SlideShare a Scribd company logo
University of Rhode Island Department of Electrical and Computer Engineering
ELE 436: Communication Systems
FFT Tutorial
1 Getting to Know the FFT
What is the FFT? FFT = Fast Fourier Transform. The FFT is a faster version of the Discrete
Fourier Transform (DFT). The FFT utilizes some clever algorithms to do the same thing as the
DTF, but in much less time.
Ok, but what is the DFT? The DFT is extremely important in the area of frequency (spectrum)
analysis because it takes a discrete signal in the time domain and transforms that signal into its
discrete frequency domain representation. Without a discrete-time to discrete-frequency transform
we would not be able to compute the Fourier transform with a microprocessor or DSP based system.
It is the speed and discrete nature of the FFT that allows us to analyze a signal’s spectrum with
Matlab or in real-time on the SR770
2 Review of Transforms
Was the DFT or FFT something that was taught in ELE 313 or 314? No. If you took
ELE 313 and 314 you learned about the following transforms:
Laplace Transform: x(t) ⇔ X(s) where X(s) =
∞
−∞
x(t)e−stdt
Continuous-Time Fourier Transform: x(t) ⇔ X(jω) where X(jω) =
∞
−∞
x(t)e−jωtdt
z Transform: x[n] ⇔ X(z) where X(z) =
∞
n=−∞
x[n]z−n
Discrete-Time Fourier Transform: x[n] ⇔ X(ejΩ) where X(ejΩ) =
∞
n=−∞
x[n]e−jΩn
The Laplace transform is used to to find a pole/zero representation of a continuous-time signal or
system, x(t), in the s-plane. Similarly, The z transform is used to find a pole/zero representation
of a discrete-time signal or system, x[n], in the z-plane.
The continuous-time Fourier transform (CTFT) can be found by evaluating the Laplace trans-
form at s = jω. The discrete-time Fourier transform (DTFT) can be found by evaluating the z
transform at z = ejΩ.
1
3 Understanding the DFT
How does the discrete Fourier transform relate to the other transforms? First of all, the
DFT is NOT the same as the DTFT. Both start with a discrete-time signal, but the DFT produces
a discrete frequency domain representation while the DTFT is continuous in the frequency domain.
These two transforms have much in common, however. It is therefore helpful to have a basic
understanding of the properties of the DTFT.
Periodicity: The DTFT, X(ejΩ), is periodic. One period extends from f = 0 to fs, where fs
is the sampling frequency. Taking advantage of this redundancy, The DFT is only defined in the
region between 0 and fs.
Symmetry: When the region between 0 and fs is examined, it can be seen that there is even
symmetry around the center point, 0.5fs, the Nyquist frequency. This symmetry adds redundant
information. Figure 1 shows the DFT (implemented with Matlab’s FFT function) of a cosine with
a frequency one tenth the sampling frequency. Note that the data between 0.5fs and fs is a mirror
image of the data between 0 and 0.5fs.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8
10
12
frequency/f
s
Figure 1: Plot showing the symmetry of a DFT
2
4 Matlab and the FFT
Matlab’s FFT function is an effective tool for computing the discrete Fourier transform of a signal.
The following code examples will help you to understand the details of using the FFT function.
Example 1: The typical syntax for computing the FFT of a signal is FFT(x,N) where x is the
signal, x[n], you wish to transform, and N is the number of points in the FFT. N must be at least
as large as the number of samples in x[n]. To demonstrate the effect of changing the value of N,
sythesize a cosine with 30 samples at 10 samples per period.
n = [0:29];
x = cos(2*pi*n/10);
Define 3 different values for N. Then take the transform of x[n] for each of the 3 values that were
defined. The abs function finds the magnitude of the transform, as we are not concered with
distinguishing between real and imaginary components.
N1 = 64;
N2 = 128;
N3 = 256;
X1 = abs(fft(x,N1));
X2 = abs(fft(x,N2));
X3 = abs(fft(x,N3));
The frequency scale begins at 0 and extends to N − 1 for an N-point FFT. We then normalize the
scale so that it extends from 0 to 1 − 1
N .
F1 = [0 : N1 - 1]/N1;
F2 = [0 : N2 - 1]/N2;
F3 = [0 : N3 - 1]/N3;
Plot each of the transforms one above the other.
subplot(3,1,1)
