SlideShare a Scribd company logo
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
PAD FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)
Pad footing details
Length of pad footing; L = 2500 mm
Width of pad footing; B = 1500 mm
Area of pad footing; A = L × B = 3.750 m
2
Depth of pad footing; h = 400 mm
Depth of soil over pad footing; hsoil = 200 mm
Density of concrete; ρconc = 23.6 kN/m
3
Column details
Column base length; lA = 300 mm
Column base width; bA = 300 mm
Column eccentricity in x; ePxA = 0 mm
Column eccentricity in y; ePyA = 0 mm
Soil details
Dense, moderately graded, sub-angular, gravel
Mobilisation factor; m= ;1.5;
Density of soil; ρsoil = 20.0 kN/m
3
Design shear strength; φ’ = 25.0 deg
Design base friction; δ = 19.3 deg
Allowable bearing pressure; Pbearing = 200 kN/m
2
Axial loading on column
Dead axial load on column; PGA = 200.0 kN
2500
1100 1100
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
Imposed axial load on column; PQA = 165.0 kN
Wind axial load on column; PWA = 0.0 kN
Total axial load on column; PA = 365.0 kN
Foundation loads
Dead surcharge load; FGsur = 0.000 kN/m
2
Imposed surcharge load; FQsur = 0.000 kN/m
2
Pad footing self weight; Fswt = h × ρconc = 9.440 kN/m
2
Soil self weight; Fsoil = hsoil × ρsoil = 4.000 kN/m
2
Total foundation load; F = A × (FGsur + FQsur + Fswt + Fsoil) = 50.4 kN
Horizontal loading on column base
Dead horizontal load in x direction; HGxA = 20.0 kN
Imposed horizontal load in x direction; HQxA = 15.0 kN
Wind horizontal load in x direction; HWxA = 0.0 kN
Total horizontal load in x direction; HxA = 35.0 kN
Dead horizontal load in y direction; HGyA = 5.0 kN
Imposed horizontal load in y direction; HQyA = 5.0 kN
Wind horizontal load in y direction; HWyA = 0.0 kN
Total horizontal load in y direction; HyA = 10.0 kN
Moment on column base
Dead moment on column in x direction; MGxA = 15.000 kNm
Imposed moment on column in x direction; MQxA = 10.000 kNm
Wind moment on column in x direction; MWxA = 0.000 kNm
Total moment on column in x direction; MxA = 25.000 kNm
Dead moment on column in y direction; MGyA = 25.000 kNm
Imposed moment on column in y direction; MQyA = 30.000 kNm
Wind moment on column in y direction; MWyA = 0.000 kNm
Total moment on column in y direction; MyA = 55.000 kNm
Check stability against sliding
Resistance to sliding due to base friction
Hfriction = max([PGA + (FGsur + Fswt + Fsoil) × A], 0 kN) × tan(δ) = 87.7 kN
Passive pressure coefficient; Kp = (1 + sin(φ’)) / (1 - sin(φ’)) = 2.464
Stability against sliding in x direction
Passive resistance of soil in x direction; Hxpas = 0.5 × Kp × (h
2
+ 2 × h × hsoil) × B × ρsoil =
11.8 kN
Total resistance to sliding in x direction; Hxres = Hfriction + Hxpas = 99.5 kN
PASS - Resistance to sliding is greater than horizontal load in x direction
Stability against sliding in y direction
Passive resistance of soil in y direction; Hypas = 0.5 × Kp × (h
2
+ 2 × h × hsoil) × L × ρsoil =
19.7 kN
Total resistance to sliding in y direction; Hyres = Hfriction + Hypas = 107.4 kN
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
PASS - Resistance to sliding is greater than horizontal load in y direction
Check stability against overturning in x direction
Total overturning moment; MxOT = MxA + HxA × h = 39.000 kNm
Restoring moment in x direction
Foundation loading; Mxsur = A × (FGsur + Fswt + Fsoil) × L / 2 = 63.000
kNm
Axial loading on column; Mxaxial = (PGA) × (L / 2 - ePxA) = 250.000 kNm
Total restoring moment; Mxres = Mxsur + Mxaxial = 313.000 kNm
PASS - Restoring moment is greater than overturning moment in x direction
Check stability against overturning in y direction
Total overturning moment; MyOT = MyA + HyA × h = 59.000 kNm
Restoring moment in y direction
Foundation loading; Mysur = A × (FGsur + Fswt + Fsoil) × B / 2 = 37.800
kNm
Axial loading on column; Myaxial = (PGA) × (B / 2 - ePyA) = 150.000 kNm
Total restoring moment; Myres = Mysur + Myaxial = 187.800 kNm
PASS - Restoring moment is greater than overturning moment in y direction
Calculate pad base reaction
Total base reaction; T = F + PA = 415.4 kN
Eccentricity of base reaction in x; eTx = (PA × ePxA + MxA + HxA × h) / T = 94 mm
