SlideShare a Scribd company logo
Querying Temporal Databases via OWL 2 QL
Szymon Klarman and Thomas Meyer
Centre for Artificial Intelligence Research,
CSIR Meraka Institute & University of KwaZulu-Natal,
South Africa
September 16, 2014
RR-14, Athens
RR 2014 Querying Temporal Databases via OWL 2 QL
Problem and motivation
Ontology-based data access is a paradigm of querying relational data via
ontological (semantic) layer (OWL 2 QL ∼ DL-Lite):
data + conjunctive query + ontology SQL query + RDBMS.
Problem:
Can we use a similar approach to accessing temporal databases?
(SQL:2011 in IBM DB2 10.1, Oracle DB 11g Workspace Manager, etc.)
Approach:
We propose an interval-based temporal query language which:
• modularly combines CQs with temporal logic (FOMLO),
• enables reuse of rewriting techniques for CQs (in OWL 2 QL),
• is easily rewritable into SQL (AC0 data complexity).
S. Klarman and T. Meyer 1 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
DL-Lites
A family of Description Logics used for ontology-based data access:
• ABox A (data): Employee(john), worksAt(john, dep1)
• TBox T (ontology): Employee Person, worksAt isEmplyedAt
• conjunctive query: ∃y.ϕ(x, y), where ϕ is a conjunction of atoms:
q(x) := ∃z.(Person(x) ∧ worksAt(x, z) ∧ basedIn(z, barcelona))
• CQ answering via FO rewriting, using existing RDBMSs:
T , A |= q iff db(A) |= qT
where db(A) is A viewed as a database (unique minimal model).
S. Klarman and T. Meyer 2 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Ontology-based access to temporal DBs
Temporal database:
Emp
id name department from to
e1 john d1 1998 2000
e1 john d3 2000 2003
e2 mark d2 1999 2002
Dep
id type location from to
d1 financial madrid 1998 1999
d1 financial barcelona 1999 2003
d2 hr barcelona 2000 2003
d3 hq london 2000 2003
S. Klarman and T. Meyer 3 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Ontology-based access to temporal DBs
Temporal database:
Emp
id name department from to
e1 john d1 1998 2000
e1 john d3 2000 2003
e2 mark d2 1999 2002
Dep
id type location from to
d1 financial madrid 1998 1999
d1 financial barcelona 1999 2003
d2 hr barcelona 2000 2003
d3 hq london 2000 2003
(Virtual) temporal ABox:
[1998, 2000] : Emp(e1)
[1998, 2000] : name(e1, john)
[1998, 2000] : department(e1, d1)
. . .
[1998, 1999] : Dep(d1)
[1998, 1999] : type(d1, financial)
[1998, 1999] : location(d1, madrid)
. . .
S. Klarman and T. Meyer 3 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Ontology-based access to temporal DBs
Temporal database:
Emp
id name department from to
e1 john d1 1998 2000
e1 john d3 2000 2003
e2 mark d2 1999 2002
Dep
id type location from to
d1 financial madrid 1998 1999
d1 financial barcelona 1999 2003
d2 hr barcelona 2000 2003
d3 hq london 2000 2003
(Virtual) temporal ABox:
[1998, 2000] : Emp(e1)
[1998, 2000] : name(e1, john)
[1998, 2000] : department(e1, d1)
. . .
[1998, 1999] : Dep(d1)
[1998, 1999] : type(d1, financial)
[1998, 1999] : location(d1, madrid)