plot(F1,X1,’-x’),title(’N = 64’),axis([0 1 0 20])
subplot(3,1,2)
plot(F2,X2,’-x’),title(’N = 128’),axis([0 1 0 20])
subplot(3,1,3)
plot(F3,X3,’-x’),title(’N = 256’),axis([0 1 0 20])
Upon examining the plot (shown in figure 2) one can see that each of the transforms adheres to
the same shape, differing only in the number of samples used to approximate that shape. What
happens if N is the same as the number of samples in x[n]? To find out, set N1 = 30. What does
the resulting plot look like? Why does it look like this?
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5
10
15
20
N = 64
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5
10
15
20
N = 128
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5
10
15
20
N = 256
Figure 2: FFT of a cosine for N = 64, 128, and 256
Example 2: In the the last example the length of x[n] was limited to 3 periods in length.
Now, let’s choose a large value for N (for a transform with many points), and vary the number of
repetitions of the fundamental period.
n = [0:29];
x1 = cos(2*pi*n/10); % 3 periods
x2 = [x1 x1]; % 6 periods
x3 = [x1 x1 x1]; % 9 periods
N = 2048;
X1 = abs(fft(x1,N));
X2 = abs(fft(x2,N));
X3 = abs(fft(x3,N));
F = [0:N-1]/N;
subplot(3,1,1)
plot(F,X1),title(’3 periods’),axis([0 1 0 50])
subplot(3,1,2)
plot(F,X2),title(’6 periods’),axis([0 1 0 50])
subplot(3,1,3)
plot(F,X3),title(’9 periods’),axis([0 1 0 50])
The previous code will produce three plots. The first plot, the transform of 3 periods of a cosine,
looks like the magnitude of 2 sincs with the center of the first sinc at 0.1fs and the second at 0.9fs.
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
10
20
30
40
50
3 periods
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
10
20
30
40
50
6 periods
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
10
20
30
40
50
9 periods
Figure 3: FFT of a cosine of 3, 6, and 9 periods
The second plot also has a sinc-like appearance, but its frequency is higher and it has a larger
magnitude at 0.1fs and 0.9fs. Similarly, the third plot has a larger sinc frequency and magnitude.
As x[n] is extended to an large number of periods, the sincs will begin to look more and more like
impulses.
But I thought a sinusoid transformed to an impulse, why do we have sincs in the
frequency domain? When the FFT is computed with an N larger than the number of samples
in x[n], it fills in the samples after x[n] with zeros. Example 2 had an x[n] that was 30 samples
long, but the FFT had an N = 2048. When Matlab computes the FFT, it automatically fills the
spaces from n = 30 to n = 2047 with zeros. This is like taking a sinusoid and mulitipying it with a
rectangular box of length 30. A multiplication of a box and a sinusoid in the time domain should
result in the convolution of a sinc with impulses in the frequency domain. Furthermore, increasing
the width of the box in the time domain should increase the frequency of the sinc in the frequency
domain. The previous Matlab experiment supports this conclusion.
5 Spectrum Analysis with the FFT and Matlab
The FFT does not directly give you the spectrum of a signal. As we have seen with the last two
experiments, the FFT can vary dramatically depending on the number of points (N) of the FFT,
and the number of periods of the signal that are represented. There is another problem as well.
The FFT contains information between 0 and fs, however, we know that the sampling frequency
5
must be at least twice the highest frequency component. Therefore, the signal’s spectrum should
be entirly below fs
2 , the Nyquist frequency.
Recall also that a real signal should have a transform magnitude that is symmetrical for for positive
and negative frequencies. So instead of having a spectrum that goes from 0 to fs, it would be more
appropriate to show the spectrum from −fs
2 to fs
2 . This can be accomplished by using Matlab’s
fftshift function as the following code demonstrates.
n = [0:149];
x1 = cos(2*pi*n/10);
N = 2048;
X = abs(fft(x1,N));
X = fftshift(X);
F = [-N/2:N/2-1]/N;
plot(F,X),
xlabel(’frequency / f s’)
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0
10
20
30
40
50
60
70
80
frequency / f
s
Figure 4: Approximate Spectrum of a Sinusoid with the FFT
6