Eccentricity of base reaction in y; eTy = (PA × ePyA + MyA + HyA × h) / T = 142 mm
Check pad base reaction eccentricity
abs(eTx) / L + abs(eTy) / B = 0.132
Base reaction acts within combined middle third of base
Calculate pad base pressures
q1 = T / A - 6 × T × eTx / (L × A) - 6 × T × eTy / (B ×
A) = 22.880 kN/m
2
q2 = T / A - 6 × T × eTx / (L × A) + 6 × T × eTy / (B ×
A) = 148.747 kN/m
2
q3 = T / A + 6 × T × eTx / (L × A) - 6 × T × eTy / (B ×
A) = 72.800 kN/m
2
q4 = T / A + 6 × T × eTx / (L × A) + 6 × T × eTy / (B ×
A) = 198.667 kN/m
2
Minimum base pressure; qmin = min(q1, q2, q3, q4) = 22.880 kN/m
2
Maximum base pressure; qmax = max(q1, q2, q3, q4) = 198.667 kN/m
2
PASS - Maximum base pressure is less than allowable bearing pressure
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
Partial safety factors for loads
Partial safety factor for dead loads; γfG = 1.40
Partial safety factor for imposed loads; γfQ = 1.60
Partial safety factor for wind loads; γfW = 0.00
Ultimate axial loading on column
Ultimate axial load on column; PuA = PGA × γfG + PQA × γfQ + PWA × γfW = 544.0 kN
Ultimate foundation loads
Ultimate foundation load; Fu = A × [(FGsur + Fswt + Fsoil) × γfG + FQsur × γfQ] =
70.6 kN
Ultimate horizontal loading on column
Ultimate horizontal load in x direction; HxuA = HGxA × γfG + HQxA × γfQ + HWxA × γfW = 52.0
kN
Ultimate horizontal load in y direction; HyuA = HGyA × γfG + HQyA × γfQ + HWyA × γfW = 15.0
kN
Ultimate moment on column
Ultimate moment on column in x direction; MxuA = MGxA × γfG + MQxA × γfQ + MWxA × γfW =
37.000 kNm
Ultimate moment on column in y direction; MyuA = MGyA × γfG + MQyA × γfQ + MWyA × γfW =
83.000 kNm
22.9 kN/m
148.7 kN/m
72.8 kN/m
198.7 kN/m
2
2
2
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
Calculate ultimate pad base reaction
Ultimate base reaction; Tu = Fu + PuA = 614.6 kN
Eccentricity of ultimate base reaction in x; eTxu = (PuA × ePxA + MxuA + HxuA × h) / Tu = 94 mm
Eccentricity of ultimate base reaction in y; eTyu = (PuA × ePyA + MyuA + HyuA × h) / Tu = 145 mm
Calculate ultimate pad base pressures
q1u = Tu/A - 6×Tu×eTxu/(L×A) - 6×Tu×eTyu/(B×A) =
31.957 kN/m
2
q2u = Tu/A - 6×Tu×eTxu/(L×A) + 6×Tu× eTyu/(B×A) =
221.824 kN/m
2
q3u = Tu/A + 6×Tu×eTxu/(L×A) - 6×Tu×eTyu/(B×A) =
105.941 kN/m
2
q4u = Tu/A + 6×Tu×eTxu/(L×A) + 6×Tu×eTyu/(B×A) =
295.808 kN/m
2
Minimum ultimate base pressure; qminu = min(q1u, q2u, q3u, q4u) = 31.957 kN/m
2
Maximum ultimate base pressure; qmaxu = max(q1u, q2u, q3u, q4u) = 295.808 kN/m
2
Calculate rate of change of base pressure in x direction
Left hand base reaction; fuL = (q1u + q2u) × B / 2 = 190.336 kN/m
Right hand base reaction; fuR = (q3u + q4u) × B / 2 = 301.312 kN/m
Length of base reaction; Lx = L = 2500 mm
Rate of change of base pressure; Cx = (fuR - fuL) / Lx = 44.390 kN/m/m
Calculate pad lengths in x direction
Left hand length; LL = L / 2 + ePxA = 1250 mm
Right hand length; LR = L / 2 - ePxA = 1250 mm
Calculate ultimate moments in x direction
Ultimate moment in x direction; Mx = fuL×LL
2
/2+Cx×LL
3
/6-Fu×LL
2
/(2×L)+HxuA×h+MxuA
= 198.900 kNm
Calculate rate of change of base pressure in y direction
Top edge base reaction; fuT = (q2u + q4u) × L / 2 = 647.040 kN/m
Bottom edge base reaction; fuB = (q1u + q3u) × L / 2 = 172.373 kN/m
Length of base reaction; Ly = B = 1500 mm
Rate of change of base pressure; Cy = (fuB - fuT) / Ly = -316.444 kN/m/m
Calculate pad lengths in y direction
Top length; LT = B / 2 - ePyA = 750 mm
Bottom length; LB = B / 2 + ePyA = 750 mm
Calculate ultimate moments in y direction
Ultimate moment in y direction; My = fuT×LT
2
/2+Cy×LT
3
/6-Fu×LT
2
/(2×B) = 146.500
kNm
Material details
Characteristic strength of concrete; fcu = 30 N/mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
Characteristic strength of reinforcement; fy = 500 N/mm
2
Characteristic strength of shear reinforcement; fyv = 500 N/mm
2
Nominal cover to reinforcement; cnom = 30 mm
Moment design in x direction
Diameter of tension reinforcement; φxB = 12 mm
Depth of tension reinforcement; dx = h - cnom - φxB / 2 = 364 mm
Design formula for rectangular beams (cl 3.4.4.4)
Kx = Mx / (B × dx
2
× fcu) = 0.033
Kx’ = 0.156
Kx < Kx' compression reinforcement is not required
Lever arm; zx = dx × min([0.5 + √(0.25 - Kx / 0.9)], 0.95) = 346