. . .
TBox: {Emp Person, department worksAt, location basedIn}
S. Klarman and T. Meyer 3 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Ontology-based access to temporal DBs
Temporal database:
Emp
id name department from to
e1 john d1 1998 2000
e1 john d3 2000 2003
e2 mark d2 1999 2002
Dep
id type location from to
d1 financial madrid 1998 1999
d1 financial barcelona 1999 2003
d2 hr barcelona 2000 2003
d3 hq london 2000 2003
Query:
Find all persons X and times Y, such that X worked at a department based in
Barcelona during Y and in a department based in Madrid some time earlier.
Answers, e.g.:
X = e1 as Y = [1999, 2000].
S. Klarman and T. Meyer 3 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Temporal data
Time:
A time domain is a pair (T, <) (linear, point-based). An interval
τ = [τ−, τ+], for τ− ≤ τ+ ∈ T, is the set {t ∈ T | τ− ≤ t ≤ τ+}.
Temporal ABoxes:
A concrete temporal ABox is a set A of time-stamped ABox axioms:
τ : α
where τ is an interval and α is an ABox axiom, e.g.:
[1, 2] : Employee(john), [2, 2] : worksAt(john, dep1)
Every A corresponds to some abstract temporal ABox via a mapping
· , such that A = (At)t∈T, where
At = {α | τ : α ∈ A and t ∈ τ}.
S. Klarman and T. Meyer 4 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Temporal query language: syntax
• an interval-based temporal language (FOMLO),
• epistemic interpretation of CQs in the temporal language.
TQL formulas:
ψ ::= [q](u) | u∗ < v∗ | ¬ψ | ψ1 ∧ ψ2 | ∃y.ψ
where:
• q is a CQ,
• u, v, y are temporal interval terms,
• ∗ ∈ {−, +}.
Example:
ψ(x, y) := [∃z.(Person(x) ∧ worksAt(x, z) ∧ basedIn(z, barcelona))](y) ∧
∃v.(v+
< y−
∧ [∃z.(worksAt(x, z) ∧ basedIn(z, madrid))](v))
S. Klarman and T. Meyer 5 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Temporal query language: semantics
For a (temporal) substitution π:
T , A, π |= u∗
< v∗
iff π(u)∗
< π(v)∗
,
T , A, π |= ¬ψ iff T , A, π |= ψ,
T , A, π |= ψ1 ∧ ψ2 iff T , A, π |= ψ1 and T , A, π |= ψ2,
T , A, π |= ∃y.ψ iff there exists τ ∈ I, such that
T , A, π[y → τ] |= ψ.
CQs are embedded in TQL using epistemic semantics.
T , A, π |= [q](u) iff T , At |= q, for every t ∈ π(u)
Therefore...
• read [q](τ) as: it is true that q is entailed in all time points in τ.
• ¬[q](τ) interpreted via negation-as-failure: it is not true that...
• CQ rewriting can be directly applied:
T , At |= q iff tdb(At) |= qT
S. Klarman and T. Meyer 6 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
From DLs to 2FO
Two-sorted FO language:
ϕ ::= R(d1, . . . , dn, t1, t2) | ¬ϕ | ϕ1 ∧ ϕ2 | t1 < t2 | ∃x.ϕ | ∃y.ϕ
Temporal database:
The temporal database corresponding to A is the tuple
tdb(A) = (NI, T, <, ·D), where:
• NI is the data domain and (T, <) the time domain,
• ·D is the interpretation over Γ = {Rα | α ∈ NC ∪ NR}, where:
• RD
A = {(a, τ−
, τ+
) | τ : A(a) ∈ A}, for every A ∈ NC,
• RD
r = {(a, b, τ−
, τ+
) | τ : r(a, b) ∈ A}, for every r ∈ NR.
S. Klarman and T. Meyer 7 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