More Related Content

What's hot

Matlab 2
Matlab 2Matlab 2
Matlab 2asguna
 
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidXavier Davias
 
DSP Lab 1-6.pdf
DSP Lab 1-6.pdfDSP Lab 1-6.pdf
DSP Lab 1-6.pdf
SaiSumanthK1
 
Fft analysis
Fft analysisFft analysis
Fft analysis
Satrious
 
Kanal wireless dan propagasi
Kanal wireless dan propagasiKanal wireless dan propagasi
Kanal wireless dan propagasi
Mochamad Guntur Hady Putra
 
Matlab task1
Matlab task1Matlab task1
Matlab task1
Martin Wachiye Wafula
 
A Model of Partial Tracks for Tension-Modulated Steel-String Guitar Tones
A Model of Partial Tracks for Tension-Modulated Steel-String Guitar TonesA Model of Partial Tracks for Tension-Modulated Steel-String Guitar Tones
A Model of Partial Tracks for Tension-Modulated Steel-String Guitar TonesMatthieu Hodgkinson
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
Amr E. Mohamed
 
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNALSAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
karan sati
 
Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...
Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...
Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...
IJERA Editor
 
Denoising of image using wavelet
Denoising of image using waveletDenoising of image using wavelet
Denoising of image using waveletAsim Qureshi
 
Chapter 2 signals and spectra,
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,nahrain university
 
Lec2
Lec2Lec2
Lec2
bsnl007
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
babak danyal
 
Decimation and Interpolation
Decimation and InterpolationDecimation and Interpolation
Decimation and Interpolation
Fernando Ojeda
 

What's hot (19)

Matlab 2
Matlab 2Matlab 2
Matlab 2
 
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
 
DSP Lab 1-6.pdf
DSP Lab 1-6.pdfDSP Lab 1-6.pdf
DSP Lab 1-6.pdf
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Fft analysis
Fft analysisFft analysis
Fft analysis
 
Kanal wireless dan propagasi
Kanal wireless dan propagasiKanal wireless dan propagasi
Kanal wireless dan propagasi
 
Matlab task1
Matlab task1Matlab task1
Matlab task1
 
A Model of Partial Tracks for Tension-Modulated Steel-String Guitar Tones
A Model of Partial Tracks for Tension-Modulated Steel-String Guitar TonesA Model of Partial Tracks for Tension-Modulated Steel-String Guitar Tones
A Model of Partial Tracks for Tension-Modulated Steel-String Guitar Tones
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNALSAMPLING & RECONSTRUCTION  OF DISCRETE TIME SIGNAL
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
 
Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...
Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...
Interference Cancellation by Repeated Filtering in the Fractional Fourier Tra...
 
Denoising of image using wavelet
Denoising of image using waveletDenoising of image using wavelet
Denoising of image using wavelet
 
Chapter 2 signals and spectra,
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,
 
Solved problems
Solved problemsSolved problems
Solved problems
 
Lec2
Lec2Lec2
Lec2
 
Dif fft
Dif fftDif fft
Dif fft
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
 
Decimation and Interpolation
Decimation and InterpolationDecimation and Interpolation
Decimation and Interpolation
 
Adaptive
AdaptiveAdaptive
Adaptive
 

Viewers also liked

RES701 Research Methodology Lectures 3-4_Devaprakasam
RES701 Research Methodology Lectures 3-4_DevaprakasamRES701 Research Methodology Lectures 3-4_Devaprakasam
RES701 Research Methodology Lectures 3-4_Devaprakasam
VIT University (Chennai Campus)
 
RES701cResearch methodology lecture 5 devaprakasam
RES701cResearch methodology lecture 5 devaprakasamRES701cResearch methodology lecture 5 devaprakasam
RES701cResearch methodology lecture 5 devaprakasam
VIT University (Chennai Campus)
 
Res701 research methodology fft1
Res701 research methodology fft1Res701 research methodology fft1
Res701 research methodology fft1
VIT University (Chennai Campus)
 
RES701 Research Methodology Lecture6_Devaprakasam
RES701 Research Methodology Lecture6_DevaprakasamRES701 Research Methodology Lecture6_Devaprakasam
RES701 Research Methodology Lecture6_Devaprakasam
VIT University (Chennai Campus)
 
Res701 research methodology lecture 7 8-devaprakasam
Res701 research methodology lecture 7 8-devaprakasamRes701 research methodology lecture 7 8-devaprakasam
Res701 research methodology lecture 7 8-devaprakasam
VIT University (Chennai Campus)
 
RES701 Research Methodology Lecture 2
RES701 Research Methodology Lecture 2RES701 Research Methodology Lecture 2
RES701 Research Methodology Lecture 2
VIT University (Chennai Campus)
 
MEE1002 Engineering Mechanics L31-L34
MEE1002 Engineering Mechanics L31-L34MEE1002 Engineering Mechanics L31-L34
MEE1002 Engineering Mechanics L31-L34
VIT University (Chennai Campus)
 

Viewers also liked (8)

RES701 Research Methodology Lectures 3-4_Devaprakasam
RES701 Research Methodology Lectures 3-4_DevaprakasamRES701 Research Methodology Lectures 3-4_Devaprakasam
RES701 Research Methodology Lectures 3-4_Devaprakasam
 
RES701cResearch methodology lecture 5 devaprakasam
RES701cResearch methodology lecture 5 devaprakasamRES701cResearch methodology lecture 5 devaprakasam
RES701cResearch methodology lecture 5 devaprakasam
 
