+t = 1.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.3 = 20 + 345  log(8 t3/(1 min) + 1) = 404.31
Gas temperature increment; .g.3 = g.3 - g.2 = 55.10
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.3 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.2 - 1.6910-3
(Jkg-1
)  m.2
2
+ 2.2210-6
(Jkg-1
)  m.2
3
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
ca.3 = 440.9 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.3 = Cp  p / (ca.3  s)  dp  SF = 0.43
Increase of temeperature (3-1-2, exp. 4.27)
.m.3 = max(p  SF/(dp  ca.3  s)  (g.3 - m.2) / ( 1 + storage.3 / 3)  t - (exp(storage.3/10) -1)  .g.3, 0)
.m.3 = 3.94
Member temperature; m.3 = m.2+.m.3 = 25.54
Iteration 4
Time; t4 = t3+t = 2.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.4 = 20 + 345  log(8 t4/(1 min) + 1) = 444.50
Gas temperature increment; .g.4 = g.4 - g.3 = 40.19
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.4 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.3 - 1.6910-3 (Jkg-1)  m.3
2+ 2.2210-6 (Jkg-1)  m.3
3
ca.4 = 443.7 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.4 = Cp  p / (ca.4  s)  dp  SF = 0.43
Increase of temeperature (3-1-2, exp. 4.27)
.m.4 = max(p  SF/(dp  ca.4  s)  (g.4 - m.3) / ( 1 + storage.4 / 3)  t - (exp(storage.4/10) -1)  .g.4, 0)
.m.4 = 5.18
Member temperature; m.4 = m.3+.m.4 = 30.72
Iteration 5
Time; t5 = t4+t = 2.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.5 = 20 + 345  log(8 t5/(1 min) + 1) = 476.17
Gas temperature increment; .g.5 = g.5 - g.4 = 31.66
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.5 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.4 - 1.6910-3
(Jkg-1
)  m.4
2
+ 2.2210-6
(Jkg-1
)  m.4
3
ca.5 = 447.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.5 = Cp  p / (ca.5  s)  dp  SF = 0.43
Increase of temeperature (3-1-2, exp. 4.27)
.m.5 = max(p  SF/(dp  ca.5  s)  (g.5 - m.4) / ( 1 + storage.5 / 3)  t - (exp(storage.5/10) -1)  .g.5, 0)
.m.5 = 5.95
Member temperature; m.5 = m.4+.m.5 = 36.67
Iteration 6
Time; t6 = t5+t = 3.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.6 = 20 + 345  log(8 t6/(1 min) + 1) = 502.29
Gas temperature increment; .g.6 = g.6 - g.5 = 26.12
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.6 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.5 - 1.6910-3
(Jkg-1
)  m.5
2
+ 2.2210-6
(Jkg-1
)  m.5
3
ca.6 = 451.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.6 = Cp  p / (ca.6  s)  dp  SF = 0.42
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Increase of temeperature (3-1-2, exp. 4.27)
.m.6 = max(p  SF/(dp  ca.6  s)  (g.6 - m.5) / ( 1 + storage.6 / 3)  t - (exp(storage.6/10) -1)  .g.6, 0)
.m.6 = 6.47
Member temperature; m.6 = m.5+.m.6 = 43.14
Iteration 7
Time; t7 = t6+t = 3.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.7 = 20 + 345  log(8 t7/(1 min) + 1) = 524.53
Gas temperature increment; .g.7 = g.7 - g.6 = 22.24
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.7 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.6 - 1.6910-3 (Jkg-1)  m.6
2+ 2.2210-6 (Jkg-1)  m.6
3
ca.7 = 455.4 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.7 = Cp  p / (ca.7  s)  dp  SF = 0.42
Increase of temeperature (3-1-2, exp. 4.27)
.m.7 = max(p  SF/(dp  ca.7  s)  (g.7 - m.6) / ( 1 + storage.7 / 3)  t - (exp(storage.7/10) -1)  .g.7, 0)
.m.7 = 6.84
Member temperature; m.7 = m.6+.m.7 = 49.99
Iteration 8
Time; t8 = t7+t = 4.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.8 = 20 + 345  log(8 t8/(1 min) + 1) = 543.89
Gas temperature increment; .g.8 = g.8 - g.7 = 19.36
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.8 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.7 - 1.6910-3
(Jkg-1
)  m.7
2
+ 2.2210-6
(Jkg-1
)  m.7
3
ca.8 = 459.7 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.8 = Cp  p / (ca.8  s)  dp  SF = 0.41
Increase of temeperature (3-1-2, exp. 4.27)
.m.8 = max(p  SF/(dp  ca.8  s)  (g.8 - m.7) / ( 1 + storage.8 / 3)  t - (exp(storage.8/10) -1)  .g.8, 0)
.m.8 = 7.11
Member temperature; m.8 = m.7+.m.8 = 57.10
Iteration 9
Time; t9 = t8+t = 4.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.9 = 20 + 345  log(8 t9/(1 min) + 1) = 561.03
Gas temperature increment; .g.9 = g.9 - g.8 = 17.14
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.9 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.8 - 1.6910-3
(Jkg-1
)  m.8
2
+ 2.2210-6
(Jkg-1
)  m.8
3
ca.9 = 464.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.9 = Cp  p / (ca.9  s)  dp  SF = 0.41
Increase of temeperature (3-1-2, exp. 4.27)
.m.9 = max(p  SF/(dp  ca.9  s)  (g.9 - m.8) / ( 1 + storage.9 / 3)  t - (exp(storage.9/10) -1)  .g.9, 0)
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
.m.9 = 7.31
Member temperature; m.9 = m.8+.m.9 = 64.40
Iteration 10
Time; t10 = t9+t = 5.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.10 = 20 + 345  log(8 t10/(1 min) + 1) = 576.41
Gas temperature increment; .g.10 = g.10 - g.9 = 15.38
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.10 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.9 - 1.6910-3
(Jkg-1
)  m.9
2
+ 2.2210-6
(Jkg-1
)  m.9
3
ca.10 = 468.4 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.10 = Cp  p / (ca.10  s)  dp  SF = 0.41
Increase of temeperature (3-1-2, exp. 4.27)
.m.10 = max(p  SF/(dp  ca.10  s)  (g.10 - m.9) / ( 1 + storage.10 / 3)  t - (exp(storage.10/10) -1)  .g.10, 0)
.m.10 = 7.45
Member temperature; m.10 = m.9+.m.10 = 71.85
Iteration 11
Time; t11 = t10+t = 5.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.11 = 20 + 345  log(8 t11/(1 min) + 1) = 590.36
Gas temperature increment; .g.11 = g.11 - g.10 = 13.95
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.11 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.10 - 1.6910-3
(Jkg-1
)  m.10
2
+ 2.2210-6
(Jkg-1
)  m.10
3
ca.11 = 472.6 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.11 = Cp  p / (ca.11  s)  dp  SF = 0.40
Increase of temeperature (3-1-2, exp. 4.27)
.m.11 = max(p  SF/(dp  ca.11  s)  (g.11 - m.10) / ( 1 + storage.11 / 3)  t - (exp(storage.11/10) -1)  .g.11, 0)
.m.11 = 7.55
Member temperature; m.11 = m.10+.m.11 = 79.40
Iteration 12
Time; t12 = t11+t = 6.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.12 = 20 + 345  log(8 t12/(1 min) + 1) = 603.12
Gas temperature increment; .g.12 = g.12 - g.11 = 12.76
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.12 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.11 - 1.6910-3
(Jkg-1
)  m.11
2
+ 2.2210-6
(Jkg-1
)  m.11
3
ca.12 = 476.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.12 = Cp  p / (ca.12  s)  dp  SF = 0.40
Increase of temeperature (3-1-2, exp. 4.27)
.m.12 = max(p  SF/(dp  ca.12  s)  (g.12 - m.11) / ( 1 + storage.12 / 3)  t - (exp(storage.12/10) -1)  .g.12, 0)
.m.12 = 7.62
Member temperature; m.12 = m.11+.m.12 = 87.02
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Iteration 13
Time; t13 = t12+t = 6.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.13 = 20 + 345  log(8 t13/(1 min) + 1) = 614.88
Gas temperature increment; .g.13 = g.13 - g.12 = 11.76
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.13 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.12 - 1.6910-3
(Jkg-1
)  m.12
2
+ 2.2210-6
(Jkg-1
)  m.12
3
ca.13 = 480.9 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.13 = Cp  p / (ca.13  s)  dp  SF = 0.40
Increase of temeperature (3-1-2, exp. 4.27)
.m.13 = max(p  SF/(dp  ca.13  s)  (g.13 - m.12) / ( 1 + storage.13 / 3)  t - (exp(storage.13/10) -1)  .g.13, 0)
.m.13 = 7.67
Member temperature; m.13 = m.12+.m.13 = 94.69
Iteration 14
Time; t14 = t13+t = 7.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.14 = 20 + 345  log(8 t14/(1 min) + 1) = 625.78
Gas temperature increment; .g.14 = g.14 - g.13 = 10.90
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.14 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.13 - 1.6910-3
(Jkg-1
)  m.13
2
+ 2.2210-6
(Jkg-1
)  m.13
3
ca.14 = 484.9 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.14 = Cp  p / (ca.14  s)  dp  SF = 0.39
Increase of temeperature (3-1-2, exp. 4.27)
.m.14 = max(p  SF/(dp  ca.14  s)  (g.14 - m.13) / ( 1 + storage.14 / 3)  t - (exp(storage.14/10) -1)  .g.14, 0)
.m.14 = 7.70
Member temperature; m.14 = m.13+.m.14 = 102.39
Iteration 15
Time; t15 = t14+t = 7.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.15 = 20 + 345  log(8 t15/(1 min) + 1) = 635.94
Gas temperature increment; .g.15 = g.15 - g.14 = 10.16
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.15 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.14 - 1.6910-3 (Jkg-1)  m.14
2+ 2.2210-6 (Jkg-1)  m.14
3
ca.15 = 488.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.15 = Cp  p / (ca.15  s)  dp  SF = 0.39
Increase of temeperature (3-1-2, exp. 4.27)
.m.15 = max(p  SF/(dp  ca.15  s)  (g.15 - m.14) / ( 1 + storage.15 / 3)  t - (exp(storage.15/10) -1)  .g.15, 0)
.m.15 = 7.71
Member temperature; m.15 = m.14+.m.15 = 110.10
Iteration 16
Time; t16 = t15+t = 8.000 min
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.16 = 20 + 345  log(8 t16/(1 min) + 1) = 645.46
Gas temperature increment; .g.16 = g.16 - g.15 = 9.52
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.16 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.15 - 1.6910-3
(Jkg-1
)  m.15
2
+ 2.2210-6
(Jkg-1
)  m.15
3
ca.16 = 492.6 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.16 = Cp  p / (ca.16  s)  dp  SF = 0.39
Increase of temeperature (3-1-2, exp. 4.27)
.m.16 = max(p  SF/(dp  ca.16  s)  (g.16 - m.15) / ( 1 + storage.16 / 3)  t - (exp(storage.16/10) -1)  .g.16, 0)
.m.16 = 7.71
Member temperature; m.16 = m.15+.m.16 = 117.82
Iteration 17
Time; t17 = t16+t = 8.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.17 = 20 + 345  log(8 t17/(1 min) + 1) = 654.40
Gas temperature increment; .g.17 = g.17 - g.16 = 8.95
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.17 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.16 - 1.6910-3
(Jkg-1
)  m.16
2
+ 2.2210-6
(Jkg-1
)  m.16
3
ca.17 = 496.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.17 = Cp  p / (ca.17  s)  dp  SF = 0.38
Increase of temeperature (3-1-2, exp. 4.27)
.m.17 = max(p  SF/(dp  ca.17  s)  (g.17 - m.16) / ( 1 + storage.17 / 3)  t - (exp(storage.17/10) -1)  .g.17, 0)
.m.17 = 7.70
Member temperature; m.17 = m.16+.m.17 = 125.52
Iteration 18
Time; t18 = t17+t = 9.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.18 = 20 + 345  log(8 t18/(1 min) + 1) = 662.85
Gas temperature increment; .g.18 = g.18 - g.17 = 8.44
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.18 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.17 - 1.6910-3 (Jkg-1)  m.17
2+ 2.2210-6 (Jkg-1)  m.17
3
ca.18 = 499.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.18 = Cp  p / (ca.18  s)  dp  SF = 0.38
Increase of temeperature (3-1-2, exp. 4.27)
.m.18 = max(p  SF/(dp  ca.18  s)  (g.18 - m.17) / ( 1 + storage.18 / 3)  t - (exp(storage.18/10) -1)  .g.18, 0)
.m.18 = 7.69
Member temperature; m.18 = m.17+.m.18 = 133.20
Iteration 19
Time; t19 = t18+t = 9.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.19 = 20 + 345  log(8 t19/(1 min) + 1) = 670.84
Gas temperature increment; .g.19 = g.19 - g.18 = 7.99
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.19 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.18 - 1.6910-3 (Jkg-1)  m.18
2+ 2.2210-6 (Jkg-1)  m.18
3
ca.19 = 503.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.19 = Cp  p / (ca.19  s)  dp  SF = 0.38
Increase of temeperature (3-1-2, exp. 4.27)
.m.19 = max(p  SF/(dp  ca.19  s)  (g.19 - m.18) / ( 1 + storage.19 / 3)  t - (exp(storage.19/10) -1)  .g.19, 0)
.m.19 = 7.66
Member temperature; m.19 = m.18+.m.19 = 140.87
Iteration 20
Time; t20 = t19+t = 10.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.20 = 20 + 345  log(8 t20/(1 min) + 1) = 678.43
Gas temperature increment; .g.20 = g.20 - g.19 = 7.59
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.20 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.19 - 1.6910-3 (Jkg-1)  m.19
2+ 2.2210-6 (Jkg-1)  m.19
3
ca.20 = 506.6 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.20 = Cp  p / (ca.20  s)  dp  SF = 0.38
Increase of temeperature (3-1-2, exp. 4.27)
.m.20 = max(p  SF/(dp  ca.20  s)  (g.20 - m.19) / ( 1 + storage.20 / 3)  t - (exp(storage.20/10) -1)  .g.20, 0)
.m.20 = 7.63
Member temperature; m.20 = m.19+.m.20 = 148.50
Iteration 21
Time; t21 = t20+t = 10.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.21 = 20 + 345  log(8 t21/(1 min) + 1) = 685.65
Gas temperature increment; .g.21 = g.21 - g.20 = 7.22
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.21 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.20 - 1.6910-3
(Jkg-1
)  m.20
2
+ 2.2210-6
(Jkg-1
)  m.20
3
ca.21 = 509.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.21 = Cp  p / (ca.21  s)  dp  SF = 0.37
Increase of temeperature (3-1-2, exp. 4.27)
.m.21 = max(p  SF/(dp  ca.21  s)  (g.21 - m.20) / ( 1 + storage.21 / 3)  t - (exp(storage.21/10) -1)  .g.21, 0)
.m.21 = 7.60
Member temperature; m.21 = m.20+.m.21 = 156.09
Iteration 22
Time; t22 = t21+t = 11.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.22 = 20 + 345  log(8 t22/(1 min) + 1) = 692.54
Gas temperature increment; .g.22 = g.22 - g.21 = 6.89
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.22 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.21 - 1.6910-3
(Jkg-1
)  m.21
2
+ 2.2210-6
(Jkg-1
)  m.21
3
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
ca.22 = 512.9 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.22 = Cp  p / (ca.22  s)  dp  SF = 0.37
Increase of temeperature (3-1-2, exp. 4.27)
.m.22 = max(p  SF/(dp  ca.22  s)  (g.22 - m.21) / ( 1 + storage.22 / 3)  t - (exp(storage.22/10) -1)  .g.22, 0)