mm
Area of tension reinforcement required; As_x_req = Mx / (0.87 × fy × zx) = 1322 mm
2
Minimum area of tension reinforcement; As_x_min = 0.0013 × B × h = 780 mm
2
Tension reinforcement provided; 12 No. 12 dia. bars bottom (125 centres)
Area of tension reinforcement provided; As_xB_prov = NxB × π × φxB
2
/ 4 = 1357 mm
2
PASS - Tension reinforcement provided exceeds tension reinforcement required
Moment design in y direction
Diameter of tension reinforcement; φyB = 12 mm
Depth of tension reinforcement; dy = h - cnom - φxB - φyB / 2 = 352 mm
Design formula for rectangular beams (cl 3.4.4.4)
Ky = My / (L × dy
2
× fcu) = 0.016
Ky’ = 0.156
Ky < Ky' compression reinforcement is not required
Lever arm; zy = dy × min([0.5 + √(0.25 - Ky / 0.9)], 0.95) = 334
mm
Area of tension reinforcement required; As_y_req = My / (0.87 × fy × zy) = 1007 mm
2
Minimum area of tension reinforcement; As_y_min = 0.0013 × L × h = 1300 mm
2
Tension reinforcement provided; 13 No. 12 dia. bars bottom (200 centres)
Area of tension reinforcement provided; As_yB_prov = NyB × π × φyB
2
/ 4 = 1470 mm
2
PASS - Tension reinforcement provided exceeds tension reinforcement required
Calculate ultimate shear force at d from right face of column
Ultimate pressure for shear; qsu = (q1u + Cx × (L / 2 + ePxA + lA / 2 + dx) / B + q4u)
/ 2
qsu = 189.984 kN/m
2
Area loaded for shear; As = B × min(3 × (L / 2 - eTx), L / 2 - ePxA - lA / 2 - dx)
= 1.104 m
2
Ultimate shear force; Vsu = As × (qsu - Fu / A) = 188.970 kN
Shear stresses at d from right face of column (cl 3.5.5.2)
Design shear stress; vsu = Vsu / (B × dx) = 0.346 N/mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
From BS 8110:Part 1:1997 - Table 3.8
Design concrete shear stress; vc = 0.432 N/mm
2
Allowable design shear stress; vmax = min(0.8N/mm
2
× √(fcu / 1 N/mm
2
), 5 N/mm
2
)
= 4.382 N/mm
2
PASS - vsu < vc - No shear reinforcement required
Calculate ultimate punching shear force at face of column
Ultimate pressure for punching shear; qpuA = q1u+[(L/2+ePxA-lA/2)+(lA)/2]×Cx/B-[(B/2+ePyA-
bA/2)+(bA)/2]×Cy/L
qpuA = 163.883 kN/m
2
Average effective depth of reinforcement; d = (dx + dy) / 2 = 358 mm
Area loaded for punching shear at column; ApA = (lA)×(bA) = 0.090 m
2
Length of punching shear perimeter; upA = 2×(lA)+2×(bA) = 1200 mm
Ultimate shear force at shear perimeter; VpuA = PuA + (Fu / A - qpuA) × ApA = 530.944 kN
Effective shear force at shear perimeter; VpuAeff =
VpuA×[1+1.5×abs(MxuA)/(VpuA×(bA))+1.5×abs(MyuA)/(VpuA×(lA))] = 1130.944 kN
Punching shear stresses at face of column (cl 3.7.7.2)
Design shear stress; vpuA = VpuAeff / (upA × d) = 2.633 N/mm
2
Allowable design shear stress; vmax = min(0.8N/mm
2
× √(fcu / 1 N/mm
2
), 5 N/mm
2
)
= 4.382 N/mm
2
PASS - Design shear stress is less than allowable design shear stress
Calculate ultimate punching shear force at perimeter of 1.5 d from face of column
Ultimate pressure for punching shear; qpuA1.5d = q1u+[(L/2+ePxA-lA/2-
1.5×d)+(lA+2×1.5×d)/2]×Cx/B-[B/2]×Cy/L
qpuA1.5d = 163.883 kN/m
2
Average effective depth of reinforcement; d = (dx + dy) / 2 = 358 mm
Area loaded for punching shear at column; ApA1.5d = (lA+2×1.5×d)×B = 2.061 m
2
Length of punching shear perimeter; upA1.5d = 2×B = 3000 mm
Ultimate shear force at shear perimeter; VpuA1.5d = PuA + (Fu / A - qpuA1.5d) × ApA1.5d = 245.018 kN
Effective shear force at shear perimeter; VpuA1.5deff = VpuA1.5d × 1.25 = 306.272 kN
Punching shear stresses at perimeter of 1.5 d from face of column (cl 3.7.7.2)
Design shear stress; vpuA1.5d = VpuA1.5deff / (upA1.5d × d) = 0.285 N/mm
2
From BS 8110:Part 1:1997 - Table 3.8
Design concrete shear stress; vc = 0.409 N/mm
2
Allowable design shear stress; vmax = min(0.8N/mm
2
× √(fcu / 1 N/mm
2
), 5 N/mm
2
)
= 4.382 N/mm
2
PASS - vpuA1.5d < vc - No shear reinforcement required
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info
Project
Pad footing analysis and design (BS8110-1:1997)
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev.
1
Calc. by
Dr.C.Sach
pazis
Date
23/05/2013
Chk'd by
-
Date App'd by Date
Shear at d from column face
Punching shear perimeter at 1.5 × d from column face
13 No. 12 dia. bars btm (200 c/c)
12 No. 12 dia. bars btm (125 c/c)