Res701 research methodology fft1
Res701 research methodology fft1Res701 research methodology fft1
Res701 research methodology fft1
 
RES701 Research Methodology Lecture6_Devaprakasam
RES701 Research Methodology Lecture6_DevaprakasamRES701 Research Methodology Lecture6_Devaprakasam
RES701 Research Methodology Lecture6_Devaprakasam
 
Res701 research methodology lecture 7 8-devaprakasam
Res701 research methodology lecture 7 8-devaprakasamRes701 research methodology lecture 7 8-devaprakasam
Res701 research methodology lecture 7 8-devaprakasam
 
RES701 Research Methodology Lecture 2
RES701 Research Methodology Lecture 2RES701 Research Methodology Lecture 2
RES701 Research Methodology Lecture 2
 
MEE1002 Engineering Mechanics L31-L34
MEE1002 Engineering Mechanics L31-L34MEE1002 Engineering Mechanics L31-L34
MEE1002 Engineering Mechanics L31-L34
 
Research methodology notes
Research methodology notesResearch methodology notes
Research methodology notes
 

Similar to RES701 Research Methodology_FFT

Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
MozammelHossain31
 
signal homework
signal homeworksignal homework
signal homeworksokok22867
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
Amr E. Mohamed
 
Unit 8
Unit 8Unit 8
Exponential-plus-Constant Fitting based on Fourier Analysis
Exponential-plus-Constant Fitting based on Fourier AnalysisExponential-plus-Constant Fitting based on Fourier Analysis
Exponential-plus-Constant Fitting based on Fourier AnalysisMatthieu Hodgkinson
 
UNIT-2 DSP.ppt
UNIT-2 DSP.pptUNIT-2 DSP.ppt
UNIT-2 DSP.ppt
shailaja68
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
roykousik2020
 
FFT Analysis
FFT AnalysisFFT Analysis
FFT Analysis
Thevin Raditya
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
 
Basics of edge detection and forier transform
Basics of edge detection and forier transformBasics of edge detection and forier transform
Basics of edge detection and forier transform
Simranjit Singh
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
VIDHARSHANAJ1
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
Amr E. Mohamed
 
Fourier Specturm via MATLAB
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLABZunAib Ali
 
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLABDIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
Martin Wachiye Wafula
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
arihantelectronics
 
Pres Simple and Practical Algorithm sft.pptx
Pres Simple and Practical Algorithm sft.pptxPres Simple and Practical Algorithm sft.pptx
Pres Simple and Practical Algorithm sft.pptx
DonyMa
 
DONY Simple and Practical Algorithm sft.pptx
DONY Simple and Practical Algorithm sft.pptxDONY Simple and Practical Algorithm sft.pptx
DONY Simple and Practical Algorithm sft.pptx
DonyMa
 
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.ppt
MozammelHossain31
 
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.ppt
MozammelHossain31
 
imagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptximagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptx
MrsSDivyaBME
 

Similar to RES701 Research Methodology_FFT (20)

Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_10-1-1.ppt
 
signal homework
signal homeworksignal homework
signal homework
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Unit 8
Unit 8Unit 8
Unit 8
 
Exponential-plus-Constant Fitting based on Fourier Analysis
Exponential-plus-Constant Fitting based on Fourier AnalysisExponential-plus-Constant Fitting based on Fourier Analysis
Exponential-plus-Constant Fitting based on Fourier Analysis
 
UNIT-2 DSP.ppt
UNIT-2 DSP.pptUNIT-2 DSP.ppt
UNIT-2 DSP.ppt
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
 
FFT Analysis
FFT AnalysisFFT Analysis
FFT Analysis
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
Basics of edge detection and forier transform
Basics of edge detection and forier transformBasics of edge detection and forier transform
Basics of edge detection and forier transform
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 
Fourier Specturm via MATLAB
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLAB
 
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLABDIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
 
Pres Simple and Practical Algorithm sft.pptx
Pres Simple and Practical Algorithm sft.pptxPres Simple and Practical Algorithm sft.pptx
Pres Simple and Practical Algorithm sft.pptx
 
DONY Simple and Practical Algorithm sft.pptx
DONY Simple and Practical Algorithm sft.pptxDONY Simple and Practical Algorithm sft.pptx
DONY Simple and Practical Algorithm sft.pptx
 
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_14.ppt
 
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.pptFourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.ppt
Fourier-Series_FT_Laplace-Transform_Letures_Regular_F-for-Students_13.ppt
 
imagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptximagetransforms1-210417050321.pptx
imagetransforms1-210417050321.pptx
 

More from VIT University (Chennai Campus)