.m.22 = 7.56
Member temperature; m.22 = m.21+.m.22 = 163.65
Iteration 23
Time; t23 = t22+t = 11.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.23 = 20 + 345  log(8 t23/(1 min) + 1) = 699.13
Gas temperature increment; .g.23 = g.23 - g.22 = 6.59
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.23 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.22 - 1.6910-3 (Jkg-1)  m.22
2+ 2.2210-6 (Jkg-1)  m.22
3
ca.23 = 516.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.23 = Cp  p / (ca.23  s)  dp  SF = 0.37
Increase of temeperature (3-1-2, exp. 4.27)
.m.23 = max(p  SF/(dp  ca.23  s)  (g.23 - m.22) / ( 1 + storage.23 / 3)  t - (exp(storage.23/10) -1)  .g.23, 0)
.m.23 = 7.52
Member temperature; m.23 = m.22+.m.23 = 171.16
Iteration 24
Time; t24 = t23+t = 12.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.24 = 20 + 345  log(8 t24/(1 min) + 1) = 705.44
Gas temperature increment; .g.24 = g.24 - g.23 = 6.31
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.24 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.23 - 1.6910-3
(Jkg-1
)  m.23
2
+ 2.2210-6
(Jkg-1
)  m.23
3
ca.24 = 518.9 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.24 = Cp  p / (ca.24  s)  dp  SF = 0.37
Increase of temeperature (3-1-2, exp. 4.27)
.m.24 = max(p  SF/(dp  ca.24  s)  (g.24 - m.23) / ( 1 + storage.24 / 3)  t - (exp(storage.24/10) -1)  .g.24, 0)
.m.24 = 7.47
Member temperature; m.24 = m.23+.m.24 = 178.63
Iteration 25
Time; t25 = t24+t = 12.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.25 = 20 + 345  log(8 t25/(1 min) + 1) = 711.49
Gas temperature increment; .g.25 = g.25 - g.24 = 6.05
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.25 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.24 - 1.6910-3
(Jkg-1
)  m.24
2
+ 2.2210-6
(Jkg-1
)  m.24
3
ca.25 = 521.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.25 = Cp  p / (ca.25  s)  dp  SF = 0.36
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Increase of temeperature (3-1-2, exp. 4.27)
.m.25 = max(p  SF/(dp  ca.25  s)  (g.25 - m.24) / ( 1 + storage.25 / 3)  t - (exp(storage.25/10) -1)  .g.25, 0)
.m.25 = 7.42
Member temperature; m.25 = m.24+.m.25 = 186.06
Iteration 26
Time; t26 = t25+t = 13.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.26 = 20 + 345  log(8 t26/(1 min) + 1) = 717.31
Gas temperature increment; .g.26 = g.26 - g.25 = 5.82
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.26 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.25 - 1.6910-3 (Jkg-1)  m.25
2+ 2.2210-6 (Jkg-1)  m.25
3
ca.26 = 524.6 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.26 = Cp  p / (ca.26  s)  dp  SF = 0.36
Increase of temeperature (3-1-2, exp. 4.27)
.m.26 = max(p  SF/(dp  ca.26  s)  (g.26 - m.25) / ( 1 + storage.26 / 3)  t - (exp(storage.26/10) -1)  .g.26, 0)
.m.26 = 7.37
Member temperature; m.26 = m.25+.m.26 = 193.43
Iteration 27
Time; t27 = t26+t = 13.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.27 = 20 + 345  log(8 t27/(1 min) + 1) = 722.91
Gas temperature increment; .g.27 = g.27 - g.26 = 5.60
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.27 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.26 - 1.6910-3
(Jkg-1
)  m.26
2
+ 2.2210-6
(Jkg-1
)  m.26
3
ca.27 = 527.4 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.27 = Cp  p / (ca.27  s)  dp  SF = 0.36
Increase of temeperature (3-1-2, exp. 4.27)
.m.27 = max(p  SF/(dp  ca.27  s)  (g.27 - m.26) / ( 1 + storage.27 / 3)  t - (exp(storage.27/10) -1)  .g.27, 0)
.m.27 = 7.32
Member temperature; m.27 = m.26+.m.27 = 200.75
Iteration 28
Time; t28 = t27+t = 14.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.28 = 20 + 345  log(8 t28/(1 min) + 1) = 728.31
Gas temperature increment; .g.28 = g.28 - g.27 = 5.40
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.28 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.27 - 1.6910-3
(Jkg-1
)  m.27
2
+ 2.2210-6
(Jkg-1
)  m.27
3
ca.28 = 530.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.28 = Cp  p / (ca.28  s)  dp  SF = 0.36
Increase of temeperature (3-1-2, exp. 4.27)
.m.28 = max(p  SF/(dp  ca.28  s)  (g.28 - m.27) / ( 1 + storage.28 / 3)  t - (exp(storage.28/10) -1)  .g.28, 0)
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
.m.28 = 7.27
Member temperature; m.28 = m.27+.m.28 = 208.02
Iteration 29
Time; t29 = t28+t = 14.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.29 = 20 + 345  log(8 t29/(1 min) + 1) = 733.52
Gas temperature increment; .g.29 = g.29 - g.28 = 5.21
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.29 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.28 - 1.6910-3
(Jkg-1
)  m.28
2
+ 2.2210-6
(Jkg-1
)  m.28
3
ca.29 = 532.7 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.29 = Cp  p / (ca.29  s)  dp  SF = 0.36
Increase of temeperature (3-1-2, exp. 4.27)
.m.29 = max(p  SF/(dp  ca.29  s)  (g.29 - m.28) / ( 1 + storage.29 / 3)  t - (exp(storage.29/10) -1)  .g.29, 0)
.m.29 = 7.22
Member temperature; m.29 = m.28+.m.29 = 215.24
Iteration 30
Time; t30 = t29+t = 15.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.30 = 20 + 345  log(8 t30/(1 min) + 1) = 738.56
Gas temperature increment; .g.30 = g.30 - g.29 = 5.04
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.30 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.29 - 1.6910-3
(Jkg-1
)  m.29
2
+ 2.2210-6
(Jkg-1
)  m.29
3
ca.30 = 535.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.30 = Cp  p / (ca.30  s)  dp  SF = 0.36
Increase of temeperature (3-1-2, exp. 4.27)
.m.30 = max(p  SF/(dp  ca.30  s)  (g.30 - m.29) / ( 1 + storage.30 / 3)  t - (exp(storage.30/10) -1)  .g.30, 0)
.m.30 = 7.16
Member temperature; m.30 = m.29+.m.30 = 222.40
Iteration 31
Time; t31 = t30+t = 15.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.31 = 20 + 345  log(8 t31/(1 min) + 1) = 743.43
Gas temperature increment; .g.31 = g.31 - g.30 = 4.87
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.31 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.30 - 1.6910-3
(Jkg-1
)  m.30
2
+ 2.2210-6
(Jkg-1
)  m.30
3
ca.31 = 537.7 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.31 = Cp  p / (ca.31  s)  dp  SF = 0.35
Increase of temeperature (3-1-2, exp. 4.27)
.m.31 = max(p  SF/(dp  ca.31  s)  (g.31 - m.30) / ( 1 + storage.31 / 3)  t - (exp(storage.31/10) -1)  .g.31, 0)
.m.31 = 7.10
Member temperature; m.31 = m.30+.m.31 = 229.50
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Iteration 32
Time; t32 = t31+t = 16.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.32 = 20 + 345  log(8 t32/(1 min) + 1) = 748.15
Gas temperature increment; .g.32 = g.32 - g.31 = 4.72
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.32 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.31 - 1.6910-3
(Jkg-1
)  m.31
2
+ 2.2210-6
(Jkg-1
)  m.31
3
ca.32 = 540.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.32 = Cp  p / (ca.32  s)  dp  SF = 0.35
Increase of temeperature (3-1-2, exp. 4.27)
.m.32 = max(p  SF/(dp  ca.32  s)  (g.32 - m.31) / ( 1 + storage.32 / 3)  t - (exp(storage.32/10) -1)  .g.32, 0)
.m.32 = 7.05
Member temperature; m.32 = m.31+.m.32 = 236.55
Iteration 33
Time; t33 = t32+t = 16.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.33 = 20 + 345  log(8 t33/(1 min) + 1) = 752.73
Gas temperature increment; .g.33 = g.33 - g.32 = 4.58
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.33 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.32 - 1.6910-3
(Jkg-1
)  m.32
2
+ 2.2210-6
(Jkg-1
)  m.32
3
ca.33 = 542.7 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.33 = Cp  p / (ca.33  s)  dp  SF = 0.35
Increase of temeperature (3-1-2, exp. 4.27)
.m.33 = max(p  SF/(dp  ca.33  s)  (g.33 - m.32) / ( 1 + storage.33 / 3)  t - (exp(storage.33/10) -1)  .g.33, 0)
.m.33 = 6.99
Member temperature; m.33 = m.32+.m.33 = 243.54
Iteration 34
Time; t34 = t33+t = 17.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.34 = 20 + 345  log(8 t34/(1 min) + 1) = 757.17
Gas temperature increment; .g.34 = g.34 - g.33 = 4.44
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.34 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.33 - 1.6910-3 (Jkg-1)  m.33
2+ 2.2210-6 (Jkg-1)  m.33
3
ca.34 = 545.1 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.34 = Cp  p / (ca.34  s)  dp  SF = 0.35
Increase of temeperature (3-1-2, exp. 4.27)
.m.34 = max(p  SF/(dp  ca.34  s)  (g.34 - m.33) / ( 1 + storage.34 / 3)  t - (exp(storage.34/10) -1)  .g.34, 0)
.m.34 = 6.93
Member temperature; m.34 = m.33+.m.34 = 250.47
Iteration 35
Time; t35 = t34+t = 17.500 min
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.35 = 20 + 345  log(8 t35/(1 min) + 1) = 761.48
Gas temperature increment; .g.35 = g.35 - g.34 = 4.31
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.35 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.34 - 1.6910-3
(Jkg-1
)  m.34
2
+ 2.2210-6
(Jkg-1
)  m.34
3
ca.35 = 547.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.35 = Cp  p / (ca.35  s)  dp  SF = 0.35
Increase of temeperature (3-1-2, exp. 4.27)
.m.35 = max(p  SF/(dp  ca.35  s)  (g.35 - m.34) / ( 1 + storage.35 / 3)  t - (exp(storage.35/10) -1)  .g.35, 0)
.m.35 = 6.87
Member temperature; m.35 = m.34+.m.35 = 257.34
Iteration 36
Time; t36 = t35+t = 18.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.36 = 20 + 345  log(8 t36/(1 min) + 1) = 765.67
Gas temperature increment; .g.36 = g.36 - g.35 = 4.19
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.36 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.35 - 1.6910-3
(Jkg-1
)  m.35
2
+ 2.2210-6
(Jkg-1
)  m.35
3
ca.36 = 549.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.36 = Cp  p / (ca.36  s)  dp  SF = 0.35
Increase of temeperature (3-1-2, exp. 4.27)
.m.36 = max(p  SF/(dp  ca.36  s)  (g.36 - m.35) / ( 1 + storage.36 / 3)  t - (exp(storage.36/10) -1)  .g.36, 0)
.m.36 = 6.81
Member temperature; m.36 = m.35+.m.36 = 264.16
Iteration 37
Time; t37 = t36+t = 18.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.37 = 20 + 345  log(8 t37/(1 min) + 1) = 769.75
Gas temperature increment; .g.37 = g.37 - g.36 = 4.08
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.37 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.36 - 1.6910-3 (Jkg-1)  m.36
2+ 2.2210-6 (Jkg-1)  m.36
3
ca.37 = 552.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.37 = Cp  p / (ca.37  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.37 = max(p  SF/(dp  ca.37  s)  (g.37 - m.36) / ( 1 + storage.37 / 3)  t - (exp(storage.37/10) -1)  .g.37, 0)
.m.37 = 6.76
Member temperature; m.37 = m.36+.m.37 = 270.91
Iteration 38
Time; t38 = t37+t = 19.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.38 = 20 + 345  log(8 t38/(1 min) + 1) = 773.72
Gas temperature increment; .g.38 = g.38 - g.37 = 3.97
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.38 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.37 - 1.6910-3 (Jkg-1)  m.37
2+ 2.2210-6 (Jkg-1)  m.37
3
ca.38 = 554.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.38 = Cp  p / (ca.38  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.38 = max(p  SF/(dp  ca.38  s)  (g.38 - m.37) / ( 1 + storage.38 / 3)  t - (exp(storage.38/10) -1)  .g.38, 0)
.m.38 = 6.70
Member temperature; m.38 = m.37+.m.38 = 277.61
Iteration 39
Time; t39 = t38+t = 19.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.39 = 20 + 345  log(8 t39/(1 min) + 1) = 777.59
Gas temperature increment; .g.39 = g.39 - g.38 = 3.87
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.39 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.38 - 1.6910-3 (Jkg-1)  m.38
2+ 2.2210-6 (Jkg-1)  m.38
3
ca.39 = 556.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.39 = Cp  p / (ca.39  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.39 = max(p  SF/(dp  ca.39  s)  (g.39 - m.38) / ( 1 + storage.39 / 3)  t - (exp(storage.39/10) -1)  .g.39, 0)
.m.39 = 6.64
Member temperature; m.39 = m.38+.m.39 = 284.24
Iteration 40
Time; t40 = t39+t = 20.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.40 = 20 + 345  log(8 t40/(1 min) + 1) = 781.35
Gas temperature increment; .g.40 = g.40 - g.39 = 3.77
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.40 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.39 - 1.6910-3
(Jkg-1
)  m.39
2
+ 2.2210-6
(Jkg-1
)  m.39
3
ca.40 = 559.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.40 = Cp  p / (ca.40  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.40 = max(p  SF/(dp  ca.40  s)  (g.40 - m.39) / ( 1 + storage.40 / 3)  t - (exp(storage.40/10) -1)  .g.40, 0)
.m.40 = 6.58
Member temperature; m.40 = m.39+.m.40 = 290.82
Iteration 41
Time; t41 = t40+t = 20.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.41 = 20 + 345  log(8 t41/(1 min) + 1) = 785.03
Gas temperature increment; .g.41 = g.41 - g.40 = 3.68
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.41 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.40 - 1.6910-3
(Jkg-1
)  m.40
2
+ 2.2210-6
(Jkg-1
)  m.40
3
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
ca.41 = 561.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.41 = Cp  p / (ca.41  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.41 = max(p  SF/(dp  ca.41  s)  (g.41 - m.40) / ( 1 + storage.41 / 3)  t - (exp(storage.41/10) -1)  .g.41, 0)
.m.41 = 6.52
Member temperature; m.41 = m.40+.m.41 = 297.34
Iteration 42
Time; t42 = t41+t = 21.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.42 = 20 + 345  log(8 t42/(1 min) + 1) = 788.62
Gas temperature increment; .g.42 = g.42 - g.41 = 3.59
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.42 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.41 - 1.6910-3 (Jkg-1)  m.41