Temporal semantics is not effectively supported by SQL:2011 systems:
tdb(A) RA(a, t1, t2) iff (a, t1, t2) ∈ RD
A
E.g., for A = {[1, 2] : A(a), [2, 3] : A(a)} we get:
tdb(A) RA(a, 1, 3)
Key problems:
• computing temporal joins, i.e., identifying maximal time intervals
over which conjunctions of atoms are satisfied,
• applying coalescing, i.e., merging overlapping and adjacent
intervals for the (intermediate) query results.
S. Klarman and T. Meyer 8 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
RC(a, 1, 3)
1 2 3 4 5 6 7 8 9 10 11 12
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
RC(a, 1, 3)
1 2 3 4 5 6 7 8 9 10 11 12
q2(x) = D(x) ∧ C(x)
q1(x) = B(x) ∧ C(x)
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
Rq1
(a, 3, 7)
Rq2
(a, 6, 10)
RC(a, 1, 3)
Rq1
(a, 1, 3)
Rqi
1 2 3 4 5 6 7 8 9 10 11 12
q2(x) = D(x) ∧ C(x)
q1(x) = B(x) ∧ C(x)
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
Rq1
(a, 3, 7)
Rq2
(a, 6, 10)
RC(a, 1, 3)
Rq1
(a, 1, 3)
Rqi
1 2 3 4 5 6 7 8 9 10 11 12 qT
(x) = q1(x) ∨ q2(x)
q2(x) = D(x) ∧ C(x)
q1(x) = B(x) ∧ C(x)
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
Rq1
(a, 3, 7)
Rq2
(a, 6, 10)
RC(a, 1, 3)
Rq1
(a, 1, 3)
RqT (a, 1, 3)
RqT (a, 3, 7)
RqT (a, 6, 10)
Rqi
RqT
1 2 3 4 5 6 7 8 9 10 11 12 qT
(x) = q1(x) ∨ q2(x)
q2(x) = D(x) ∧ C(x)
q1(x) = B(x) ∧ C(x)
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
Rq1
(a, 3, 7)
Rq2
(a, 6, 10)
RqT (a, 1, 10)coal
RC(a, 1, 3)
Rq1
(a, 1, 3)
RqT (a, 1, 3)
RqT (a, 3, 7)
RqT (a, 6, 10)
Rqi
RqT
RqT
coal
1 2 3 4 5 6 7 8 9 10 11 12 qT
(x) = q1(x) ∨ q2(x)
q2(x) = D(x) ∧ C(x)
q1(x) = B(x) ∧ C(x)
RR 2014 Querying Temporal Databases via OWL 2 QL
Query answering
temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)}
TBox: {D B}
TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x)
S. Klarman and T. Meyer 9 / 16
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
Rq1
(a, 3, 7)
Rq2
(a, 6, 10)
RqT (a, 1, 10)coal
RC(a, 1, 3)
Rq1
(a, 1, 3)
RqT (a, 1, 3)
RqT (a, 3, 7)
RqT (a, 6, 10)
Rqi
RqT
RqT
coal
1 2 3 4 5 6 7 8 9 10 11 12
coal
[q(a)]([2,9])
qT
(x) = q1(x) ∨ q2(x)
q2(x) = D(x) ∧ C(x)
q1(x) = B(x) ∧ C(x)
RR 2014 Querying Temporal Databases via OWL 2 QL
Query rewriting
For [q(a)]([2, 9]), where q1(a) = B(a) ∧ C(a) and q2(a) = D(a) ∧ C(a):
[q(a)]([2, 9]) 2FO
∃t1, t2.(Rcoal
qT (a, t1, t2) ∧ t1 ≤ 2 ∧ 9 ≤ t2)
Rcoal
qT (a, t1, t2) ∃t3, t4.RqT (a, t1, t3) ∧ RqT (a, t4, t2) ∧
¬∃t5, t6.(RqT (a, t5, t6) ∧ t5 < t1 ∧ t1 ≤ t6) ∧
¬∃t5, t6.(RqT (a, t5, t6) ∧ t5 ≤ t2 ∧ t2 < t6) ∧
¬∃t5, t6.(RqT (a, t5, t6) ∧ t1 < t5 ∧ t6 ≤ t2 ∧
¬∃t7, t8.(RqT (a, t7, t8) ∧ t7 < t5 ∧ t5 ≤ t8))
RqT (a, u, v) Rq1
(a, u, v) ∨ Rq2
(a, u, v)
Rq1
(a, u, v) ∃t1, . . . , t4.(RB(a, t1, t2) ∧ RC(a, t3, t4)) ∧
u = max(t1, t3) ∧ v = min(t2, t4) ∧ u ≤ v
Rq2
(a, u, v) ∃t1, . . . , t4.(RD(a, t1, t2) ∧ RC(a, t3, t4)) ∧
u = max(t1, t3) ∧ v = min(t2, t4) ∧ u ≤ v
S. Klarman and T. Meyer 10 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
SQL translation