MEE1005-MAT-FALL19-20-L3
MEE1005-MAT-FALL19-20-L3MEE1005-MAT-FALL19-20-L3
MEE1005-MAT-FALL19-20-L3
VIT University (Chennai Campus)
 
MEE1005-MAT-FALL19-20-L2
MEE1005-MAT-FALL19-20-L2MEE1005-MAT-FALL19-20-L2
MEE1005-MAT-FALL19-20-L2
VIT University (Chennai Campus)
 
MEE1005-MAT-FALL19-20-L1
MEE1005-MAT-FALL19-20-L1MEE1005-MAT-FALL19-20-L1
MEE1005-MAT-FALL19-20-L1
VIT University (Chennai Campus)
 
MEE1002 ENGINEERING MECHANICS-SUM-II-L11
MEE1002 ENGINEERING MECHANICS-SUM-II-L11MEE1002 ENGINEERING MECHANICS-SUM-II-L11
MEE1002 ENGINEERING MECHANICS-SUM-II-L11
VIT University (Chennai Campus)
 
MEE1002ENGINEERING MECHANICS-SUM-II-L13
MEE1002ENGINEERING MECHANICS-SUM-II-L13MEE1002ENGINEERING MECHANICS-SUM-II-L13
MEE1002ENGINEERING MECHANICS-SUM-II-L13
VIT University (Chennai Campus)
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L12
MEE1002 ENGINEERING MECHANICS-SUM-II- L12MEE1002 ENGINEERING MECHANICS-SUM-II- L12
MEE1002 ENGINEERING MECHANICS-SUM-II- L12
VIT University (Chennai Campus)
 
MEE1002 ENGIEERING MECHANICS-SUM-II- L11
MEE1002 ENGIEERING MECHANICS-SUM-II- L11MEE1002 ENGIEERING MECHANICS-SUM-II- L11
MEE1002 ENGIEERING MECHANICS-SUM-II- L11
VIT University (Chennai Campus)
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L10
MEE1002 ENGINEERING MECHANICS-SUM-II- L10MEE1002 ENGINEERING MECHANICS-SUM-II- L10
MEE1002 ENGINEERING MECHANICS-SUM-II- L10
VIT University (Chennai Campus)
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L9
MEE1002 ENGINEERING MECHANICS-SUM-II- L9MEE1002 ENGINEERING MECHANICS-SUM-II- L9
MEE1002 ENGINEERING MECHANICS-SUM-II- L9
VIT University (Chennai Campus)
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L8
MEE1002 ENGINEERING MECHANICS-SUM-II- L8MEE1002 ENGINEERING MECHANICS-SUM-II- L8
MEE1002 ENGINEERING MECHANICS-SUM-II- L8
VIT University (Chennai Campus)
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L7
MEE1002 ENGINEERING MECHANICS-SUM-II- L7MEE1002 ENGINEERING MECHANICS-SUM-II- L7
MEE1002 ENGINEERING MECHANICS-SUM-II- L7
VIT University (Chennai Campus)
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L1
MEE1002-ENGINEERING MECHANICS-SUM-II-L1MEE1002-ENGINEERING MECHANICS-SUM-II-L1
MEE1002-ENGINEERING MECHANICS-SUM-II-L1
VIT University (Chennai Campus)
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L6
MEE1002-ENGINEERING MECHANICS-SUM-II-L6MEE1002-ENGINEERING MECHANICS-SUM-II-L6
MEE1002-ENGINEERING MECHANICS-SUM-II-L6
VIT University (Chennai Campus)
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L5
MEE1002-ENGINEERING MECHANICS-SUM-II-L5MEE1002-ENGINEERING MECHANICS-SUM-II-L5
MEE1002-ENGINEERING MECHANICS-SUM-II-L5
VIT University (Chennai Campus)
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L4
MEE1002-ENGINEERING MECHANICS-SUM-II-L4MEE1002-ENGINEERING MECHANICS-SUM-II-L4
MEE1002-ENGINEERING MECHANICS-SUM-II-L4
VIT University (Chennai Campus)
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L3
MEE1002-ENGINEERING MECHANICS-SUM-II-L3MEE1002-ENGINEERING MECHANICS-SUM-II-L3
MEE1002-ENGINEERING MECHANICS-SUM-II-L3
VIT University (Chennai Campus)
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L2
MEE1002-ENGINEERING MECHANICS-SUM-II-L2MEE1002-ENGINEERING MECHANICS-SUM-II-L2
MEE1002-ENGINEERING MECHANICS-SUM-II-L2
VIT University (Chennai Campus)
 
DAIMLER-HUM1721ETHICS AND VALUES-L4
DAIMLER-HUM1721ETHICS AND VALUES-L4DAIMLER-HUM1721ETHICS AND VALUES-L4
DAIMLER-HUM1721ETHICS AND VALUES-L4
VIT University (Chennai Campus)
 