2+ 2.2210-6 (Jkg-1)  m.41
3
ca.42 = 563.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.42 = Cp  p / (ca.42  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.42 = max(p  SF/(dp  ca.42  s)  (g.42 - m.41) / ( 1 + storage.42 / 3)  t - (exp(storage.42/10) -1)  .g.42, 0)
.m.42 = 6.46
Member temperature; m.42 = m.41+.m.42 = 303.79
Iteration 43
Time; t43 = t42+t = 21.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.43 = 20 + 345  log(8 t43/(1 min) + 1) = 792.13
Gas temperature increment; .g.43 = g.43 - g.42 = 3.50
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.43 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.42 - 1.6910-3
(Jkg-1
)  m.42
2
+ 2.2210-6
(Jkg-1
)  m.42
3
ca.43 = 566.1 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.43 = Cp  p / (ca.43  s)  dp  SF = 0.34
Increase of temeperature (3-1-2, exp. 4.27)
.m.43 = max(p  SF/(dp  ca.43  s)  (g.43 - m.42) / ( 1 + storage.43 / 3)  t - (exp(storage.43/10) -1)  .g.43, 0)
.m.43 = 6.40
Member temperature; m.43 = m.42+.m.43 = 310.19
Iteration 44
Time; t44 = t43+t = 22.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.44 = 20 + 345  log(8 t44/(1 min) + 1) = 795.55
Gas temperature increment; .g.44 = g.44 - g.43 = 3.42
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.44 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.43 - 1.6910-3
(Jkg-1
)  m.43
2
+ 2.2210-6
(Jkg-1
)  m.43
3
ca.44 = 568.4 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.44 = Cp  p / (ca.44  s)  dp  SF = 0.33
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Increase of temeperature (3-1-2, exp. 4.27)
.m.44 = max(p  SF/(dp  ca.44  s)  (g.44 - m.43) / ( 1 + storage.44 / 3)  t - (exp(storage.44/10) -1)  .g.44, 0)
.m.44 = 6.34
Member temperature; m.44 = m.43+.m.44 = 316.52
Iteration 45
Time; t45 = t44+t = 22.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.45 = 20 + 345  log(8 t45/(1 min) + 1) = 798.90
Gas temperature increment; .g.45 = g.45 - g.44 = 3.35
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.45 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.44 - 1.6910-3 (Jkg-1)  m.44
2+ 2.2210-6 (Jkg-1)  m.44
3
ca.45 = 570.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.45 = Cp  p / (ca.45  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.45 = max(p  SF/(dp  ca.45  s)  (g.45 - m.44) / ( 1 + storage.45 / 3)  t - (exp(storage.45/10) -1)  .g.45, 0)
.m.45 = 6.28
Member temperature; m.45 = m.44+.m.45 = 322.80
Iteration 46
Time; t46 = t45+t = 23.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.46 = 20 + 345  log(8 t46/(1 min) + 1) = 802.17
Gas temperature increment; .g.46 = g.46 - g.45 = 3.28
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.46 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.45 - 1.6910-3
(Jkg-1
)  m.45
2
+ 2.2210-6
(Jkg-1
)  m.45
3
ca.46 = 573.1 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.46 = Cp  p / (ca.46  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.46 = max(p  SF/(dp  ca.46  s)  (g.46 - m.45) / ( 1 + storage.46 / 3)  t - (exp(storage.46/10) -1)  .g.46, 0)
.m.46 = 6.22
Member temperature; m.46 = m.45+.m.46 = 329.01
Iteration 47
Time; t47 = t46+t = 23.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.47 = 20 + 345  log(8 t47/(1 min) + 1) = 805.38
Gas temperature increment; .g.47 = g.47 - g.46 = 3.21
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.47 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.46 - 1.6910-3
(Jkg-1
)  m.46
2
+ 2.2210-6
(Jkg-1
)  m.46
3
ca.47 = 575.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.47 = Cp  p / (ca.47  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.47 = max(p  SF/(dp  ca.47  s)  (g.47 - m.46) / ( 1 + storage.47 / 3)  t - (exp(storage.47/10) -1)  .g.47, 0)
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
.m.47 = 6.16
Member temperature; m.47 = m.46+.m.47 = 335.17
Iteration 48
Time; t48 = t47+t = 24.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.48 = 20 + 345  log(8 t48/(1 min) + 1) = 808.52
Gas temperature increment; .g.48 = g.48 - g.47 = 3.14
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.48 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.47 - 1.6910-3
(Jkg-1
)  m.47
2
+ 2.2210-6
(Jkg-1
)  m.47
3
ca.48 = 577.8 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.48 = Cp  p / (ca.48  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.48 = max(p  SF/(dp  ca.48  s)  (g.48 - m.47) / ( 1 + storage.48 / 3)  t - (exp(storage.48/10) -1)  .g.48, 0)
.m.48 = 6.10
Member temperature; m.48 = m.47+.m.48 = 341.26
Iteration 49
Time; t49 = t48+t = 24.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.49 = 20 + 345  log(8 t49/(1 min) + 1) = 811.59
Gas temperature increment; .g.49 = g.49 - g.48 = 3.07
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.49 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.48 - 1.6910-3
(Jkg-1
)  m.48
2
+ 2.2210-6
(Jkg-1
)  m.48
3
ca.49 = 580.2 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.49 = Cp  p / (ca.49  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.49 = max(p  SF/(dp  ca.49  s)  (g.49 - m.48) / ( 1 + storage.49 / 3)  t - (exp(storage.49/10) -1)  .g.49, 0)
.m.49 = 6.04
Member temperature; m.49 = m.48+.m.49 = 347.30
Iteration 50
Time; t50 = t49+t = 25.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.50 = 20 + 345  log(8 t50/(1 min) + 1) = 814.60
Gas temperature increment; .g.50 = g.50 - g.49 = 3.01
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.50 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.49 - 1.6910-3
(Jkg-1
)  m.49
2
+ 2.2210-6
(Jkg-1
)  m.49
3
ca.50 = 582.6 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.50 = Cp  p / (ca.50  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.50 = max(p  SF/(dp  ca.50  s)  (g.50 - m.49) / ( 1 + storage.50 / 3)  t - (exp(storage.50/10) -1)  .g.50, 0)
.m.50 = 5.98
Member temperature; m.50 = m.49+.m.50 = 353.27
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Iteration 51
Time; t51 = t50+t = 25.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.51 = 20 + 345  log(8 t51/(1 min) + 1) = 817.56
Gas temperature increment; .g.51 = g.51 - g.50 = 2.95
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.51 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.50 - 1.6910-3
(Jkg-1
)  m.50
2
+ 2.2210-6
(Jkg-1
)  m.50
3
ca.51 = 585.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.51 = Cp  p / (ca.51  s)  dp  SF = 0.33
Increase of temeperature (3-1-2, exp. 4.27)
.m.51 = max(p  SF/(dp  ca.51  s)  (g.51 - m.50) / ( 1 + storage.51 / 3)  t - (exp(storage.51/10) -1)  .g.51, 0)
.m.51 = 5.92
Member temperature; m.51 = m.50+.m.51 = 359.19
Iteration 52
Time; t52 = t51+t = 26.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.52 = 20 + 345  log(8 t52/(1 min) + 1) = 820.45
Gas temperature increment; .g.52 = g.52 - g.51 = 2.90
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.52 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.51 - 1.6910-3
(Jkg-1
)  m.51
2
+ 2.2210-6
(Jkg-1
)  m.51
3
ca.52 = 587.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.52 = Cp  p / (ca.52  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.52 = max(p  SF/(dp  ca.52  s)  (g.52 - m.51) / ( 1 + storage.52 / 3)  t - (exp(storage.52/10) -1)  .g.52, 0)
.m.52 = 5.86
Member temperature; m.52 = m.51+.m.52 = 365.05
Iteration 53
Time; t53 = t52+t = 26.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.53 = 20 + 345  log(8 t53/(1 min) + 1) = 823.29
Gas temperature increment; .g.53 = g.53 - g.52 = 2.84
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.53 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.52 - 1.6910-3 (Jkg-1)  m.52
2+ 2.2210-6 (Jkg-1)  m.52
3
ca.53 = 590.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.53 = Cp  p / (ca.53  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.53 = max(p  SF/(dp  ca.53  s)  (g.53 - m.52) / ( 1 + storage.53 / 3)  t - (exp(storage.53/10) -1)  .g.53, 0)
.m.53 = 5.80
Member temperature; m.53 = m.52+.m.53 = 370.84
Iteration 54
Time; t54 = t53+t = 27.000 min
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.54 = 20 + 345  log(8 t54/(1 min) + 1) = 826.08
Gas temperature increment; .g.54 = g.54 - g.53 = 2.79
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.54 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.53 - 1.6910-3
(Jkg-1
)  m.53
2
+ 2.2210-6
(Jkg-1
)  m.53
3
ca.54 = 592.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.54 = Cp  p / (ca.54  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.54 = max(p  SF/(dp  ca.54  s)  (g.54 - m.53) / ( 1 + storage.54 / 3)  t - (exp(storage.54/10) -1)  .g.54, 0)
.m.54 = 5.74
Member temperature; m.54 = m.53+.m.54 = 376.58
Iteration 55
Time; t55 = t54+t = 27.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.55 = 20 + 345  log(8 t55/(1 min) + 1) = 828.82
Gas temperature increment; .g.55 = g.55 - g.54 = 2.74
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.55 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.54 - 1.6910-3
(Jkg-1
)  m.54
2
+ 2.2210-6
(Jkg-1
)  m.54
3
ca.55 = 595.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.55 = Cp  p / (ca.55  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.55 = max(p  SF/(dp  ca.55  s)  (g.55 - m.54) / ( 1 + storage.55 / 3)  t - (exp(storage.55/10) -1)  .g.55, 0)
.m.55 = 5.68
Member temperature; m.55 = m.54+.m.55 = 382.26
Iteration 56
Time; t56 = t55+t = 28.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.56 = 20 + 345  log(8 t56/(1 min) + 1) = 831.50
Gas temperature increment; .g.56 = g.56 - g.55 = 2.69
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.56 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.55 - 1.6910-3 (Jkg-1)  m.55
2+ 2.2210-6 (Jkg-1)  m.55
3
ca.56 = 597.5 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.56 = Cp  p / (ca.56  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.56 = max(p  SF/(dp  ca.56  s)  (g.56 - m.55) / ( 1 + storage.56 / 3)  t - (exp(storage.56/10) -1)  .g.56, 0)
.m.56 = 5.62
Member temperature; m.56 = m.55+.m.56 = 387.89
Iteration 57
Time; t57 = t56+t = 28.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.57 = 20 + 345  log(8 t57/(1 min) + 1) = 834.14
Gas temperature increment; .g.57 = g.57 - g.56 = 2.64
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.57 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.56 - 1.6910-3 (Jkg-1)  m.56
2+ 2.2210-6 (Jkg-1)  m.56
3
ca.57 = 600.1 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.57 = Cp  p / (ca.57  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.57 = max(p  SF/(dp  ca.57  s)  (g.57 - m.56) / ( 1 + storage.57 / 3)  t - (exp(storage.57/10) -1)  .g.57, 0)
.m.57 = 5.56
Member temperature; m.57 = m.56+.m.57 = 393.45
Iteration 58
Time; t58 = t57+t = 29.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.58 = 20 + 345  log(8 t58/(1 min) + 1) = 836.74
Gas temperature increment; .g.58 = g.58 - g.57 = 2.59
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.58 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.57 - 1.6910-3 (Jkg-1)  m.57
2+ 2.2210-6 (Jkg-1)  m.57
3
ca.58 = 602.7 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.58 = Cp  p / (ca.58  s)  dp  SF = 0.32
Increase of temeperature (3-1-2, exp. 4.27)
.m.58 = max(p  SF/(dp  ca.58  s)  (g.58 - m.57) / ( 1 + storage.58 / 3)  t - (exp(storage.58/10) -1)  .g.58, 0)
.m.58 = 5.51
Member temperature; m.58 = m.57+.m.58 = 398.96
Iteration 59
Time; t59 = t58+t = 29.500 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.59 = 20 + 345  log(8 t59/(1 min) + 1) = 839.29
Gas temperature increment; .g.59 = g.59 - g.58 = 2.55
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.59 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.58 - 1.6910-3
(Jkg-1
)  m.58
2
+ 2.2210-6
(Jkg-1
)  m.58
3
ca.59 = 605.4 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.59 = Cp  p / (ca.59  s)  dp  SF = 0.31
Increase of temeperature (3-1-2, exp. 4.27)
.m.59 = max(p  SF/(dp  ca.59  s)  (g.59 - m.58) / ( 1 + storage.59 / 3)  t - (exp(storage.59/10) -1)  .g.59, 0)
.m.59 = 5.45
Member temperature; m.59 = m.58+.m.59 = 404.40
Iteration 60
Time; t60 = t59+t = 30.000 min
Gas temperature – (1-1-2, cl. 3.2.1(1)); g.60 = 20 + 345  log(8 t60/(1 min) + 1) = 841.80
Gas temperature increment; .g.60 = g.60 - g.59 = 2.51
Specific heat of steel - (3-1-2, cl. 3.4.1.2);
ca.60 = 425 (Jkg-1
) + 7.7310-1
(Jkg-1
)  m.59 - 1.6910-3
(Jkg-1
)  m.59
2
+ 2.2210-6
(Jkg-1
)  m.59
3
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
ca.60 = 608.0 J/kg
Heat storage – (3-1-2, cl. 4.2.5.2); storage.60 = Cp  p / (ca.60  s)  dp  SF = 0.31
Increase of temeperature (3-1-2, exp. 4.27)
.m.60 = max(p  SF/(dp  ca.60  s)  (g.60 - m.59) / ( 1 + storage.60 / 3)  t - (exp(storage.60/10) -1)  .g.60, 0)
.m.60 = 5.39
Member temperature; m.60 = m.59+.m.60 = 409.80
Critical temperature results
Critical temperature a,crit = 437
Time to reach critical temperature Tfire = 33.0 min
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock
Mechanics, Foundation Engineering & Retaining
Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Steel Member Fire Resistance Design (EN1993)
In accordance with EN1993-1-2:2005 incorporating Corrigenda
December 2005, September 2006 and March 2009 and the
recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
09 July 2023
Chk'd by Date App'd by Date
Required time of fire exposure Treq,fire = 30.0 min
Steel member temp. after fire exposure time a = 410
PASS - Critical temperature exceeds steel member temperature at required fire exposure time
Analysis and Design by
Dr. Costas Sachpazis
Civil Engineer
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461
- Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info