More Related Content

What's hot

Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Dr.Costas Sachpazis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleDr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Dr.Costas Sachpazis
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Dr.Costas Sachpazis
 
Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)
Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)
Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)Johan Antonissen
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Dr.Costas Sachpazis
 

What's hot (20)

Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)
Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)
Offshore Windfarm Design - Les 6 Structure Design and Load Calculations (part 2)
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 

Viewers also liked

3D Combined Footing Design
3D Combined Footing Design3D Combined Footing Design
3D Combined Footing DesignMario Galvez
 
Footing design formulae
Footing design formulaeFooting design formulae
Footing design formulaeyyanan1118
 
Footing design
Footing designFooting design
Footing designYasin J
 
Footing design(09.02.03.096)
Footing design(09.02.03.096)Footing design(09.02.03.096)
Footing design(09.02.03.096)Zawad khalil
 
Alan tovey
Alan toveyAlan tovey
Alan toveyvietcgxd
 
Columns lecture#4
Columns lecture#4Columns lecture#4
Columns lecture#4Irfan Malik
 
Modes of failure of retaining walls
Modes of failure of retaining wallsModes of failure of retaining walls
Modes of failure of retaining wallsRitesh Chinchawade
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearqueripan
 
Sp 34-1987 handbook on reinforcement and detailing
Sp 34-1987 handbook on reinforcement and detailingSp 34-1987 handbook on reinforcement and detailing
Sp 34-1987 handbook on reinforcement and detailingjemmabarsby
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1Irfan Malik
 
Reinforcement detailing
Reinforcement  detailingReinforcement  detailing
Reinforcement detailingAli Ishaqi
 
footing
footingfooting
footingillpa
 
Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Lamdade Akhil
 
Presentation on Slab, Beam & Column
Presentation on Slab, Beam & ColumnPresentation on Slab, Beam & Column
Presentation on Slab, Beam & Columnমু সা
 

Viewers also liked (20)

3D Combined Footing Design
3D Combined Footing Design3D Combined Footing Design
3D Combined Footing Design
 
Footing design formulae
Footing design formulaeFooting design formulae
Footing design formulae
 
Isolated Footing
Isolated FootingIsolated Footing
Isolated Footing
 
Footing design
Footing designFooting design
Footing design
 
Footing design(09.02.03.096)
Footing design(09.02.03.096)Footing design(09.02.03.096)
Footing design(09.02.03.096)
 
Rc19 footing1
Rc19 footing1Rc19 footing1
Rc19 footing1
 
Ch 7 design of rcc footing
Ch 7 design of rcc footingCh 7 design of rcc footing
Ch 7 design of rcc footing
 
Alan tovey
Alan toveyAlan tovey
Alan tovey
 
Square footing design
Square footing designSquare footing design
Square footing design
 
Columns lecture#4
Columns lecture#4Columns lecture#4
Columns lecture#4
 
Modes of failure of retaining walls
Modes of failure of retaining wallsModes of failure of retaining walls
Modes of failure of retaining walls
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shear
 
Sp 34-1987 handbook on reinforcement and detailing
Sp 34-1987 handbook on reinforcement and detailingSp 34-1987 handbook on reinforcement and detailing
Sp 34-1987 handbook on reinforcement and detailing
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
 
Reinforcement detailing
Reinforcement  detailingReinforcement  detailing
Reinforcement detailing
 
footing
footingfooting
footing
 
ONE WAY SLAB DESIGN
ONE WAY SLAB DESIGNONE WAY SLAB DESIGN
ONE WAY SLAB DESIGN
 
Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Bar bending schedule(by akhil)
Bar bending schedule(by akhil)
 
Presentation on Slab, Beam & Column
Presentation on Slab, Beam & ColumnPresentation on Slab, Beam & Column
Presentation on Slab, Beam & Column
 

Similar to Sachpazis pad footing example

Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
ClassExamples_LinearMomentum.pdf
ClassExamples_LinearMomentum.pdfClassExamples_LinearMomentum.pdf
ClassExamples_LinearMomentum.pdfPatrickSibanda3
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Dr.youssef hamida
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
Thiet ke tuong coc
Thiet ke tuong cocThiet ke tuong coc
Thiet ke tuong cocNguyen Duong
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxSamirsinh Parmar
 
Analysis of composite beam and design of grannular piles foundation for kalya...
Analysis of composite beam and design of grannular piles foundation for kalya...Analysis of composite beam and design of grannular piles foundation for kalya...
Analysis of composite beam and design of grannular piles foundation for kalya...PrathyushaMalladi2
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculationJy Chong
 
Offshore Windfarm Design - Les 5 Structure Design and Load Calculations
Offshore Windfarm Design - Les 5 Structure Design and Load CalculationsOffshore Windfarm Design - Les 5 Structure Design and Load Calculations
Offshore Windfarm Design - Les 5 Structure Design and Load CalculationsJohan Antonissen
 
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallDr.Youssef Hammida
 

Similar to Sachpazis pad footing example (19)

Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
ClassExamples_LinearMomentum.pdf
ClassExamples_LinearMomentum.pdfClassExamples_LinearMomentum.pdf
ClassExamples_LinearMomentum.pdf
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
 
Roof truss design
Roof truss designRoof truss design
Roof truss design
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
 
Lecture 6.pdf
Lecture 6.pdfLecture 6.pdf
Lecture 6.pdf
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
Thiet ke tuong coc
Thiet ke tuong cocThiet ke tuong coc
Thiet ke tuong coc
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptx
 
Analysis of composite beam and design of grannular piles foundation for kalya...
Analysis of composite beam and design of grannular piles foundation for kalya...Analysis of composite beam and design of grannular piles foundation for kalya...
Analysis of composite beam and design of grannular piles foundation for kalya...
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculation
 
Offshore Windfarm Design - Les 5 Structure Design and Load Calculations
Offshore Windfarm Design - Les 5 Structure Design and Load CalculationsOffshore Windfarm Design - Les 5 Structure Design and Load Calculations
Offshore Windfarm Design - Les 5 Structure Design and Load Calculations
 