DAIMLER-HUM1721 ETHICS AND VALUES-L3
DAIMLER-HUM1721 ETHICS AND VALUES-L3DAIMLER-HUM1721 ETHICS AND VALUES-L3
DAIMLER-HUM1721 ETHICS AND VALUES-L3
VIT University (Chennai Campus)
 
DAIMLER-HUM1721-ETHICS AND VALUES-L2
DAIMLER-HUM1721-ETHICS AND VALUES-L2DAIMLER-HUM1721-ETHICS AND VALUES-L2
DAIMLER-HUM1721-ETHICS AND VALUES-L2
VIT University (Chennai Campus)
 

More from VIT University (Chennai Campus) (20)

MEE1005-MAT-FALL19-20-L3
MEE1005-MAT-FALL19-20-L3MEE1005-MAT-FALL19-20-L3
MEE1005-MAT-FALL19-20-L3
 
MEE1005-MAT-FALL19-20-L2
MEE1005-MAT-FALL19-20-L2MEE1005-MAT-FALL19-20-L2
MEE1005-MAT-FALL19-20-L2
 
MEE1005-MAT-FALL19-20-L1
MEE1005-MAT-FALL19-20-L1MEE1005-MAT-FALL19-20-L1
MEE1005-MAT-FALL19-20-L1
 
MEE1002 ENGINEERING MECHANICS-SUM-II-L11
MEE1002 ENGINEERING MECHANICS-SUM-II-L11MEE1002 ENGINEERING MECHANICS-SUM-II-L11
MEE1002 ENGINEERING MECHANICS-SUM-II-L11
 
MEE1002ENGINEERING MECHANICS-SUM-II-L13
MEE1002ENGINEERING MECHANICS-SUM-II-L13MEE1002ENGINEERING MECHANICS-SUM-II-L13
MEE1002ENGINEERING MECHANICS-SUM-II-L13
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L12
MEE1002 ENGINEERING MECHANICS-SUM-II- L12MEE1002 ENGINEERING MECHANICS-SUM-II- L12
MEE1002 ENGINEERING MECHANICS-SUM-II- L12
 
MEE1002 ENGIEERING MECHANICS-SUM-II- L11
MEE1002 ENGIEERING MECHANICS-SUM-II- L11MEE1002 ENGIEERING MECHANICS-SUM-II- L11
MEE1002 ENGIEERING MECHANICS-SUM-II- L11
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L10
MEE1002 ENGINEERING MECHANICS-SUM-II- L10MEE1002 ENGINEERING MECHANICS-SUM-II- L10
MEE1002 ENGINEERING MECHANICS-SUM-II- L10
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L9
MEE1002 ENGINEERING MECHANICS-SUM-II- L9MEE1002 ENGINEERING MECHANICS-SUM-II- L9
MEE1002 ENGINEERING MECHANICS-SUM-II- L9
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L8
MEE1002 ENGINEERING MECHANICS-SUM-II- L8MEE1002 ENGINEERING MECHANICS-SUM-II- L8
MEE1002 ENGINEERING MECHANICS-SUM-II- L8
 
MEE1002 ENGINEERING MECHANICS-SUM-II- L7
MEE1002 ENGINEERING MECHANICS-SUM-II- L7MEE1002 ENGINEERING MECHANICS-SUM-II- L7
MEE1002 ENGINEERING MECHANICS-SUM-II- L7
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L1
MEE1002-ENGINEERING MECHANICS-SUM-II-L1MEE1002-ENGINEERING MECHANICS-SUM-II-L1
MEE1002-ENGINEERING MECHANICS-SUM-II-L1
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L6
MEE1002-ENGINEERING MECHANICS-SUM-II-L6MEE1002-ENGINEERING MECHANICS-SUM-II-L6
MEE1002-ENGINEERING MECHANICS-SUM-II-L6
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L5
MEE1002-ENGINEERING MECHANICS-SUM-II-L5MEE1002-ENGINEERING MECHANICS-SUM-II-L5
MEE1002-ENGINEERING MECHANICS-SUM-II-L5
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L4
MEE1002-ENGINEERING MECHANICS-SUM-II-L4MEE1002-ENGINEERING MECHANICS-SUM-II-L4
MEE1002-ENGINEERING MECHANICS-SUM-II-L4
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L3
MEE1002-ENGINEERING MECHANICS-SUM-II-L3MEE1002-ENGINEERING MECHANICS-SUM-II-L3
MEE1002-ENGINEERING MECHANICS-SUM-II-L3
 