More Related Content

Similar to Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδιασμός Πυράντοχης Αντοχής Μέλους από Χάλυβα (EN 1993).

Exemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpressExemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpressUrsachi Răzvan
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse ProjectJawad Shaukat
 
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal AnalysisFire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Arshia Mousavi
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
Dr.Costas Sachpazis
 
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODECOMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
IRJET Journal
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and designKingsley Aboagye
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
DP NITHIN
 
IRJET - Thermal Analysis Of Reheating Furnace
IRJET -  	  Thermal Analysis Of Reheating FurnaceIRJET -  	  Thermal Analysis Of Reheating Furnace
IRJET - Thermal Analysis Of Reheating Furnace
IRJET Journal
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Dr.Costas Sachpazis
 
Diseño de tanques
Diseño de tanquesDiseño de tanques
Diseño de tanques
Jhonny0510
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Dr.Costas Sachpazis
 
Diseño de tanques
Diseño de tanquesDiseño de tanques
Diseño de tanques
Jhonny0510
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin films
Universidad de Oviedo
 
Structural Analysis of SIRI House
Structural Analysis of SIRI HouseStructural Analysis of SIRI House
Structural Analysis of SIRI House
Carmen Chan
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Dr.Costas Sachpazis
 

Similar to Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδιασμός Πυράντοχης Αντοχής Μέλους από Χάλυβα (EN 1993). (20)

Exemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpressExemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpress
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
 
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal AnalysisFire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODECOMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
Baseplate
BaseplateBaseplate
Baseplate
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
 
IRJET - Thermal Analysis Of Reheating Furnace
IRJET -  	  Thermal Analysis Of Reheating FurnaceIRJET -  	  Thermal Analysis Of Reheating Furnace
IRJET - Thermal Analysis Of Reheating Furnace
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Diseño de tanques
Diseño de tanquesDiseño de tanques
Diseño de tanques
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Diseño de tanques
Diseño de tanquesDiseño de tanques
Diseño de tanques
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin films
 
Structural Analysis of SIRI House
Structural Analysis of SIRI HouseStructural Analysis of SIRI House
Structural Analysis of SIRI House
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
4998 1
4998 14998 1
4998 1
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 

More from Dr.Costas Sachpazis

Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Dr.Costas Sachpazis
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Dr.Costas Sachpazis
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Dr.Costas Sachpazis
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
Dr.Costas Sachpazis
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
Dr.Costas Sachpazis
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
Dr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Dr.Costas Sachpazis
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Dr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
Dr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
Dr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
Dr.Costas Sachpazis
 

More from Dr.Costas Sachpazis (20)

Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 

Recently uploaded

一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
veerababupersonal22
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
top1002
 

Recently uploaded (20)

一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
 

Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδιασμός Πυράντοχης Αντοχής Μέλους από Χάλυβα (EN 1993).