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
 

Recently uploaded

Claire's designing portfolio presentation
Claire's designing portfolio presentationClaire's designing portfolio presentation
Claire's designing portfolio presentationssuser8fae18
 
Pitch Presentation for Service Design in Technology
Pitch Presentation for Service Design in TechnologyPitch Presentation for Service Design in Technology
Pitch Presentation for Service Design in TechnologyJaime Brown
 
Research about Venice ppt for grade 6f anas
Research about Venice ppt for grade 6f anasResearch about Venice ppt for grade 6f anas
Research about Venice ppt for grade 6f anasanasabutalha2013
 
Heuristic Evaluation of System & Application
Heuristic Evaluation of System & ApplicationHeuristic Evaluation of System & Application
Heuristic Evaluation of System & ApplicationJaime Brown
 
The Design Code Google Developer Student Club.pptx
The Design Code Google Developer Student Club.pptxThe Design Code Google Developer Student Club.pptx
The Design Code Google Developer Student Club.pptxadityakushalsaha
 
National-Learning-Camp 2024 deped....pptx
National-Learning-Camp 2024 deped....pptxNational-Learning-Camp 2024 deped....pptx
National-Learning-Camp 2024 deped....pptxAlecAnidul
 
The Evolution of Fashion Trends: History to Fashion
The Evolution of Fashion Trends: History to FashionThe Evolution of Fashion Trends: History to Fashion
The Evolution of Fashion Trends: History to FashionPixel poets
 
Spring 2024 wkrm_Enhancing Campus Mobility.pdf
Spring 2024 wkrm_Enhancing Campus Mobility.pdfSpring 2024 wkrm_Enhancing Campus Mobility.pdf
Spring 2024 wkrm_Enhancing Campus Mobility.pdfJon Freach
 
Art Nouveau Movement Presentation for Art History.
Art Nouveau Movement Presentation for Art History.Art Nouveau Movement Presentation for Art History.
Art Nouveau Movement Presentation for Art History.rrimika1
 
Common Designing Mistakes and How to avoid them
Common Designing Mistakes and How to avoid themCommon Designing Mistakes and How to avoid them
Common Designing Mistakes and How to avoid themmadhavlakhanpal29
 
PORTFOLIO FABIANA VILLANI ARCHITECTURE.pdf
PORTFOLIO FABIANA VILLANI ARCHITECTURE.pdfPORTFOLIO FABIANA VILLANI ARCHITECTURE.pdf
PORTFOLIO FABIANA VILLANI ARCHITECTURE.pdffabianavillanib
 
Design lessons from Singapore | Volume 3
Design lessons from Singapore | Volume 3Design lessons from Singapore | Volume 3
Design lessons from Singapore | Volume 3Remy Rey De Barros
 
BIT- Pinal .H. Prajapati Graphic Designer
BIT- Pinal .H. Prajapati  Graphic DesignerBIT- Pinal .H. Prajapati  Graphic Designer
BIT- Pinal .H. Prajapati Graphic Designerbitwgin12
 
CA OFFICE office office office _VIEWS.pdf
CA OFFICE office office office _VIEWS.pdfCA OFFICE office office office _VIEWS.pdf
CA OFFICE office office office _VIEWS.pdfSudhanshuMandlik
 

Recently uploaded (14)

Claire's designing portfolio presentation
Claire's designing portfolio presentationClaire's designing portfolio presentation
Claire's designing portfolio presentation
 
Pitch Presentation for Service Design in Technology
Pitch Presentation for Service Design in TechnologyPitch Presentation for Service Design in Technology
Pitch Presentation for Service Design in Technology
 
Research about Venice ppt for grade 6f anas
Research about Venice ppt for grade 6f anasResearch about Venice ppt for grade 6f anas
Research about Venice ppt for grade 6f anas
 
Heuristic Evaluation of System & Application
Heuristic Evaluation of System & ApplicationHeuristic Evaluation of System & Application
Heuristic Evaluation of System & Application
 
The Design Code Google Developer Student Club.pptx
The Design Code Google Developer Student Club.pptxThe Design Code Google Developer Student Club.pptx
The Design Code Google Developer Student Club.pptx
 
National-Learning-Camp 2024 deped....pptx
National-Learning-Camp 2024 deped....pptxNational-Learning-Camp 2024 deped....pptx
National-Learning-Camp 2024 deped....pptx
 
The Evolution of Fashion Trends: History to Fashion
The Evolution of Fashion Trends: History to FashionThe Evolution of Fashion Trends: History to Fashion
The Evolution of Fashion Trends: History to Fashion
 
Spring 2024 wkrm_Enhancing Campus Mobility.pdf
Spring 2024 wkrm_Enhancing Campus Mobility.pdfSpring 2024 wkrm_Enhancing Campus Mobility.pdf
Spring 2024 wkrm_Enhancing Campus Mobility.pdf
 
Art Nouveau Movement Presentation for Art History.
Art Nouveau Movement Presentation for Art History.Art Nouveau Movement Presentation for Art History.
Art Nouveau Movement Presentation for Art History.
 