MEE1002-ENGINEERING MECHANICS-SUM-II-L2
MEE1002-ENGINEERING MECHANICS-SUM-II-L2MEE1002-ENGINEERING MECHANICS-SUM-II-L2
MEE1002-ENGINEERING MECHANICS-SUM-II-L2
 
DAIMLER-HUM1721ETHICS AND VALUES-L4
DAIMLER-HUM1721ETHICS AND VALUES-L4DAIMLER-HUM1721ETHICS AND VALUES-L4
DAIMLER-HUM1721ETHICS AND VALUES-L4
 
DAIMLER-HUM1721 ETHICS AND VALUES-L3
DAIMLER-HUM1721 ETHICS AND VALUES-L3DAIMLER-HUM1721 ETHICS AND VALUES-L3
DAIMLER-HUM1721 ETHICS AND VALUES-L3
 
DAIMLER-HUM1721-ETHICS AND VALUES-L2
DAIMLER-HUM1721-ETHICS AND VALUES-L2DAIMLER-HUM1721-ETHICS AND VALUES-L2
DAIMLER-HUM1721-ETHICS AND VALUES-L2
 

Recently uploaded

Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 

Recently uploaded (20)

Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 

RES701 Research Methodology_FFT

  • 1. University of Rhode Island Department of Electrical and Computer Engineering ELE 436: Communication Systems FFT Tutorial 1 Getting to Know the FFT What is the FFT? FFT = Fast Fourier Transform. The FFT is a faster version of the Discrete Fourier Transform (DFT). The FFT utilizes some clever algorithms to do the same thing as the DTF, but in much less time. Ok, but what is the DFT? The DFT is extremely important in the area of frequency (spectrum) analysis because it takes a discrete signal in the time domain and transforms that signal into its discrete frequency domain representation. Without a discrete-time to discrete-frequency transform we would not be able to compute the Fourier transform with a microprocessor or DSP based system. It is the speed and discrete nature of the FFT that allows us to analyze a signal’s spectrum with Matlab or in real-time on the SR770 2 Review of Transforms Was the DFT or FFT something that was taught in ELE 313 or 314? No. If you took ELE 313 and 314 you learned about the following transforms: Laplace Transform: x(t) ⇔ X(s) where X(s) = ∞ −∞ x(t)e−stdt Continuous-Time Fourier Transform: x(t) ⇔ X(jω) where X(jω) = ∞ −∞ x(t)e−jωtdt z Transform: x[n] ⇔ X(z) where X(z) = ∞ n=−∞ x[n]z−n Discrete-Time Fourier Transform: x[n] ⇔ X(ejΩ) where X(ejΩ) = ∞ n=−∞ x[n]e−jΩn The Laplace transform is used to to find a pole/zero representation of a continuous-time signal or system, x(t), in the s-plane. Similarly, The z transform is used to find a pole/zero representation of a discrete-time signal or system, x[n], in the z-plane. The continuous-time Fourier transform (CTFT) can be found by evaluating the Laplace trans- form at s = jω. The discrete-time Fourier transform (DTFT) can be found by evaluating the z transform at z = ejΩ. 1
  • 2. 3 Understanding the DFT How does the discrete Fourier transform relate to the other transforms? First of all, the DFT is NOT the same as the DTFT. Both start with a discrete-time signal, but the DFT produces a discrete frequency domain representation while the DTFT is continuous in the frequency domain. These two transforms have much in common, however. It is therefore helpful to have a basic understanding of the properties of the DTFT. Periodicity: The DTFT, X(ejΩ), is periodic. One period extends from f = 0 to fs, where fs is the sampling frequency. Taking advantage of this redundancy, The DFT is only defined in the region between 0 and fs. Symmetry: When the region between 0 and fs is examined, it can be seen that there is even symmetry around the center point, 0.5fs, the Nyquist frequency. This symmetry adds redundant information. Figure 1 shows the DFT (implemented with Matlab’s FFT function) of a cosine with a frequency one tenth the sampling frequency. Note that the data between 0.5fs and fs is a mirror image of the data between 0 and 0.5fs. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 6 8 10 12 frequency/f s Figure 1: Plot showing the symmetry of a DFT 2
  • 3. 4 Matlab and the FFT Matlab’s FFT function is an effective tool for computing the discrete Fourier transform of a signal. The following code examples will help you to understand the details of using the FFT function. Example 1: The typical syntax for computing the FFT of a signal is FFT(x,N) where x is the signal, x[n], you wish to transform, and N is the number of points in the FFT. N must be at least as large as the number of samples in x[n]. To demonstrate the effect of changing the value of N, sythesize a cosine with 30 samples at 10 samples per period. n = [0:29]; x = cos(2*pi*n/10); Define 3 different values for N. Then take the transform of x[n] for each of the 3 values that were defined. The abs function finds the magnitude of the transform, as we are not concered with