  • 1. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date STEEL MEMBER FIRE RESISTANCE DESIGN (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values Design summary Description Unit Applied Allowable Utilisation Result Shear in fire condition kN 102.6 480.3 0.214 PASS Bending in fire condition kNm 165.3 176.1 0.939 PASS Steel member temperature C 409.8 436.9 0.938 PASS Time to crit. temperature min 30.0 33.0 0.909 PASS
  • 2. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Partial factors - Section 6.1 Resistance of cross-sections; M0 = 1.00 Resistance of cross-sections in fire situation; M,fi = 1.00 Section details Section type; IPN 280 (Arcelor) Steel grade - EN 10025-2:2004; S275 Nominal thickness of element; tnom= 15.2 mm Nominal yield strength; fy = 275 N/mm2 Nominal ultimate tensile strength; fu = 410 N/mm2 Modulus of elasticity; E = 210000 N/mm2 Fire protection details Beam exposure; Under a concrete slab Beam fire protection; Insulated - Hollow encasement Required fire resistance; R30 Analysis results Design vertical shear VEd = 180.00 kN Design bending moment MEd,y = 290.00 kNm Classification of cross sections - Section 5.5 - Ambient temperature  = [235 N/mm2 / fy]= 0.92 Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 224.4 mm c / tw = 22.2 = 24   <= 72  ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; c = (b - tw - 2  r1) / 2 = 44.4 mm c / tf = 2.9 = 3.2   <= 9  ; Class 1 Section is class 1 Shear resistance – Section 6.2.6 Height of web; hw= h - 2  tf = 250 mm  = 1.2 Shear area - cl. 6.2.6(3); Av = max(A - 2  b  tf + (tw + 2  r1)  tf,   hw  tw) = 3025 mm2 Design shear resistance; Vc,Rd = Vpl,Rd = Av  (fy / (3)) / M0 = 480.31 kN Shear reduction factor - cl. 6.2.8(2); Shear,red = 0 = 0.00 Bending moment resistance – Section 6.2.5 & 6.2.8 Design bending resistance - exp. 6.13 MRd,y = Mpl,Rd,y = Wpl.y  fy / M0 MRd,y = 176.07 kNm
  • 3. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Effects of actions in fire situation – Section 2.4.2 Reduction factor - cl. 2.4.2(3); fi = 0.57 Design bending moment; Mfi,Ed,y = fi  MEd,y = 165.30 kNm Design vertical shear; Vfi,Ed = fi  VEd = 102.60 kN Classification of cross sections - Section 5.5 - Fire situation  = 0.85  [235 N/mm2 / fy]= 0.79 Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 224.4 mm c / tw = 22.2 = 28.3   <= 72  ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; c = (b - tw - 2  r1) / 2 = 44.4 mm c / tf = 2.9 = 3.7   <= 9  ; Class 1 Section is class 1 Shear resistance – Fire situation Strength reduction factor for steel - Table 3.1; ky,,web = 1.0 Design shear resistance - cl. 4.2.3.3(6); Vfi,t,Rd = ky,,web  Vc,Rd  M0 / M,fi = 480.31 kN Degree of utilisation - cl. 4.2.4(3); 0,Shear = max(Vfi,Ed / Vfi,t,Rd, 0.013) = 0.214 Vfi,Ed / Vfi,t,Rd = 0.214 PASS - Shear resistance exceeds design shear in fire condition Bending moment resistance Strength reduction factor for steel -Table 3.1; ky, = 1.0 Adaptation factor - cl 4.2.3.3(7); k1 = 0.85 Adaptation factor - cl 4.2.3.3(8); k2 = 1.00 Design bending resistance - ; Mfi,Rd,y = min(ky,  MRd,y  M0 / M,fi /(k1  k2), MRd,y) =176.07 kNm Degree of utilisation - cl. 4.2.4(3); 0,Bending = max(Mfi,Ed,y / Mfi,Rd,y, 0.013) = 0.939 Mfi,Ed,y / Mfi,Rd,y = 0.939 PASS - Bending resistance exceeds design bending in fire condition Degree of Utilisation Degree of utilisation - cl. 4.2.4(3); 0 = max(0,Shear,0,Bending) = 0.939 Critical temperature - Section 4.2.4 Critical temperature - exp. 4.22; a,crit = 39.19  Ln(1/(0.9674  0 3.833 ) - 1) + 482 = 437 Protected beam - Section 4.2.5.2 Density of steel; s = 7850 kg/m3 Appropriate area of fire material per length; Am = b + 2  h = 679.0 mm Volume of protected beam per length; V = A = 6178399.5 mm3 /m Section factor - Table 4.3; SF = Am / V = 109.90 m-1 Time interval; t = 30 s
  • 4. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Fire protection Fire protection material thickness; dp = 10 mm Fire protection material density; p = 800 kg/m3 Fire protection material thermal conductivity; p = 0.2 W/m Fire protection material specific heat; Cp = 1700 J/kg Temperature development Initial time; t0 = 0 min Initial temperature of steel (C); m.0 = 20 Iteration 1 Time; t1 = t0+t = 0.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.1 = 20 + 345  log(8 t1/(1 min) + 1) = 261.14 Gas temperature increment; .g.1 = g.1 - g.0 = 241.14 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.1 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.0 - 1.6910-3 (Jkg-1)  m.0 2+ 2.2210-6 (Jkg-1)  m.0 3 ca.1 = 439.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.1 = Cp  p / (ca.1  s)  dp  SF = 0.43 Increase of temeperature (3-1-2, exp. 4.27) .m.1 = max(p  SF/(dp  ca.1  s)  (g.1 - m.0) / ( 1 + storage.1 / 3)  t - (exp(storage.1/10) -1)  .g.1, 0) .m.1 = 0.00 Member temperature; m.1 = m.0+.m.1 = 20.00 Iteration 2 Time; t2 = t1+t = 1.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.2 = 20 + 345  log(8 t2/(1 min) + 1) = 349.21 Gas temperature increment; .g.2 = g.2 - g.1 = 88.07 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.2 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.1 - 1.6910-3 (Jkg-1 )  m.1 2 + 2.2210-6 (Jkg-1 )  m.1 3 ca.2 = 439.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.2 = Cp  p / (ca.2  s)  dp  SF = 0.43 Increase of temeperature (3-1-2, exp. 4.27) .m.2 = max(p  SF/(dp  ca.2  s)  (g.2 - m.1) / ( 1 + storage.2 / 3)  t - (exp(storage.2/10) -1)  .g.2, 0) .m.2 = 1.60 Member temperature; m.2 = m.1+.m.2 = 21.60 Iteration 3 Time; t3 = t2+t = 1.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.3 = 20 + 345  log(8 t3/(1 min) + 1) = 404.31 Gas temperature increment; .g.3 = g.3 - g.2 = 55.10 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.3 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.2 - 1.6910-3 (Jkg-1 )  m.2 2 + 2.2210-6 (Jkg-1 )  m.2 3
  • 5. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date ca.3 = 440.9 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.3 = Cp  p / (ca.3  s)  dp  SF = 0.43 Increase of temeperature (3-1-2, exp. 4.27) .m.3 = max(p  SF/(dp  ca.3  s)  (g.3 - m.2) / ( 1 + storage.3 / 3)  t - (exp(storage.3/10) -1)  .g.3, 0) .m.3 = 3.94 Member temperature; m.3 = m.2+.m.3 = 25.54 Iteration 4 Time; t4 = t3+t = 2.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.4 = 20 + 345  log(8 t4/(1 min) + 1) = 444.50 Gas temperature increment; .g.4 = g.4 - g.3 = 40.19 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.4 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.3 - 1.6910-3 (Jkg-1)  m.3 2+ 2.2210-6 (Jkg-1)  m.3 3 ca.4 = 443.7 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.4 = Cp  p / (ca.4  s)  dp  SF = 0.43 Increase of temeperature (3-1-2, exp. 4.27) .m.4 = max(p  SF/(dp  ca.4  s)  (g.4 - m.3) / ( 1 + storage.4 / 3)  t - (exp(storage.4/10) -1)  .g.4, 0) .m.4 = 5.18 Member temperature; m.4 = m.3+.m.4 = 30.72 Iteration 5 Time; t5 = t4+t = 2.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.5 = 20 + 345  log(8 t5/(1 min) + 1) = 476.17 Gas temperature increment; .g.5 = g.5 - g.4 = 31.66 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.5 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.4 - 1.6910-3 (Jkg-1 )  m.4 2 + 2.2210-6 (Jkg-1 )  m.4 3 ca.5 = 447.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.5 = Cp  p / (ca.5  s)  dp  SF = 0.43 Increase of temeperature (3-1-2, exp. 4.27) .m.5 = max(p  SF/(dp  ca.5  s)  (g.5 - m.4) / ( 1 + storage.5 / 3)  t - (exp(storage.5/10) -1)  .g.5, 0) .m.5 = 5.95 Member temperature; m.5 = m.4+.m.5 = 36.67 Iteration 6 Time; t6 = t5+t = 3.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.6 = 20 + 345  log(8 t6/(1 min) + 1) = 502.29 Gas temperature increment; .g.6 = g.6 - g.5 = 26.12 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.6 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.5 - 1.6910-3 (Jkg-1 )  m.5 2 + 2.2210-6 (Jkg-1 )  m.5 3 ca.6 = 451.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.6 = Cp  p / (ca.6  s)  dp  SF = 0.42
  • 6. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Increase of temeperature (3-1-2, exp. 4.27) .m.6 = max(p  SF/(dp  ca.6  s)  (g.6 - m.5) / ( 1 + storage.6 / 3)  t - (exp(storage.6/10) -1)  .g.6, 0) .m.6 = 6.47 Member temperature; m.6 = m.5+.m.6 = 43.14 Iteration 7 Time; t7 = t6+t = 3.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.7 = 20 + 345  log(8 t7/(1 min) + 1) = 524.53 Gas temperature increment; .g.7 = g.7 - g.6 = 22.24 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.7 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.6 - 1.6910-3 (Jkg-1)  m.6 2+ 2.2210-6 (Jkg-1)  m.6 3 ca.7 = 455.4 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.7 = Cp  p / (ca.7  s)  dp  SF = 0.42 Increase of temeperature (3-1-2, exp. 4.27) .m.7 = max(p  SF/(dp  ca.7  s)  (g.7 - m.6) / ( 1 + storage.7 / 3)  t - (exp(storage.7/10) -1)  .g.7, 0) .m.7 = 6.84 Member temperature; m.7 = m.6+.m.7 = 49.99 Iteration 8 Time; t8 = t7+t = 4.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.8 = 20 + 345  log(8 t8/(1 min) + 1) = 543.89 Gas temperature increment; .g.8 = g.8 - g.7 = 19.36 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.8 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.7 - 1.6910-3 (Jkg-1 )  m.7 2 + 2.2210-6 (Jkg-1 )  m.7 3 ca.8 = 459.7 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.8 = Cp  p / (ca.8  s)  dp  SF = 0.41 Increase of temeperature (3-1-2, exp. 4.27) .m.8 = max(p  SF/(dp  ca.8  s)  (g.8 - m.7) / ( 1 + storage.8 / 3)  t - (exp(storage.8/10) -1)  .g.8, 0) .m.8 = 7.11 Member temperature; m.8 = m.7+.m.8 = 57.10 Iteration 9 Time; t9 = t8+t = 4.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.9 = 20 + 345  log(8 t9/(1 min) + 1) = 561.03 Gas temperature increment; .g.9 = g.9 - g.8 = 17.14 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.9 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.8 - 1.6910-3 (Jkg-1 )  m.8 2 + 2.2210-6 (Jkg-1 )  m.8 3 ca.9 = 464.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.9 = Cp  p / (ca.9  s)  dp  SF = 0.41 Increase of temeperature (3-1-2, exp. 4.27) .m.9 = max(p  SF/(dp  ca.9  s)  (g.9 - m.8) / ( 1 + storage.9 / 3)  t - (exp(storage.9/10) -1)  .g.9, 0)
  • 7. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date .m.9 = 7.31 Member temperature; m.9 = m.8+.m.9 = 64.40 Iteration 10 Time; t10 = t9+t = 5.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.10 = 20 + 345  log(8 t10/(1 min) + 1) = 576.41 Gas temperature increment; .g.10 = g.10 - g.9 = 15.38 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.10 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.9 - 1.6910-3 (Jkg-1 )  m.9 2 + 2.2210-6 (Jkg-1 )  m.9 3 ca.10 = 468.4 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.10 = Cp  p / (ca.10  s)  dp  SF = 0.41 Increase of temeperature (3-1-2, exp. 4.27) .m.10 = max(p  SF/(dp  ca.10  s)  (g.10 - m.9) / ( 1 + storage.10 / 3)  t - (exp(storage.10/10) -1)  .g.10, 0) .m.10 = 7.45 Member temperature; m.10 = m.9+.m.10 = 71.85 Iteration 11 Time; t11 = t10+t = 5.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.11 = 20 + 345  log(8 t11/(1 min) + 1) = 590.36 Gas temperature increment; .g.11 = g.11 - g.10 = 13.95 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.11 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.10 - 1.6910-3 (Jkg-1 )  m.10 2 + 2.2210-6 (Jkg-1 )  m.10 3 ca.11 = 472.6 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.11 = Cp  p / (ca.11  s)  dp  SF = 0.40 Increase of temeperature (3-1-2, exp. 4.27) .m.11 = max(p  SF/(dp  ca.11  s)  (g.11 - m.10) / ( 1 + storage.11 / 3)  t - (exp(storage.11/10) -1)  .g.11, 0) .m.11 = 7.55 Member temperature; m.11 = m.10+.m.11 = 79.40 Iteration 12 Time; t12 = t11+t = 6.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.12 = 20 + 345  log(8 t12/(1 min) + 1) = 603.12 Gas temperature increment; .g.12 = g.12 - g.11 = 12.76 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.12 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.11 - 1.6910-3 (Jkg-1 )  m.11 2 + 2.2210-6 (Jkg-1 )  m.11 3 ca.12 = 476.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.12 = Cp  p / (ca.12  s)  dp  SF = 0.40 Increase of temeperature (3-1-2, exp. 4.27) .m.12 = max(p  SF/(dp  ca.12  s)  (g.12 - m.11) / ( 1 + storage.12 / 3)  t - (exp(storage.12/10) -1)  .g.12, 0) .m.12 = 7.62 Member temperature; m.12 = m.11+.m.12 = 87.02