• Translation from 2FO to SQL is straightforward using standard
techniques.
• In practice, the domain T must be represented as an explicit
relation RT in the database and used to guard temporal
quantifiers.
• The coalescing on the query-level is known to be inefficient. It is
usually better to apply it on the data-level.
S. Klarman and T. Meyer 11 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Results: correctness
Theorem (Correctness of 2FO rewriting)
For every TBox T , temporal ABox A, TQL query ψ, and answer σ to ψ, it
holds that:
T , A |= σ(ψ) iff tdb(A) σ(ψ) 2FO.
Corollary (TQL queries are · -generic)
Whenever A = A then:
1 T , A |= σ(ψ) iff T , A |= σ(ψ),
2 tdb(A) σ(ψ) 2FO iff tdb(A ) σ(ψ) 2FO.
S. Klarman and T. Meyer 12 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Results: data complexity
Theorem (Data complexity)
The data complexity of TQL query entailment over finite time domains is in
AC0
.
Note:
The finite domain restrictions is necessary to ensure that queries can be
effectively evaluated on TDBs considered as finite FO structures.
S. Klarman and T. Meyer 13 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Results: combined complexity
Size of TQL queries:
The size of ψ 2FO is linear in the joint size of ψ and the FO rewritings
qT
1 , . . . , qT
n of the CQs embedded in ψ.
Theorem (Combined complexity)
The combined complexity of TQL query entailment over finite time domains
is PSPACE-complete.
• The result transfers from the entailment of Boolean FO queries
over relational databases.
• A PSPACE procedure cannot directly rely on the rewriting...
S. Klarman and T. Meyer 14 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Results: combined complexity
Instead:
• compute and coalesce intermediate answers to all embedded CQs,
• and evaluate the query without rewriting the CQs.
RB(a, 1, 7)
RD(a, 6, 12)
RC(a, 3, 10)
Rq1
(a, 3, 7)
Rq2
(a, 6, 10)
RqT (a, 1, 10)coal
RC(a, 1, 3)
Rq1
(a, 1, 3)
RqT (a, 1, 3)
RqT (a, 3, 7)
RqT (a, 6, 10)
Rqi
RqT
RqT
coal
1 2 3 4 5 6 7 8 9 10 11 12
coal
[q(a)]([2,9])
A potentially better-behaved approach based on materialized view
maintenance: incremental, more responsive to updates.
S. Klarman and T. Meyer 15 / 16
RR 2014 Querying Temporal Databases via OWL 2 QL
Conclusions
Temporal query language:
• on the CQ / DL interface the approach only reuses existing
techniques and tools,
• the expressive power of temporal component subsumes LTL,
• satisfying FO rewriting properties.
Outlook:
• SQL translation must be further optimized (materialized view
maintenance; temp. joins and coalescing in the future ver. of SQL).
• Examine the links to other approaches to temporalizing OBDA.
S. Borgwardt, M. Lippmann, V. Thost. Temporal query answering in the description logic
DL-Lite. In: Proc. of FroCoS-13, 2013.
A. Artale, R. Kontchakov, F. Wolter, M. Zakharyaschev. Temporal description logic for
ontology-based data access. In: Proc. of IJCAI-13, 2013.
S. Klarman and T. Meyer 16 / 16