Common Designing Mistakes and How to avoid them
Common Designing Mistakes and How to avoid themCommon Designing Mistakes and How to avoid them
Common Designing Mistakes and How to avoid them
 
PORTFOLIO FABIANA VILLANI ARCHITECTURE.pdf
PORTFOLIO FABIANA VILLANI ARCHITECTURE.pdfPORTFOLIO FABIANA VILLANI ARCHITECTURE.pdf
PORTFOLIO FABIANA VILLANI ARCHITECTURE.pdf
 
Design lessons from Singapore | Volume 3
Design lessons from Singapore | Volume 3Design lessons from Singapore | Volume 3
Design lessons from Singapore | Volume 3
 
BIT- Pinal .H. Prajapati Graphic Designer
BIT- Pinal .H. Prajapati  Graphic DesignerBIT- Pinal .H. Prajapati  Graphic Designer
BIT- Pinal .H. Prajapati Graphic Designer
 
CA OFFICE office office office _VIEWS.pdf
CA OFFICE office office office _VIEWS.pdfCA OFFICE office office office _VIEWS.pdf
CA OFFICE office office office _VIEWS.pdf
 

Sachpazis pad footing example

  • 1. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date PAD FOOTING ANALYSIS AND DESIGN (BS8110-1:1997) Pad footing details Length of pad footing; L = 2500 mm Width of pad footing; B = 1500 mm Area of pad footing; A = L × B = 3.750 m 2 Depth of pad footing; h = 400 mm Depth of soil over pad footing; hsoil = 200 mm Density of concrete; ρconc = 23.6 kN/m 3 Column details Column base length; lA = 300 mm Column base width; bA = 300 mm Column eccentricity in x; ePxA = 0 mm Column eccentricity in y; ePyA = 0 mm Soil details Dense, moderately graded, sub-angular, gravel Mobilisation factor; m= ;1.5; Density of soil; ρsoil = 20.0 kN/m 3 Design shear strength; φ’ = 25.0 deg Design base friction; δ = 19.3 deg Allowable bearing pressure; Pbearing = 200 kN/m 2 Axial loading on column Dead axial load on column; PGA = 200.0 kN 2500 1100 1100
  • 2. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date Imposed axial load on column; PQA = 165.0 kN Wind axial load on column; PWA = 0.0 kN Total axial load on column; PA = 365.0 kN Foundation loads Dead surcharge load; FGsur = 0.000 kN/m 2 Imposed surcharge load; FQsur = 0.000 kN/m 2 Pad footing self weight; Fswt = h × ρconc = 9.440 kN/m 2 Soil self weight; Fsoil = hsoil × ρsoil = 4.000 kN/m 2 Total foundation load; F = A × (FGsur + FQsur + Fswt + Fsoil) = 50.4 kN Horizontal loading on column base Dead horizontal load in x direction; HGxA = 20.0 kN Imposed horizontal load in x direction; HQxA = 15.0 kN Wind horizontal load in x direction; HWxA = 0.0 kN Total horizontal load in x direction; HxA = 35.0 kN Dead horizontal load in y direction; HGyA = 5.0 kN Imposed horizontal load in y direction; HQyA = 5.0 kN Wind horizontal load in y direction; HWyA = 0.0 kN Total horizontal load in y direction; HyA = 10.0 kN Moment on column base Dead moment on column in x direction; MGxA = 15.000 kNm Imposed moment on column in x direction; MQxA = 10.000 kNm Wind moment on column in x direction; MWxA = 0.000 kNm Total moment on column in x direction; MxA = 25.000 kNm Dead moment on column in y direction; MGyA = 25.000 kNm Imposed moment on column in y direction; MQyA = 30.000 kNm Wind moment on column in y direction; MWyA = 0.000 kNm Total moment on column in y direction; MyA = 55.000 kNm Check stability against sliding Resistance to sliding due to base friction Hfriction = max([PGA + (FGsur + Fswt + Fsoil) × A], 0 kN) × tan(δ) = 87.7 kN Passive pressure coefficient; Kp = (1 + sin(φ’)) / (1 - sin(φ’)) = 2.464 Stability against sliding in x direction Passive resistance of soil in x direction; Hxpas = 0.5 × Kp × (h 2 + 2 × h × hsoil) × B × ρsoil = 11.8 kN Total resistance to sliding in x direction; Hxres = Hfriction + Hxpas = 99.5 kN PASS - Resistance to sliding is greater than horizontal load in x direction Stability against sliding in y direction Passive resistance of soil in y direction; Hypas = 0.5 × Kp × (h 2 + 2 × h × hsoil) × L × ρsoil = 19.7 kN Total resistance to sliding in y direction; Hyres = Hfriction + Hypas = 107.4 kN