  • 8. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Iteration 13 Time; t13 = t12+t = 6.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.13 = 20 + 345  log(8 t13/(1 min) + 1) = 614.88 Gas temperature increment; .g.13 = g.13 - g.12 = 11.76 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.13 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.12 - 1.6910-3 (Jkg-1 )  m.12 2 + 2.2210-6 (Jkg-1 )  m.12 3 ca.13 = 480.9 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.13 = Cp  p / (ca.13  s)  dp  SF = 0.40 Increase of temeperature (3-1-2, exp. 4.27) .m.13 = max(p  SF/(dp  ca.13  s)  (g.13 - m.12) / ( 1 + storage.13 / 3)  t - (exp(storage.13/10) -1)  .g.13, 0) .m.13 = 7.67 Member temperature; m.13 = m.12+.m.13 = 94.69 Iteration 14 Time; t14 = t13+t = 7.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.14 = 20 + 345  log(8 t14/(1 min) + 1) = 625.78 Gas temperature increment; .g.14 = g.14 - g.13 = 10.90 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.14 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.13 - 1.6910-3 (Jkg-1 )  m.13 2 + 2.2210-6 (Jkg-1 )  m.13 3 ca.14 = 484.9 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.14 = Cp  p / (ca.14  s)  dp  SF = 0.39 Increase of temeperature (3-1-2, exp. 4.27) .m.14 = max(p  SF/(dp  ca.14  s)  (g.14 - m.13) / ( 1 + storage.14 / 3)  t - (exp(storage.14/10) -1)  .g.14, 0) .m.14 = 7.70 Member temperature; m.14 = m.13+.m.14 = 102.39 Iteration 15 Time; t15 = t14+t = 7.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.15 = 20 + 345  log(8 t15/(1 min) + 1) = 635.94 Gas temperature increment; .g.15 = g.15 - g.14 = 10.16 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.15 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.14 - 1.6910-3 (Jkg-1)  m.14 2+ 2.2210-6 (Jkg-1)  m.14 3 ca.15 = 488.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.15 = Cp  p / (ca.15  s)  dp  SF = 0.39 Increase of temeperature (3-1-2, exp. 4.27) .m.15 = max(p  SF/(dp  ca.15  s)  (g.15 - m.14) / ( 1 + storage.15 / 3)  t - (exp(storage.15/10) -1)  .g.15, 0) .m.15 = 7.71 Member temperature; m.15 = m.14+.m.15 = 110.10 Iteration 16 Time; t16 = t15+t = 8.000 min
  • 9. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Gas temperature – (1-1-2, cl. 3.2.1(1)); g.16 = 20 + 345  log(8 t16/(1 min) + 1) = 645.46 Gas temperature increment; .g.16 = g.16 - g.15 = 9.52 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.16 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.15 - 1.6910-3 (Jkg-1 )  m.15 2 + 2.2210-6 (Jkg-1 )  m.15 3 ca.16 = 492.6 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.16 = Cp  p / (ca.16  s)  dp  SF = 0.39 Increase of temeperature (3-1-2, exp. 4.27) .m.16 = max(p  SF/(dp  ca.16  s)  (g.16 - m.15) / ( 1 + storage.16 / 3)  t - (exp(storage.16/10) -1)  .g.16, 0) .m.16 = 7.71 Member temperature; m.16 = m.15+.m.16 = 117.82 Iteration 17 Time; t17 = t16+t = 8.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.17 = 20 + 345  log(8 t17/(1 min) + 1) = 654.40 Gas temperature increment; .g.17 = g.17 - g.16 = 8.95 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.17 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.16 - 1.6910-3 (Jkg-1 )  m.16 2 + 2.2210-6 (Jkg-1 )  m.16 3 ca.17 = 496.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.17 = Cp  p / (ca.17  s)  dp  SF = 0.38 Increase of temeperature (3-1-2, exp. 4.27) .m.17 = max(p  SF/(dp  ca.17  s)  (g.17 - m.16) / ( 1 + storage.17 / 3)  t - (exp(storage.17/10) -1)  .g.17, 0) .m.17 = 7.70 Member temperature; m.17 = m.16+.m.17 = 125.52 Iteration 18 Time; t18 = t17+t = 9.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.18 = 20 + 345  log(8 t18/(1 min) + 1) = 662.85 Gas temperature increment; .g.18 = g.18 - g.17 = 8.44 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.18 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.17 - 1.6910-3 (Jkg-1)  m.17 2+ 2.2210-6 (Jkg-1)  m.17 3 ca.18 = 499.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.18 = Cp  p / (ca.18  s)  dp  SF = 0.38 Increase of temeperature (3-1-2, exp. 4.27) .m.18 = max(p  SF/(dp  ca.18  s)  (g.18 - m.17) / ( 1 + storage.18 / 3)  t - (exp(storage.18/10) -1)  .g.18, 0) .m.18 = 7.69 Member temperature; m.18 = m.17+.m.18 = 133.20 Iteration 19 Time; t19 = t18+t = 9.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.19 = 20 + 345  log(8 t19/(1 min) + 1) = 670.84 Gas temperature increment; .g.19 = g.19 - g.18 = 7.99
  • 10. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.19 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.18 - 1.6910-3 (Jkg-1)  m.18 2+ 2.2210-6 (Jkg-1)  m.18 3 ca.19 = 503.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.19 = Cp  p / (ca.19  s)  dp  SF = 0.38 Increase of temeperature (3-1-2, exp. 4.27) .m.19 = max(p  SF/(dp  ca.19  s)  (g.19 - m.18) / ( 1 + storage.19 / 3)  t - (exp(storage.19/10) -1)  .g.19, 0) .m.19 = 7.66 Member temperature; m.19 = m.18+.m.19 = 140.87 Iteration 20 Time; t20 = t19+t = 10.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.20 = 20 + 345  log(8 t20/(1 min) + 1) = 678.43 Gas temperature increment; .g.20 = g.20 - g.19 = 7.59 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.20 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.19 - 1.6910-3 (Jkg-1)  m.19 2+ 2.2210-6 (Jkg-1)  m.19 3 ca.20 = 506.6 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.20 = Cp  p / (ca.20  s)  dp  SF = 0.38 Increase of temeperature (3-1-2, exp. 4.27) .m.20 = max(p  SF/(dp  ca.20  s)  (g.20 - m.19) / ( 1 + storage.20 / 3)  t - (exp(storage.20/10) -1)  .g.20, 0) .m.20 = 7.63 Member temperature; m.20 = m.19+.m.20 = 148.50 Iteration 21 Time; t21 = t20+t = 10.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.21 = 20 + 345  log(8 t21/(1 min) + 1) = 685.65 Gas temperature increment; .g.21 = g.21 - g.20 = 7.22 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.21 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.20 - 1.6910-3 (Jkg-1 )  m.20 2 + 2.2210-6 (Jkg-1 )  m.20 3 ca.21 = 509.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.21 = Cp  p / (ca.21  s)  dp  SF = 0.37 Increase of temeperature (3-1-2, exp. 4.27) .m.21 = max(p  SF/(dp  ca.21  s)  (g.21 - m.20) / ( 1 + storage.21 / 3)  t - (exp(storage.21/10) -1)  .g.21, 0) .m.21 = 7.60 Member temperature; m.21 = m.20+.m.21 = 156.09 Iteration 22 Time; t22 = t21+t = 11.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.22 = 20 + 345  log(8 t22/(1 min) + 1) = 692.54 Gas temperature increment; .g.22 = g.22 - g.21 = 6.89 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.22 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.21 - 1.6910-3 (Jkg-1 )  m.21 2 + 2.2210-6 (Jkg-1 )  m.21 3
  • 11. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date ca.22 = 512.9 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.22 = Cp  p / (ca.22  s)  dp  SF = 0.37 Increase of temeperature (3-1-2, exp. 4.27) .m.22 = max(p  SF/(dp  ca.22  s)  (g.22 - m.21) / ( 1 + storage.22 / 3)  t - (exp(storage.22/10) -1)  .g.22, 0) .m.22 = 7.56 Member temperature; m.22 = m.21+.m.22 = 163.65 Iteration 23 Time; t23 = t22+t = 11.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.23 = 20 + 345  log(8 t23/(1 min) + 1) = 699.13 Gas temperature increment; .g.23 = g.23 - g.22 = 6.59 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.23 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.22 - 1.6910-3 (Jkg-1)  m.22 2+ 2.2210-6 (Jkg-1)  m.22 3 ca.23 = 516.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.23 = Cp  p / (ca.23  s)  dp  SF = 0.37 Increase of temeperature (3-1-2, exp. 4.27) .m.23 = max(p  SF/(dp  ca.23  s)  (g.23 - m.22) / ( 1 + storage.23 / 3)  t - (exp(storage.23/10) -1)  .g.23, 0) .m.23 = 7.52 Member temperature; m.23 = m.22+.m.23 = 171.16 Iteration 24 Time; t24 = t23+t = 12.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.24 = 20 + 345  log(8 t24/(1 min) + 1) = 705.44 Gas temperature increment; .g.24 = g.24 - g.23 = 6.31 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.24 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.23 - 1.6910-3 (Jkg-1 )  m.23 2 + 2.2210-6 (Jkg-1 )  m.23 3 ca.24 = 518.9 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.24 = Cp  p / (ca.24  s)  dp  SF = 0.37 Increase of temeperature (3-1-2, exp. 4.27) .m.24 = max(p  SF/(dp  ca.24  s)  (g.24 - m.23) / ( 1 + storage.24 / 3)  t - (exp(storage.24/10) -1)  .g.24, 0) .m.24 = 7.47 Member temperature; m.24 = m.23+.m.24 = 178.63 Iteration 25 Time; t25 = t24+t = 12.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.25 = 20 + 345  log(8 t25/(1 min) + 1) = 711.49 Gas temperature increment; .g.25 = g.25 - g.24 = 6.05 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.25 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.24 - 1.6910-3 (Jkg-1 )  m.24 2 + 2.2210-6 (Jkg-1 )  m.24 3 ca.25 = 521.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.25 = Cp  p / (ca.25  s)  dp  SF = 0.36
  • 12. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Increase of temeperature (3-1-2, exp. 4.27) .m.25 = max(p  SF/(dp  ca.25  s)  (g.25 - m.24) / ( 1 + storage.25 / 3)  t - (exp(storage.25/10) -1)  .g.25, 0) .m.25 = 7.42 Member temperature; m.25 = m.24+.m.25 = 186.06 Iteration 26 Time; t26 = t25+t = 13.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.26 = 20 + 345  log(8 t26/(1 min) + 1) = 717.31 Gas temperature increment; .g.26 = g.26 - g.25 = 5.82 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.26 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.25 - 1.6910-3 (Jkg-1)  m.25 2+ 2.2210-6 (Jkg-1)  m.25 3 ca.26 = 524.6 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.26 = Cp  p / (ca.26  s)  dp  SF = 0.36 Increase of temeperature (3-1-2, exp. 4.27) .m.26 = max(p  SF/(dp  ca.26  s)  (g.26 - m.25) / ( 1 + storage.26 / 3)  t - (exp(storage.26/10) -1)  .g.26, 0) .m.26 = 7.37 Member temperature; m.26 = m.25+.m.26 = 193.43 Iteration 27 Time; t27 = t26+t = 13.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.27 = 20 + 345  log(8 t27/(1 min) + 1) = 722.91 Gas temperature increment; .g.27 = g.27 - g.26 = 5.60 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.27 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.26 - 1.6910-3 (Jkg-1 )  m.26 2 + 2.2210-6 (Jkg-1 )  m.26 3 ca.27 = 527.4 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.27 = Cp  p / (ca.27  s)  dp  SF = 0.36 Increase of temeperature (3-1-2, exp. 4.27) .m.27 = max(p  SF/(dp  ca.27  s)  (g.27 - m.26) / ( 1 + storage.27 / 3)  t - (exp(storage.27/10) -1)  .g.27, 0) .m.27 = 7.32 Member temperature; m.27 = m.26+.m.27 = 200.75 Iteration 28 Time; t28 = t27+t = 14.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.28 = 20 + 345  log(8 t28/(1 min) + 1) = 728.31 Gas temperature increment; .g.28 = g.28 - g.27 = 5.40 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.28 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.27 - 1.6910-3 (Jkg-1 )  m.27 2 + 2.2210-6 (Jkg-1 )  m.27 3 ca.28 = 530.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.28 = Cp  p / (ca.28  s)  dp  SF = 0.36 Increase of temeperature (3-1-2, exp. 4.27) .m.28 = max(p  SF/(dp  ca.28  s)  (g.28 - m.27) / ( 1 + storage.28 / 3)  t - (exp(storage.28/10) -1)  .g.28, 0)
