DEVAPRAKASAM DEIVASAGAYAM
Professor of Mechanical Engineering
Room:11, LW, 2nd Floor
School of Mechanical and Building Sciences
Email: devaprakasam.d@vit.ac.in, dr.devaprakasam@gmail.com
MEE1002: Engineering Mechanics (2:1:0:0:3)
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Newtonian Mechanics
• Scalar Quantity- Has magnitude and has no associated direction
• Examples: Volume, Time, Mass, Speed, Density, Temperature.
• Vector Quantity- Has Magnitude and Direction
• Examples: Force, Velocity, Moment, Acceleration
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Scalar and Vector
• Push or Pull on a body
• It is a vector
i
Y
X
Z
j
k
F = Fx i + Fy j ……(2D)
F = Fx i + Fy j + Fz k…..(3D)
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Force
Sign Convention (+ve)
• Express the 2D and 3D equilibrium equations
for particle resulting from the application of
Newton’s 1st Law
0
0
0






Y
X
F
F
F
3D
0
0
0
0








Z
Y
X
F
F
F
F
2D
0
0
0
|| 






F
F
F
2 Independent Eqns & 3 Independent Eqns &
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D and 3D Equilibrium
• Express a 2D force in terms of rectangular.
components.
• Express a 2D force in terms of parallel and
perpendicular components.
• Apply vector addition to find resultant of more
than one force.
X
F
i
Y
j
θ
F = Fx i + Fy j
Fx= F cosθ
Fy= F sinθ
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force representation
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force representation
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
2D Force Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Vector Addition
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Vector addition Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Vector addition Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Vector addition Example
Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
Home Work

MEE1002-ENGINEERING MECHANICS-SUM-II-L2

  • 1.
    DEVAPRAKASAM DEIVASAGAYAM Professor ofMechanical Engineering Room:11, LW, 2nd Floor School of Mechanical and Building Sciences Email: devaprakasam.d@vit.ac.in, dr.devaprakasam@gmail.com MEE1002: Engineering Mechanics (2:1:0:0:3) Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933
  • 3.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Newtonian Mechanics
  • 4.
    • Scalar Quantity-Has magnitude and has no associated direction • Examples: Volume, Time, Mass, Speed, Density, Temperature. • Vector Quantity- Has Magnitude and Direction • Examples: Force, Velocity, Moment, Acceleration Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Scalar and Vector
  • 5.
    • Push orPull on a body • It is a vector i Y X Z j k F = Fx i + Fy j ……(2D) F = Fx i + Fy j + Fz k…..(3D) Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Force Sign Convention (+ve)
  • 6.
    • Express the2D and 3D equilibrium equations for particle resulting from the application of Newton’s 1st Law 0 0 0       Y X F F F 3D 0 0 0 0         Z Y X F F F F 2D 0 0 0 ||        F F F 2 Independent Eqns & 3 Independent Eqns & Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D and 3D Equilibrium
  • 7.
    • Express a2D force in terms of rectangular. components. • Express a 2D force in terms of parallel and perpendicular components. • Apply vector addition to find resultant of more than one force. X F i Y j θ F = Fx i + Fy j Fx= F cosθ Fy= F sinθ Devaprakasam D, Email: devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force representation
  • 8.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force representation
  • 9.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force Example
  • 10.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force Example
  • 11.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force Example
  • 12.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force Example
  • 13.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force Example
  • 14.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 2D Force Example
  • 15.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Vector Addition
  • 16.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Vector addition Example
  • 17.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Vector addition Example
  • 18.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Vector addition Example
  • 19.
    Devaprakasam D, Email:devaprakasam.d@vit.ac.in, Ph: +91 9786553933 Home Work