  • 3. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date PASS - Resistance to sliding is greater than horizontal load in y direction Check stability against overturning in x direction Total overturning moment; MxOT = MxA + HxA × h = 39.000 kNm Restoring moment in x direction Foundation loading; Mxsur = A × (FGsur + Fswt + Fsoil) × L / 2 = 63.000 kNm Axial loading on column; Mxaxial = (PGA) × (L / 2 - ePxA) = 250.000 kNm Total restoring moment; Mxres = Mxsur + Mxaxial = 313.000 kNm PASS - Restoring moment is greater than overturning moment in x direction Check stability against overturning in y direction Total overturning moment; MyOT = MyA + HyA × h = 59.000 kNm Restoring moment in y direction Foundation loading; Mysur = A × (FGsur + Fswt + Fsoil) × B / 2 = 37.800 kNm Axial loading on column; Myaxial = (PGA) × (B / 2 - ePyA) = 150.000 kNm Total restoring moment; Myres = Mysur + Myaxial = 187.800 kNm PASS - Restoring moment is greater than overturning moment in y direction Calculate pad base reaction Total base reaction; T = F + PA = 415.4 kN Eccentricity of base reaction in x; eTx = (PA × ePxA + MxA + HxA × h) / T = 94 mm Eccentricity of base reaction in y; eTy = (PA × ePyA + MyA + HyA × h) / T = 142 mm Check pad base reaction eccentricity abs(eTx) / L + abs(eTy) / B = 0.132 Base reaction acts within combined middle third of base Calculate pad base pressures q1 = T / A - 6 × T × eTx / (L × A) - 6 × T × eTy / (B × A) = 22.880 kN/m 2 q2 = T / A - 6 × T × eTx / (L × A) + 6 × T × eTy / (B × A) = 148.747 kN/m 2 q3 = T / A + 6 × T × eTx / (L × A) - 6 × T × eTy / (B × A) = 72.800 kN/m 2 q4 = T / A + 6 × T × eTx / (L × A) + 6 × T × eTy / (B × A) = 198.667 kN/m 2 Minimum base pressure; qmin = min(q1, q2, q3, q4) = 22.880 kN/m 2 Maximum base pressure; qmax = max(q1, q2, q3, q4) = 198.667 kN/m 2 PASS - Maximum base pressure is less than allowable bearing pressure
  • 4. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date Partial safety factors for loads Partial safety factor for dead loads; γfG = 1.40 Partial safety factor for imposed loads; γfQ = 1.60 Partial safety factor for wind loads; γfW = 0.00 Ultimate axial loading on column Ultimate axial load on column; PuA = PGA × γfG + PQA × γfQ + PWA × γfW = 544.0 kN Ultimate foundation loads Ultimate foundation load; Fu = A × [(FGsur + Fswt + Fsoil) × γfG + FQsur × γfQ] = 70.6 kN Ultimate horizontal loading on column Ultimate horizontal load in x direction; HxuA = HGxA × γfG + HQxA × γfQ + HWxA × γfW = 52.0 kN Ultimate horizontal load in y direction; HyuA = HGyA × γfG + HQyA × γfQ + HWyA × γfW = 15.0 kN Ultimate moment on column Ultimate moment on column in x direction; MxuA = MGxA × γfG + MQxA × γfQ + MWxA × γfW = 37.000 kNm Ultimate moment on column in y direction; MyuA = MGyA × γfG + MQyA × γfQ + MWyA × γfW = 83.000 kNm 22.9 kN/m 148.7 kN/m 72.8 kN/m 198.7 kN/m 2 2 2 2
  • 5. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date Calculate ultimate pad base reaction Ultimate base reaction; Tu = Fu + PuA = 614.6 kN Eccentricity of ultimate base reaction in x; eTxu = (PuA × ePxA + MxuA + HxuA × h) / Tu = 94 mm Eccentricity of ultimate base reaction in y; eTyu = (PuA × ePyA + MyuA + HyuA × h) / Tu = 145 mm Calculate ultimate pad base pressures q1u = Tu/A - 6×Tu×eTxu/(L×A) - 6×Tu×eTyu/(B×A) = 31.957 kN/m 2 q2u = Tu/A - 6×Tu×eTxu/(L×A) + 6×Tu× eTyu/(B×A) = 221.824 kN/m 2 q3u = Tu/A + 6×Tu×eTxu/(L×A) - 6×Tu×eTyu/(B×A) = 105.941 kN/m 2 q4u = Tu/A + 6×Tu×eTxu/(L×A) + 6×Tu×eTyu/(B×A) = 295.808 kN/m 2 Minimum ultimate base pressure; qminu = min(q1u, q2u, q3u, q4u) = 31.957 kN/m 2 Maximum ultimate base pressure; qmaxu = max(q1u, q2u, q3u, q4u) = 295.808 kN/m 2 Calculate rate of change of base pressure in x direction Left hand base reaction; fuL = (q1u + q2u) × B / 2 = 190.336 kN/m Right hand base reaction; fuR = (q3u + q4u) × B / 2 = 301.312 kN/m Length of base reaction; Lx = L = 2500 mm Rate of change of base pressure; Cx = (fuR - fuL) / Lx = 44.390 kN/m/m Calculate pad lengths in x direction Left hand length; LL = L / 2 + ePxA = 1250 mm Right hand length; LR = L / 2 - ePxA = 1250 mm Calculate ultimate moments in x direction Ultimate moment in x direction; Mx = fuL×LL 2 /2+Cx×LL 3 /6-Fu×LL 2 /(2×L)+HxuA×h+MxuA = 198.900 kNm Calculate rate of change of base pressure in y direction Top edge base reaction; fuT = (q2u + q4u) × L / 2 = 647.040 kN/m Bottom edge base reaction; fuB = (q1u + q3u) × L / 2 = 172.373 kN/m Length of base reaction; Ly = B = 1500 mm Rate of change of base pressure; Cy = (fuB - fuT) / Ly = -316.444 kN/m/m Calculate pad lengths in y direction Top length; LT = B / 2 - ePyA = 750 mm Bottom length; LB = B / 2 + ePyA = 750 mm Calculate ultimate moments in y direction Ultimate moment in y direction; My = fuT×LT 2 /2+Cy×LT 3 /6-Fu×LT 2 /(2×B) = 146.500 kNm Material details Characteristic strength of concrete; fcu = 30 N/mm 2