  • 13. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date .m.28 = 7.27 Member temperature; m.28 = m.27+.m.28 = 208.02 Iteration 29 Time; t29 = t28+t = 14.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.29 = 20 + 345  log(8 t29/(1 min) + 1) = 733.52 Gas temperature increment; .g.29 = g.29 - g.28 = 5.21 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.29 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.28 - 1.6910-3 (Jkg-1 )  m.28 2 + 2.2210-6 (Jkg-1 )  m.28 3 ca.29 = 532.7 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.29 = Cp  p / (ca.29  s)  dp  SF = 0.36 Increase of temeperature (3-1-2, exp. 4.27) .m.29 = max(p  SF/(dp  ca.29  s)  (g.29 - m.28) / ( 1 + storage.29 / 3)  t - (exp(storage.29/10) -1)  .g.29, 0) .m.29 = 7.22 Member temperature; m.29 = m.28+.m.29 = 215.24 Iteration 30 Time; t30 = t29+t = 15.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.30 = 20 + 345  log(8 t30/(1 min) + 1) = 738.56 Gas temperature increment; .g.30 = g.30 - g.29 = 5.04 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.30 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.29 - 1.6910-3 (Jkg-1 )  m.29 2 + 2.2210-6 (Jkg-1 )  m.29 3 ca.30 = 535.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.30 = Cp  p / (ca.30  s)  dp  SF = 0.36 Increase of temeperature (3-1-2, exp. 4.27) .m.30 = max(p  SF/(dp  ca.30  s)  (g.30 - m.29) / ( 1 + storage.30 / 3)  t - (exp(storage.30/10) -1)  .g.30, 0) .m.30 = 7.16 Member temperature; m.30 = m.29+.m.30 = 222.40 Iteration 31 Time; t31 = t30+t = 15.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.31 = 20 + 345  log(8 t31/(1 min) + 1) = 743.43 Gas temperature increment; .g.31 = g.31 - g.30 = 4.87 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.31 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.30 - 1.6910-3 (Jkg-1 )  m.30 2 + 2.2210-6 (Jkg-1 )  m.30 3 ca.31 = 537.7 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.31 = Cp  p / (ca.31  s)  dp  SF = 0.35 Increase of temeperature (3-1-2, exp. 4.27) .m.31 = max(p  SF/(dp  ca.31  s)  (g.31 - m.30) / ( 1 + storage.31 / 3)  t - (exp(storage.31/10) -1)  .g.31, 0) .m.31 = 7.10 Member temperature; m.31 = m.30+.m.31 = 229.50
  • 14. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Iteration 32 Time; t32 = t31+t = 16.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.32 = 20 + 345  log(8 t32/(1 min) + 1) = 748.15 Gas temperature increment; .g.32 = g.32 - g.31 = 4.72 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.32 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.31 - 1.6910-3 (Jkg-1 )  m.31 2 + 2.2210-6 (Jkg-1 )  m.31 3 ca.32 = 540.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.32 = Cp  p / (ca.32  s)  dp  SF = 0.35 Increase of temeperature (3-1-2, exp. 4.27) .m.32 = max(p  SF/(dp  ca.32  s)  (g.32 - m.31) / ( 1 + storage.32 / 3)  t - (exp(storage.32/10) -1)  .g.32, 0) .m.32 = 7.05 Member temperature; m.32 = m.31+.m.32 = 236.55 Iteration 33 Time; t33 = t32+t = 16.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.33 = 20 + 345  log(8 t33/(1 min) + 1) = 752.73 Gas temperature increment; .g.33 = g.33 - g.32 = 4.58 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.33 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.32 - 1.6910-3 (Jkg-1 )  m.32 2 + 2.2210-6 (Jkg-1 )  m.32 3 ca.33 = 542.7 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.33 = Cp  p / (ca.33  s)  dp  SF = 0.35 Increase of temeperature (3-1-2, exp. 4.27) .m.33 = max(p  SF/(dp  ca.33  s)  (g.33 - m.32) / ( 1 + storage.33 / 3)  t - (exp(storage.33/10) -1)  .g.33, 0) .m.33 = 6.99 Member temperature; m.33 = m.32+.m.33 = 243.54 Iteration 34 Time; t34 = t33+t = 17.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.34 = 20 + 345  log(8 t34/(1 min) + 1) = 757.17 Gas temperature increment; .g.34 = g.34 - g.33 = 4.44 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.34 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.33 - 1.6910-3 (Jkg-1)  m.33 2+ 2.2210-6 (Jkg-1)  m.33 3 ca.34 = 545.1 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.34 = Cp  p / (ca.34  s)  dp  SF = 0.35 Increase of temeperature (3-1-2, exp. 4.27) .m.34 = max(p  SF/(dp  ca.34  s)  (g.34 - m.33) / ( 1 + storage.34 / 3)  t - (exp(storage.34/10) -1)  .g.34, 0) .m.34 = 6.93 Member temperature; m.34 = m.33+.m.34 = 250.47 Iteration 35 Time; t35 = t34+t = 17.500 min
  • 15. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Gas temperature – (1-1-2, cl. 3.2.1(1)); g.35 = 20 + 345  log(8 t35/(1 min) + 1) = 761.48 Gas temperature increment; .g.35 = g.35 - g.34 = 4.31 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.35 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.34 - 1.6910-3 (Jkg-1 )  m.34 2 + 2.2210-6 (Jkg-1 )  m.34 3 ca.35 = 547.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.35 = Cp  p / (ca.35  s)  dp  SF = 0.35 Increase of temeperature (3-1-2, exp. 4.27) .m.35 = max(p  SF/(dp  ca.35  s)  (g.35 - m.34) / ( 1 + storage.35 / 3)  t - (exp(storage.35/10) -1)  .g.35, 0) .m.35 = 6.87 Member temperature; m.35 = m.34+.m.35 = 257.34 Iteration 36 Time; t36 = t35+t = 18.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.36 = 20 + 345  log(8 t36/(1 min) + 1) = 765.67 Gas temperature increment; .g.36 = g.36 - g.35 = 4.19 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.36 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.35 - 1.6910-3 (Jkg-1 )  m.35 2 + 2.2210-6 (Jkg-1 )  m.35 3 ca.36 = 549.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.36 = Cp  p / (ca.36  s)  dp  SF = 0.35 Increase of temeperature (3-1-2, exp. 4.27) .m.36 = max(p  SF/(dp  ca.36  s)  (g.36 - m.35) / ( 1 + storage.36 / 3)  t - (exp(storage.36/10) -1)  .g.36, 0) .m.36 = 6.81 Member temperature; m.36 = m.35+.m.36 = 264.16 Iteration 37 Time; t37 = t36+t = 18.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.37 = 20 + 345  log(8 t37/(1 min) + 1) = 769.75 Gas temperature increment; .g.37 = g.37 - g.36 = 4.08 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.37 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.36 - 1.6910-3 (Jkg-1)  m.36 2+ 2.2210-6 (Jkg-1)  m.36 3 ca.37 = 552.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.37 = Cp  p / (ca.37  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.37 = max(p  SF/(dp  ca.37  s)  (g.37 - m.36) / ( 1 + storage.37 / 3)  t - (exp(storage.37/10) -1)  .g.37, 0) .m.37 = 6.76 Member temperature; m.37 = m.36+.m.37 = 270.91 Iteration 38 Time; t38 = t37+t = 19.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.38 = 20 + 345  log(8 t38/(1 min) + 1) = 773.72 Gas temperature increment; .g.38 = g.38 - g.37 = 3.97
  • 16. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.38 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.37 - 1.6910-3 (Jkg-1)  m.37 2+ 2.2210-6 (Jkg-1)  m.37 3 ca.38 = 554.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.38 = Cp  p / (ca.38  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.38 = max(p  SF/(dp  ca.38  s)  (g.38 - m.37) / ( 1 + storage.38 / 3)  t - (exp(storage.38/10) -1)  .g.38, 0) .m.38 = 6.70 Member temperature; m.38 = m.37+.m.38 = 277.61 Iteration 39 Time; t39 = t38+t = 19.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.39 = 20 + 345  log(8 t39/(1 min) + 1) = 777.59 Gas temperature increment; .g.39 = g.39 - g.38 = 3.87 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.39 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.38 - 1.6910-3 (Jkg-1)  m.38 2+ 2.2210-6 (Jkg-1)  m.38 3 ca.39 = 556.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.39 = Cp  p / (ca.39  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.39 = max(p  SF/(dp  ca.39  s)  (g.39 - m.38) / ( 1 + storage.39 / 3)  t - (exp(storage.39/10) -1)  .g.39, 0) .m.39 = 6.64 Member temperature; m.39 = m.38+.m.39 = 284.24 Iteration 40 Time; t40 = t39+t = 20.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.40 = 20 + 345  log(8 t40/(1 min) + 1) = 781.35 Gas temperature increment; .g.40 = g.40 - g.39 = 3.77 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.40 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.39 - 1.6910-3 (Jkg-1 )  m.39 2 + 2.2210-6 (Jkg-1 )  m.39 3 ca.40 = 559.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.40 = Cp  p / (ca.40  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.40 = max(p  SF/(dp  ca.40  s)  (g.40 - m.39) / ( 1 + storage.40 / 3)  t - (exp(storage.40/10) -1)  .g.40, 0) .m.40 = 6.58 Member temperature; m.40 = m.39+.m.40 = 290.82 Iteration 41 Time; t41 = t40+t = 20.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.41 = 20 + 345  log(8 t41/(1 min) + 1) = 785.03 Gas temperature increment; .g.41 = g.41 - g.40 = 3.68 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.41 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.40 - 1.6910-3 (Jkg-1 )  m.40 2 + 2.2210-6 (Jkg-1 )  m.40 3
  • 17. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date ca.41 = 561.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.41 = Cp  p / (ca.41  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.41 = max(p  SF/(dp  ca.41  s)  (g.41 - m.40) / ( 1 + storage.41 / 3)  t - (exp(storage.41/10) -1)  .g.41, 0) .m.41 = 6.52 Member temperature; m.41 = m.40+.m.41 = 297.34 Iteration 42 Time; t42 = t41+t = 21.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.42 = 20 + 345  log(8 t42/(1 min) + 1) = 788.62 Gas temperature increment; .g.42 = g.42 - g.41 = 3.59 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.42 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.41 - 1.6910-3 (Jkg-1)  m.41 2+ 2.2210-6 (Jkg-1)  m.41 3 ca.42 = 563.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.42 = Cp  p / (ca.42  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.42 = max(p  SF/(dp  ca.42  s)  (g.42 - m.41) / ( 1 + storage.42 / 3)  t - (exp(storage.42/10) -1)  .g.42, 0) .m.42 = 6.46 Member temperature; m.42 = m.41+.m.42 = 303.79 Iteration 43 Time; t43 = t42+t = 21.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.43 = 20 + 345  log(8 t43/(1 min) + 1) = 792.13 Gas temperature increment; .g.43 = g.43 - g.42 = 3.50 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.43 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.42 - 1.6910-3 (Jkg-1 )  m.42 2 + 2.2210-6 (Jkg-1 )  m.42 3 ca.43 = 566.1 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.43 = Cp  p / (ca.43  s)  dp  SF = 0.34 Increase of temeperature (3-1-2, exp. 4.27) .m.43 = max(p  SF/(dp  ca.43  s)  (g.43 - m.42) / ( 1 + storage.43 / 3)  t - (exp(storage.43/10) -1)  .g.43, 0) .m.43 = 6.40 Member temperature; m.43 = m.42+.m.43 = 310.19 Iteration 44 Time; t44 = t43+t = 22.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.44 = 20 + 345  log(8 t44/(1 min) + 1) = 795.55 Gas temperature increment; .g.44 = g.44 - g.43 = 3.42 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.44 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.43 - 1.6910-3 (Jkg-1 )  m.43 2 + 2.2210-6 (Jkg-1 )  m.43 3 ca.44 = 568.4 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.44 = Cp  p / (ca.44  s)  dp  SF = 0.33