More Related Content

What's hot

Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
T. E. BOGALE
 
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Reproducing Kernel Hilbert Space of A Set Indexed Brownian MotionReproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
IJMERJOURNAL
 
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
iosrjce
 
qlp
qlpqlp
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Tomonari Masada
 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
pratik shukla
 
220exercises2
220exercises2220exercises2
220exercises2
sadhanakumble
 
LAP2009 c&p101-vector2 d.5ht
LAP2009 c&p101-vector2 d.5htLAP2009 c&p101-vector2 d.5ht
LAP2009 c&p101-vector2 d.5ht
A Jorge Garcia
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
angely alcendra
 
D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...
D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...
D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...
SEENET-MTP
 
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
MeetupDataScienceRoma
 
Achieving Spatial Adaptivity while Searching for Approximate Nearest Neighbors
Achieving Spatial Adaptivity while Searching for Approximate Nearest NeighborsAchieving Spatial Adaptivity while Searching for Approximate Nearest Neighbors
Achieving Spatial Adaptivity while Searching for Approximate Nearest Neighbors
Don Sheehy
 
Talk in Telecom-Paris, Nov. 15, 2011
Talk in Telecom-Paris, Nov. 15, 2011Talk in Telecom-Paris, Nov. 15, 2011
Talk in Telecom-Paris, Nov. 15, 2011
Christian Robert
 
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
T. E. BOGALE
 
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
SEENET-MTP
 
Reducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology MappingReducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology Mapping
satrajit
 
Spsp fw
Spsp fwSpsp fw
Spsp fw
sanzeeb123
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Guillaume Costeseque
 
0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force
sean chen
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.
ABDERRAHMANE REGGAD
 

What's hot (20)

Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
Transceiver design for single-cell and multi-cell downlink multiuser MIMO sys...
 
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Reproducing Kernel Hilbert Space of A Set Indexed Brownian MotionReproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
Reproducing Kernel Hilbert Space of A Set Indexed Brownian Motion
 
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
Run Or Walk In The Rain? (Orthogonal Projected Area of Ellipsoid)
 
qlp
qlpqlp
qlp
 
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
 
220exercises2
220exercises2220exercises2
220exercises2
 
LAP2009 c&p101-vector2 d.5ht
LAP2009 c&p101-vector2 d.5htLAP2009 c&p101-vector2 d.5ht
LAP2009 c&p101-vector2 d.5ht
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...
D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...
D. Vulcanov, REM — the Shape of Potentials for f(R) Theories in Cosmology and...
 
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
 
Achieving Spatial Adaptivity while Searching for Approximate Nearest Neighbors
Achieving Spatial Adaptivity while Searching for Approximate Nearest NeighborsAchieving Spatial Adaptivity while Searching for Approximate Nearest Neighbors
Achieving Spatial Adaptivity while Searching for Approximate Nearest Neighbors
 
Talk in Telecom-Paris, Nov. 15, 2011
Talk in Telecom-Paris, Nov. 15, 2011Talk in Telecom-Paris, Nov. 15, 2011
Talk in Telecom-Paris, Nov. 15, 2011
 
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
 
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
 
Reducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology MappingReducing Structural Bias in Technology Mapping
Reducing Structural Bias in Technology Mapping
 
Spsp fw
Spsp fwSpsp fw
Spsp fw
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
 
0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force0006.scheduling not-ilp-not-force
0006.scheduling not-ilp-not-force
 
The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.The all-electron GW method based on WIEN2k: Implementation and applications.
The all-electron GW method based on WIEN2k: Implementation and applications.
 

Similar to Querying Temporal Databases via OWL 2 QL

Chapter04
Chapter04Chapter04
Chapter04
Tianlu Wang
 
Prediction and Explanation over DL-Lite Data Streams
Prediction and Explanation over DL-Lite Data StreamsPrediction and Explanation over DL-Lite Data Streams
Prediction and Explanation over DL-Lite Data Streams
Szymon Klarman
 
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Shu Tanaka
 
20320140501020
2032014050102020320140501020
20320140501020
IAEME Publication
 
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Amit Bhattacharjee
 
Job sequencing with deadlines(with example)
Job sequencing with deadlines(with example)Job sequencing with deadlines(with example)
Job sequencing with deadlines(with example)
Vrinda Sheela
 
Lec11_removed_removed_removed.pdf
Lec11_removed_removed_removed.pdfLec11_removed_removed_removed.pdf
Lec11_removed_removed_removed.pdf
SURAJITDASBAURI
 
LAP2009c&p102-vector3d.5ht
LAP2009c&p102-vector3d.5htLAP2009c&p102-vector3d.5ht
LAP2009c&p102-vector3d.5ht
A Jorge Garcia
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
Alexander Litvinenko
 
Mid term solution
Mid term solutionMid term solution
Mid term solution
Gopi Saiteja
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive models
Akira Tanimoto
 
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
The Statistical and Applied Mathematical Sciences Institute
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
Jose Miguel Moreno
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
Christos Kallidonis
 
pradeepbishtLecture13 div conq
pradeepbishtLecture13 div conqpradeepbishtLecture13 div conq
pradeepbishtLecture13 div conq
Pradeep Bisht
 