  • 6. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date Characteristic strength of reinforcement; fy = 500 N/mm 2 Characteristic strength of shear reinforcement; fyv = 500 N/mm 2 Nominal cover to reinforcement; cnom = 30 mm Moment design in x direction Diameter of tension reinforcement; φxB = 12 mm Depth of tension reinforcement; dx = h - cnom - φxB / 2 = 364 mm Design formula for rectangular beams (cl 3.4.4.4) Kx = Mx / (B × dx 2 × fcu) = 0.033 Kx’ = 0.156 Kx < Kx' compression reinforcement is not required Lever arm; zx = dx × min([0.5 + √(0.25 - Kx / 0.9)], 0.95) = 346 mm Area of tension reinforcement required; As_x_req = Mx / (0.87 × fy × zx) = 1322 mm 2 Minimum area of tension reinforcement; As_x_min = 0.0013 × B × h = 780 mm 2 Tension reinforcement provided; 12 No. 12 dia. bars bottom (125 centres) Area of tension reinforcement provided; As_xB_prov = NxB × π × φxB 2 / 4 = 1357 mm 2 PASS - Tension reinforcement provided exceeds tension reinforcement required Moment design in y direction Diameter of tension reinforcement; φyB = 12 mm Depth of tension reinforcement; dy = h - cnom - φxB - φyB / 2 = 352 mm Design formula for rectangular beams (cl 3.4.4.4) Ky = My / (L × dy 2 × fcu) = 0.016 Ky’ = 0.156 Ky < Ky' compression reinforcement is not required Lever arm; zy = dy × min([0.5 + √(0.25 - Ky / 0.9)], 0.95) = 334 mm Area of tension reinforcement required; As_y_req = My / (0.87 × fy × zy) = 1007 mm 2 Minimum area of tension reinforcement; As_y_min = 0.0013 × L × h = 1300 mm 2 Tension reinforcement provided; 13 No. 12 dia. bars bottom (200 centres) Area of tension reinforcement provided; As_yB_prov = NyB × π × φyB 2 / 4 = 1470 mm 2 PASS - Tension reinforcement provided exceeds tension reinforcement required Calculate ultimate shear force at d from right face of column Ultimate pressure for shear; qsu = (q1u + Cx × (L / 2 + ePxA + lA / 2 + dx) / B + q4u) / 2 qsu = 189.984 kN/m 2 Area loaded for shear; As = B × min(3 × (L / 2 - eTx), L / 2 - ePxA - lA / 2 - dx) = 1.104 m 2 Ultimate shear force; Vsu = As × (qsu - Fu / A) = 188.970 kN Shear stresses at d from right face of column (cl 3.5.5.2) Design shear stress; vsu = Vsu / (B × dx) = 0.346 N/mm 2
  • 7. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date From BS 8110:Part 1:1997 - Table 3.8 Design concrete shear stress; vc = 0.432 N/mm 2 Allowable design shear stress; vmax = min(0.8N/mm 2 × √(fcu / 1 N/mm 2 ), 5 N/mm 2 ) = 4.382 N/mm 2 PASS - vsu < vc - No shear reinforcement required Calculate ultimate punching shear force at face of column Ultimate pressure for punching shear; qpuA = q1u+[(L/2+ePxA-lA/2)+(lA)/2]×Cx/B-[(B/2+ePyA- bA/2)+(bA)/2]×Cy/L qpuA = 163.883 kN/m 2 Average effective depth of reinforcement; d = (dx + dy) / 2 = 358 mm Area loaded for punching shear at column; ApA = (lA)×(bA) = 0.090 m 2 Length of punching shear perimeter; upA = 2×(lA)+2×(bA) = 1200 mm Ultimate shear force at shear perimeter; VpuA = PuA + (Fu / A - qpuA) × ApA = 530.944 kN Effective shear force at shear perimeter; VpuAeff = VpuA×[1+1.5×abs(MxuA)/(VpuA×(bA))+1.5×abs(MyuA)/(VpuA×(lA))] = 1130.944 kN Punching shear stresses at face of column (cl 3.7.7.2) Design shear stress; vpuA = VpuAeff / (upA × d) = 2.633 N/mm 2 Allowable design shear stress; vmax = min(0.8N/mm 2 × √(fcu / 1 N/mm 2 ), 5 N/mm 2 ) = 4.382 N/mm 2 PASS - Design shear stress is less than allowable design shear stress Calculate ultimate punching shear force at perimeter of 1.5 d from face of column Ultimate pressure for punching shear; qpuA1.5d = q1u+[(L/2+ePxA-lA/2- 1.5×d)+(lA+2×1.5×d)/2]×Cx/B-[B/2]×Cy/L qpuA1.5d = 163.883 kN/m 2 Average effective depth of reinforcement; d = (dx + dy) / 2 = 358 mm Area loaded for punching shear at column; ApA1.5d = (lA+2×1.5×d)×B = 2.061 m 2 Length of punching shear perimeter; upA1.5d = 2×B = 3000 mm Ultimate shear force at shear perimeter; VpuA1.5d = PuA + (Fu / A - qpuA1.5d) × ApA1.5d = 245.018 kN Effective shear force at shear perimeter; VpuA1.5deff = VpuA1.5d × 1.25 = 306.272 kN Punching shear stresses at perimeter of 1.5 d from face of column (cl 3.7.7.2) Design shear stress; vpuA1.5d = VpuA1.5deff / (upA1.5d × d) = 0.285 N/mm 2 From BS 8110:Part 1:1997 - Table 3.8 Design concrete shear stress; vc = 0.409 N/mm 2 Allowable design shear stress; vmax = min(0.8N/mm 2 × √(fcu / 1 N/mm 2 ), 5 N/mm 2 ) = 4.382 N/mm 2 PASS - vpuA1.5d < vc - No shear reinforcement required
  • 8. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project Pad footing analysis and design (BS8110-1:1997) Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr.C.Sach pazis Date 23/05/2013 Chk'd by - Date App'd by Date Shear at d from column face Punching shear perimeter at 1.5 × d from column face 13 No. 12 dia. bars btm (200 c/c) 12 No. 12 dia. bars btm (125 c/c)