  • 18. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Increase of temeperature (3-1-2, exp. 4.27) .m.44 = max(p  SF/(dp  ca.44  s)  (g.44 - m.43) / ( 1 + storage.44 / 3)  t - (exp(storage.44/10) -1)  .g.44, 0) .m.44 = 6.34 Member temperature; m.44 = m.43+.m.44 = 316.52 Iteration 45 Time; t45 = t44+t = 22.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.45 = 20 + 345  log(8 t45/(1 min) + 1) = 798.90 Gas temperature increment; .g.45 = g.45 - g.44 = 3.35 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.45 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.44 - 1.6910-3 (Jkg-1)  m.44 2+ 2.2210-6 (Jkg-1)  m.44 3 ca.45 = 570.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.45 = Cp  p / (ca.45  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.45 = max(p  SF/(dp  ca.45  s)  (g.45 - m.44) / ( 1 + storage.45 / 3)  t - (exp(storage.45/10) -1)  .g.45, 0) .m.45 = 6.28 Member temperature; m.45 = m.44+.m.45 = 322.80 Iteration 46 Time; t46 = t45+t = 23.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.46 = 20 + 345  log(8 t46/(1 min) + 1) = 802.17 Gas temperature increment; .g.46 = g.46 - g.45 = 3.28 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.46 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.45 - 1.6910-3 (Jkg-1 )  m.45 2 + 2.2210-6 (Jkg-1 )  m.45 3 ca.46 = 573.1 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.46 = Cp  p / (ca.46  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.46 = max(p  SF/(dp  ca.46  s)  (g.46 - m.45) / ( 1 + storage.46 / 3)  t - (exp(storage.46/10) -1)  .g.46, 0) .m.46 = 6.22 Member temperature; m.46 = m.45+.m.46 = 329.01 Iteration 47 Time; t47 = t46+t = 23.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.47 = 20 + 345  log(8 t47/(1 min) + 1) = 805.38 Gas temperature increment; .g.47 = g.47 - g.46 = 3.21 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.47 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.46 - 1.6910-3 (Jkg-1 )  m.46 2 + 2.2210-6 (Jkg-1 )  m.46 3 ca.47 = 575.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.47 = Cp  p / (ca.47  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.47 = max(p  SF/(dp  ca.47  s)  (g.47 - m.46) / ( 1 + storage.47 / 3)  t - (exp(storage.47/10) -1)  .g.47, 0)
  • 19. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date .m.47 = 6.16 Member temperature; m.47 = m.46+.m.47 = 335.17 Iteration 48 Time; t48 = t47+t = 24.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.48 = 20 + 345  log(8 t48/(1 min) + 1) = 808.52 Gas temperature increment; .g.48 = g.48 - g.47 = 3.14 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.48 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.47 - 1.6910-3 (Jkg-1 )  m.47 2 + 2.2210-6 (Jkg-1 )  m.47 3 ca.48 = 577.8 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.48 = Cp  p / (ca.48  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.48 = max(p  SF/(dp  ca.48  s)  (g.48 - m.47) / ( 1 + storage.48 / 3)  t - (exp(storage.48/10) -1)  .g.48, 0) .m.48 = 6.10 Member temperature; m.48 = m.47+.m.48 = 341.26 Iteration 49 Time; t49 = t48+t = 24.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.49 = 20 + 345  log(8 t49/(1 min) + 1) = 811.59 Gas temperature increment; .g.49 = g.49 - g.48 = 3.07 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.49 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.48 - 1.6910-3 (Jkg-1 )  m.48 2 + 2.2210-6 (Jkg-1 )  m.48 3 ca.49 = 580.2 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.49 = Cp  p / (ca.49  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.49 = max(p  SF/(dp  ca.49  s)  (g.49 - m.48) / ( 1 + storage.49 / 3)  t - (exp(storage.49/10) -1)  .g.49, 0) .m.49 = 6.04 Member temperature; m.49 = m.48+.m.49 = 347.30 Iteration 50 Time; t50 = t49+t = 25.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.50 = 20 + 345  log(8 t50/(1 min) + 1) = 814.60 Gas temperature increment; .g.50 = g.50 - g.49 = 3.01 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.50 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.49 - 1.6910-3 (Jkg-1 )  m.49 2 + 2.2210-6 (Jkg-1 )  m.49 3 ca.50 = 582.6 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.50 = Cp  p / (ca.50  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.50 = max(p  SF/(dp  ca.50  s)  (g.50 - m.49) / ( 1 + storage.50 / 3)  t - (exp(storage.50/10) -1)  .g.50, 0) .m.50 = 5.98 Member temperature; m.50 = m.49+.m.50 = 353.27
  • 20. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Iteration 51 Time; t51 = t50+t = 25.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.51 = 20 + 345  log(8 t51/(1 min) + 1) = 817.56 Gas temperature increment; .g.51 = g.51 - g.50 = 2.95 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.51 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.50 - 1.6910-3 (Jkg-1 )  m.50 2 + 2.2210-6 (Jkg-1 )  m.50 3 ca.51 = 585.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.51 = Cp  p / (ca.51  s)  dp  SF = 0.33 Increase of temeperature (3-1-2, exp. 4.27) .m.51 = max(p  SF/(dp  ca.51  s)  (g.51 - m.50) / ( 1 + storage.51 / 3)  t - (exp(storage.51/10) -1)  .g.51, 0) .m.51 = 5.92 Member temperature; m.51 = m.50+.m.51 = 359.19 Iteration 52 Time; t52 = t51+t = 26.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.52 = 20 + 345  log(8 t52/(1 min) + 1) = 820.45 Gas temperature increment; .g.52 = g.52 - g.51 = 2.90 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.52 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.51 - 1.6910-3 (Jkg-1 )  m.51 2 + 2.2210-6 (Jkg-1 )  m.51 3 ca.52 = 587.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.52 = Cp  p / (ca.52  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.52 = max(p  SF/(dp  ca.52  s)  (g.52 - m.51) / ( 1 + storage.52 / 3)  t - (exp(storage.52/10) -1)  .g.52, 0) .m.52 = 5.86 Member temperature; m.52 = m.51+.m.52 = 365.05 Iteration 53 Time; t53 = t52+t = 26.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.53 = 20 + 345  log(8 t53/(1 min) + 1) = 823.29 Gas temperature increment; .g.53 = g.53 - g.52 = 2.84 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.53 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.52 - 1.6910-3 (Jkg-1)  m.52 2+ 2.2210-6 (Jkg-1)  m.52 3 ca.53 = 590.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.53 = Cp  p / (ca.53  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.53 = max(p  SF/(dp  ca.53  s)  (g.53 - m.52) / ( 1 + storage.53 / 3)  t - (exp(storage.53/10) -1)  .g.53, 0) .m.53 = 5.80 Member temperature; m.53 = m.52+.m.53 = 370.84 Iteration 54 Time; t54 = t53+t = 27.000 min
  • 21. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Gas temperature – (1-1-2, cl. 3.2.1(1)); g.54 = 20 + 345  log(8 t54/(1 min) + 1) = 826.08 Gas temperature increment; .g.54 = g.54 - g.53 = 2.79 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.54 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.53 - 1.6910-3 (Jkg-1 )  m.53 2 + 2.2210-6 (Jkg-1 )  m.53 3 ca.54 = 592.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.54 = Cp  p / (ca.54  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.54 = max(p  SF/(dp  ca.54  s)  (g.54 - m.53) / ( 1 + storage.54 / 3)  t - (exp(storage.54/10) -1)  .g.54, 0) .m.54 = 5.74 Member temperature; m.54 = m.53+.m.54 = 376.58 Iteration 55 Time; t55 = t54+t = 27.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.55 = 20 + 345  log(8 t55/(1 min) + 1) = 828.82 Gas temperature increment; .g.55 = g.55 - g.54 = 2.74 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.55 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.54 - 1.6910-3 (Jkg-1 )  m.54 2 + 2.2210-6 (Jkg-1 )  m.54 3 ca.55 = 595.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.55 = Cp  p / (ca.55  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.55 = max(p  SF/(dp  ca.55  s)  (g.55 - m.54) / ( 1 + storage.55 / 3)  t - (exp(storage.55/10) -1)  .g.55, 0) .m.55 = 5.68 Member temperature; m.55 = m.54+.m.55 = 382.26 Iteration 56 Time; t56 = t55+t = 28.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.56 = 20 + 345  log(8 t56/(1 min) + 1) = 831.50 Gas temperature increment; .g.56 = g.56 - g.55 = 2.69 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.56 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.55 - 1.6910-3 (Jkg-1)  m.55 2+ 2.2210-6 (Jkg-1)  m.55 3 ca.56 = 597.5 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.56 = Cp  p / (ca.56  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.56 = max(p  SF/(dp  ca.56  s)  (g.56 - m.55) / ( 1 + storage.56 / 3)  t - (exp(storage.56/10) -1)  .g.56, 0) .m.56 = 5.62 Member temperature; m.56 = m.55+.m.56 = 387.89 Iteration 57 Time; t57 = t56+t = 28.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.57 = 20 + 345  log(8 t57/(1 min) + 1) = 834.14 Gas temperature increment; .g.57 = g.57 - g.56 = 2.64
  • 22. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.57 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.56 - 1.6910-3 (Jkg-1)  m.56 2+ 2.2210-6 (Jkg-1)  m.56 3 ca.57 = 600.1 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.57 = Cp  p / (ca.57  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.57 = max(p  SF/(dp  ca.57  s)  (g.57 - m.56) / ( 1 + storage.57 / 3)  t - (exp(storage.57/10) -1)  .g.57, 0) .m.57 = 5.56 Member temperature; m.57 = m.56+.m.57 = 393.45 Iteration 58 Time; t58 = t57+t = 29.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.58 = 20 + 345  log(8 t58/(1 min) + 1) = 836.74 Gas temperature increment; .g.58 = g.58 - g.57 = 2.59 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.58 = 425 (Jkg-1) + 7.7310-1 (Jkg-1)  m.57 - 1.6910-3 (Jkg-1)  m.57 2+ 2.2210-6 (Jkg-1)  m.57 3 ca.58 = 602.7 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.58 = Cp  p / (ca.58  s)  dp  SF = 0.32 Increase of temeperature (3-1-2, exp. 4.27) .m.58 = max(p  SF/(dp  ca.58  s)  (g.58 - m.57) / ( 1 + storage.58 / 3)  t - (exp(storage.58/10) -1)  .g.58, 0) .m.58 = 5.51 Member temperature; m.58 = m.57+.m.58 = 398.96 Iteration 59 Time; t59 = t58+t = 29.500 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.59 = 20 + 345  log(8 t59/(1 min) + 1) = 839.29 Gas temperature increment; .g.59 = g.59 - g.58 = 2.55 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.59 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.58 - 1.6910-3 (Jkg-1 )  m.58 2 + 2.2210-6 (Jkg-1 )  m.58 3 ca.59 = 605.4 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.59 = Cp  p / (ca.59  s)  dp  SF = 0.31 Increase of temeperature (3-1-2, exp. 4.27) .m.59 = max(p  SF/(dp  ca.59  s)  (g.59 - m.58) / ( 1 + storage.59 / 3)  t - (exp(storage.59/10) -1)  .g.59, 0) .m.59 = 5.45 Member temperature; m.59 = m.58+.m.59 = 404.40 Iteration 60 Time; t60 = t59+t = 30.000 min Gas temperature – (1-1-2, cl. 3.2.1(1)); g.60 = 20 + 345  log(8 t60/(1 min) + 1) = 841.80 Gas temperature increment; .g.60 = g.60 - g.59 = 2.51 Specific heat of steel - (3-1-2, cl. 3.4.1.2); ca.60 = 425 (Jkg-1 ) + 7.7310-1 (Jkg-1 )  m.59 - 1.6910-3 (Jkg-1 )  m.59 2 + 2.2210-6 (Jkg-1 )  m.59 3
  • 23. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date ca.60 = 608.0 J/kg Heat storage – (3-1-2, cl. 4.2.5.2); storage.60 = Cp  p / (ca.60  s)  dp  SF = 0.31 Increase of temeperature (3-1-2, exp. 4.27) .m.60 = max(p  SF/(dp  ca.60  s)  (g.60 - m.59) / ( 1 + storage.60 / 3)  t - (exp(storage.60/10) -1)  .g.60, 0) .m.60 = 5.39 Member temperature; m.60 = m.59+.m.60 = 409.80 Critical temperature results Critical temperature a,crit = 437 Time to reach critical temperature Tfire = 33.0 min
  • 24. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 4401717 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Steel Member Fire Resistance Design (EN1993) In accordance with EN1993-1-2:2005 incorporating Corrigenda December 2005, September 2006 and March 2009 and the recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 09 July 2023 Chk'd by Date App'd by Date Required time of fire exposure Treq,fire = 30.0 min Steel member temp. after fire exposure time a = 410 PASS - Critical temperature exceeds steel member temperature at required fire exposure time Analysis and Design by Dr. Costas Sachpazis Civil Engineer GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info