Matlab time series example
Matlab time series exampleMatlab time series example
Matlab time series example
Ovie Uddin Ovie Uddin
 
Encoding survey
Encoding surveyEncoding survey
Encoding survey
Rajeev Raman
 
Master's thesis
Master's thesisMaster's thesis
Master's thesis
Smrati Kumar Katiyar
 
Queuing theory is a branch of mathematics that studies the behavior of waitin...
Queuing theory is a branch of mathematics that studies the behavior of waitin...Queuing theory is a branch of mathematics that studies the behavior of waitin...
Queuing theory is a branch of mathematics that studies the behavior of waitin...
Sonam704174
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
Alexander Litvinenko
 

Similar to Querying Temporal Databases via OWL 2 QL (20)

Chapter04
Chapter04Chapter04
Chapter04
 
Prediction and Explanation over DL-Lite Data Streams
Prediction and Explanation over DL-Lite Data StreamsPrediction and Explanation over DL-Lite Data Streams
Prediction and Explanation over DL-Lite Data Streams
 
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
Quantum Annealing for Dirichlet Process Mixture Models with Applications to N...
 
20320140501020
2032014050102020320140501020
20320140501020
 
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
 
Job sequencing with deadlines(with example)
Job sequencing with deadlines(with example)Job sequencing with deadlines(with example)
Job sequencing with deadlines(with example)
 
Lec11_removed_removed_removed.pdf
Lec11_removed_removed_removed.pdfLec11_removed_removed_removed.pdf
Lec11_removed_removed_removed.pdf
 
LAP2009c&p102-vector3d.5ht
LAP2009c&p102-vector3d.5htLAP2009c&p102-vector3d.5ht
LAP2009c&p102-vector3d.5ht
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
 
Mid term solution
Mid term solutionMid term solution
Mid term solution
 
Estimating structured vector autoregressive models
Estimating structured vector autoregressive modelsEstimating structured vector autoregressive models
Estimating structured vector autoregressive models
 
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
Climate Extremes Workshop - Extreme Values of Vertical Wind Speed in Doppler ...
 
Ultrasound Modular Architecture
Ultrasound Modular ArchitectureUltrasound Modular Architecture
Ultrasound Modular Architecture
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
 
pradeepbishtLecture13 div conq
pradeepbishtLecture13 div conqpradeepbishtLecture13 div conq
pradeepbishtLecture13 div conq
 
Matlab time series example
Matlab time series exampleMatlab time series example
Matlab time series example
 
Encoding survey
Encoding surveyEncoding survey
Encoding survey
 
Master's thesis
Master's thesisMaster's thesis
Master's thesis
 
Queuing theory is a branch of mathematics that studies the behavior of waitin...
Queuing theory is a branch of mathematics that studies the behavior of waitin...Queuing theory is a branch of mathematics that studies the behavior of waitin...
Queuing theory is a branch of mathematics that studies the behavior of waitin...
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 

More from Szymon Klarman

HyperGraphQL
HyperGraphQLHyperGraphQL
HyperGraphQL
Szymon Klarman
 
Formal Verification of Data Provenance Records
Formal Verification of Data Provenance RecordsFormal Verification of Data Provenance Records
Formal Verification of Data Provenance Records
Szymon Klarman
 
Data driven approaches to empirical discovery
Data driven approaches to empirical discoveryData driven approaches to empirical discovery
Data driven approaches to empirical discovery
Szymon Klarman
 
ABox Abduction in the Description Logic
ABox Abduction in the Description LogicABox Abduction in the Description Logic
ABox Abduction in the Description Logic
Szymon Klarman
 
Judgment Aggregation as Maximization of Epistemic and Social Utility
Judgment Aggregation as Maximization of Epistemic and Social UtilityJudgment Aggregation as Maximization of Epistemic and Social Utility
Judgment Aggregation as Maximization of Epistemic and Social Utility
Szymon Klarman
 
Description Logics of Context
Description Logics of ContextDescription Logics of Context
Description Logics of Context
Szymon Klarman
 