distinguishing between real and imaginary components. N1 = 64; N2 = 128; N3 = 256; X1 = abs(fft(x,N1)); X2 = abs(fft(x,N2)); X3 = abs(fft(x,N3)); The frequency scale begins at 0 and extends to N − 1 for an N-point FFT. We then normalize the scale so that it extends from 0 to 1 − 1 N . F1 = [0 : N1 - 1]/N1; F2 = [0 : N2 - 1]/N2; F3 = [0 : N3 - 1]/N3; Plot each of the transforms one above the other. subplot(3,1,1) plot(F1,X1,’-x’),title(’N = 64’),axis([0 1 0 20]) subplot(3,1,2) plot(F2,X2,’-x’),title(’N = 128’),axis([0 1 0 20]) subplot(3,1,3) plot(F3,X3,’-x’),title(’N = 256’),axis([0 1 0 20]) Upon examining the plot (shown in figure 2) one can see that each of the transforms adheres to the same shape, differing only in the number of samples used to approximate that shape. What happens if N is the same as the number of samples in x[n]? To find out, set N1 = 30. What does the resulting plot look like? Why does it look like this? 3
  • 4. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 N = 64 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 N = 128 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 N = 256 Figure 2: FFT of a cosine for N = 64, 128, and 256 Example 2: In the the last example the length of x[n] was limited to 3 periods in length. Now, let’s choose a large value for N (for a transform with many points), and vary the number of repetitions of the fundamental period. n = [0:29]; x1 = cos(2*pi*n/10); % 3 periods x2 = [x1 x1]; % 6 periods x3 = [x1 x1 x1]; % 9 periods N = 2048; X1 = abs(fft(x1,N)); X2 = abs(fft(x2,N)); X3 = abs(fft(x3,N)); F = [0:N-1]/N; subplot(3,1,1) plot(F,X1),title(’3 periods’),axis([0 1 0 50]) subplot(3,1,2) plot(F,X2),title(’6 periods’),axis([0 1 0 50]) subplot(3,1,3) plot(F,X3),title(’9 periods’),axis([0 1 0 50]) The previous code will produce three plots. The first plot, the transform of 3 periods of a cosine, looks like the magnitude of 2 sincs with the center of the first sinc at 0.1fs and the second at 0.9fs. 4
  • 5. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 3 periods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 6 periods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 9 periods Figure 3: FFT of a cosine of 3, 6, and 9 periods The second plot also has a sinc-like appearance, but its frequency is higher and it has a larger magnitude at 0.1fs and 0.9fs. Similarly, the third plot has a larger sinc frequency and magnitude. As x[n] is extended to an large number of periods, the sincs will begin to look more and more like impulses. But I thought a sinusoid transformed to an impulse, why do we have sincs in the frequency domain? When the FFT is computed with an N larger than the number of samples in x[n], it fills in the samples after x[n] with zeros. Example 2 had an x[n] that was 30 samples long, but the FFT had an N = 2048. When Matlab computes the FFT, it automatically fills the spaces from n = 30 to n = 2047 with zeros. This is like taking a sinusoid and mulitipying it with a rectangular box of length 30. A multiplication of a box and a sinusoid in the time domain should result in the convolution of a sinc with impulses in the frequency domain. Furthermore, increasing the width of the box in the time domain should increase the frequency of the sinc in the frequency domain. The previous Matlab experiment supports this conclusion. 5 Spectrum Analysis with the FFT and Matlab The FFT does not directly give you the spectrum of a signal. As we have seen with the last two experiments, the FFT can vary dramatically depending on the number of points (N) of the FFT, and the number of periods of the signal that are represented. There is another problem as well. The FFT contains information between 0 and fs, however, we know that the sampling frequency 5
  • 6. must be at least twice the highest frequency component. Therefore, the signal’s spectrum should be entirly below fs 2 , the Nyquist frequency. Recall also that a real signal should have a transform magnitude that is symmetrical for for positive and negative frequencies. So instead of having a spectrum that goes from 0 to fs, it would be more appropriate to show the spectrum from −fs 2 to fs 2 . This can be accomplished by using Matlab’s fftshift function as the following code demonstrates. n = [0:149]; x1 = cos(2*pi*n/10); N = 2048; X = abs(fft(x1,N)); X = fftshift(X); F = [-N/2:N/2-1]/N; plot(F,X), xlabel(’frequency / f s’) −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 10 20 30 40 50 60 70 80 frequency / f s Figure 4: Approximate Spectrum of a Sinusoid with the FFT 6