Ontology learning from interpretations in lightweight description logics
Ontology learning from interpretations in lightweight description logicsOntology learning from interpretations in lightweight description logics
Ontology learning from interpretations in lightweight description logics
Szymon Klarman
 
Knowledge Assembly at Scale with Semantic and Probabilistic Techniques
Knowledge Assembly at Scale with Semantic and Probabilistic TechniquesKnowledge Assembly at Scale with Semantic and Probabilistic Techniques
Knowledge Assembly at Scale with Semantic and Probabilistic Techniques
Szymon Klarman
 
What makes a linked data pattern interesting?
What makes a linked data pattern interesting?What makes a linked data pattern interesting?
What makes a linked data pattern interesting?
Szymon Klarman
 
SKOS: Building taxonomies with minimum ontological commitment
SKOS: Building taxonomies  with minimum ontological commitmentSKOS: Building taxonomies  with minimum ontological commitment
SKOS: Building taxonomies with minimum ontological commitment
Szymon Klarman
 

More from Szymon Klarman (10)

HyperGraphQL
HyperGraphQLHyperGraphQL
HyperGraphQL
 
Formal Verification of Data Provenance Records
Formal Verification of Data Provenance RecordsFormal Verification of Data Provenance Records
Formal Verification of Data Provenance Records
 
Data driven approaches to empirical discovery
Data driven approaches to empirical discoveryData driven approaches to empirical discovery
Data driven approaches to empirical discovery
 
ABox Abduction in the Description Logic
ABox Abduction in the Description LogicABox Abduction in the Description Logic
ABox Abduction in the Description Logic
 
Judgment Aggregation as Maximization of Epistemic and Social Utility
Judgment Aggregation as Maximization of Epistemic and Social UtilityJudgment Aggregation as Maximization of Epistemic and Social Utility
Judgment Aggregation as Maximization of Epistemic and Social Utility
 
Description Logics of Context
Description Logics of ContextDescription Logics of Context
Description Logics of Context
 
Ontology learning from interpretations in lightweight description logics
Ontology learning from interpretations in lightweight description logicsOntology learning from interpretations in lightweight description logics
Ontology learning from interpretations in lightweight description logics
 
Knowledge Assembly at Scale with Semantic and Probabilistic Techniques
Knowledge Assembly at Scale with Semantic and Probabilistic TechniquesKnowledge Assembly at Scale with Semantic and Probabilistic Techniques
Knowledge Assembly at Scale with Semantic and Probabilistic Techniques
 
What makes a linked data pattern interesting?
What makes a linked data pattern interesting?What makes a linked data pattern interesting?
What makes a linked data pattern interesting?
 
SKOS: Building taxonomies with minimum ontological commitment
SKOS: Building taxonomies  with minimum ontological commitmentSKOS: Building taxonomies  with minimum ontological commitment
SKOS: Building taxonomies with minimum ontological commitment
 

Recently uploaded

Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
Frédéric Baudron
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
PsychoTech Services
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills MN
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
frank0071
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
Sérgio Sacani
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
Sérgio Sacani
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
sammy700571
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
ABHISHEK SONI NIMT INSTITUTE OF MEDICAL AND PARAMEDCIAL SCIENCES , GOVT PG COLLEGE NOIDA
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
RDhivya6
 
Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
Sciences of Europe
 
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
eitps1506
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
Anti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark UniverseAnti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark Universe
Sérgio Sacani
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
yourprojectpartner05
 

Recently uploaded (20)

Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
Travis Hills of MN is Making Clean Water Accessible to All Through High Flux ...
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
 
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDSJAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
JAMES WEBB STUDY THE MASSIVE BLACK HOLE SEEDS
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
Microbiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdfMicrobiology of Central Nervous System INFECTIONS.pdf
Microbiology of Central Nervous System INFECTIONS.pdf
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
MICROBIAL INTERACTION PPT/ MICROBIAL INTERACTION AND THEIR TYPES // PLANT MIC...
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
 
Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
 
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
Anti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark UniverseAnti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark Universe
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
 

Querying Temporal Databases via OWL 2 QL

  • 1. Querying Temporal Databases via OWL 2 QL Szymon Klarman and Thomas Meyer Centre for Artificial Intelligence Research, CSIR Meraka Institute & University of KwaZulu-Natal, South Africa September 16, 2014 RR-14, Athens
  • 2. RR 2014 Querying Temporal Databases via OWL 2 QL Problem and motivation Ontology-based data access is a paradigm of querying relational data via ontological (semantic) layer (OWL 2 QL ∼ DL-Lite): data + conjunctive query + ontology SQL query + RDBMS. Problem: Can we use a similar approach to accessing temporal databases? (SQL:2011 in IBM DB2 10.1, Oracle DB 11g Workspace Manager, etc.) Approach: We propose an interval-based temporal query language which: • modularly combines CQs with temporal logic (FOMLO), • enables reuse of rewriting techniques for CQs (in OWL 2 QL), • is easily rewritable into SQL (AC0 data complexity). S. Klarman and T. Meyer 1 / 16
  • 3. RR 2014 Querying Temporal Databases via OWL 2 QL DL-Lites A family of Description Logics used for ontology-based data access: • ABox A (data): Employee(john), worksAt(john, dep1) • TBox T (ontology): Employee Person, worksAt isEmplyedAt • conjunctive query: ∃y.ϕ(x, y), where ϕ is a conjunction of atoms: q(x) := ∃z.(Person(x) ∧ worksAt(x, z) ∧ basedIn(z, barcelona)) • CQ answering via FO rewriting, using existing RDBMSs: T , A |= q iff db(A) |= qT where db(A) is A viewed as a database (unique minimal model). S. Klarman and T. Meyer 2 / 16
  • 4. RR 2014 Querying Temporal Databases via OWL 2 QL Ontology-based access to temporal DBs Temporal database: Emp id name department from to e1 john d1 1998 2000 e1 john d3 2000 2003 e2 mark d2 1999 2002 Dep id type location from to d1 financial madrid 1998 1999 d1 financial barcelona 1999 2003 d2 hr barcelona 2000 2003 d3 hq london 2000 2003 S. Klarman and T. Meyer 3 / 16
  • 5. RR 2014 Querying Temporal Databases via OWL 2 QL Ontology-based access to temporal DBs Temporal database: Emp id name department from to e1 john d1 1998 2000 e1 john d3 2000 2003 e2 mark d2 1999 2002 Dep id type location from to d1 financial madrid 1998 1999 d1 financial barcelona 1999 2003 d2 hr barcelona 2000 2003 d3 hq london 2000 2003 (Virtual) temporal ABox: [1998, 2000] : Emp(e1) [1998, 2000] : name(e1, john) [1998, 2000] : department(e1, d1) . . . [1998, 1999] : Dep(d1) [1998, 1999] : type(d1, financial) [1998, 1999] : location(d1, madrid) . . . S. Klarman and T. Meyer 3 / 16
  • 6. RR 2014 Querying Temporal Databases via OWL 2 QL Ontology-based access to temporal DBs Temporal database: Emp id name department from to e1 john d1 1998 2000 e1 john d3 2000 2003 e2 mark d2 1999 2002 Dep id type location from to d1 financial madrid 1998 1999 d1 financial barcelona 1999 2003 d2 hr barcelona 2000 2003 d3 hq london 2000 2003 (Virtual) temporal ABox: [1998, 2000] : Emp(e1) [1998, 2000] : name(e1, john) [1998, 2000] : department(e1, d1) . . . [1998, 1999] : Dep(d1) [1998, 1999] : type(d1, financial) [1998, 1999] : location(d1, madrid) . . . TBox: {Emp Person, department worksAt, location basedIn} S. Klarman and T. Meyer 3 / 16
  • 7. RR 2014 Querying Temporal Databases via OWL 2 QL Ontology-based access to temporal DBs Temporal database: Emp id name department from to e1 john d1 1998 2000 e1 john d3 2000 2003 e2 mark d2 1999 2002 Dep id type location from to d1 financial madrid 1998 1999 d1 financial barcelona 1999 2003 d2 hr barcelona 2000 2003 d3 hq london 2000 2003 Query: Find all persons X and times Y, such that X worked at a department based in Barcelona during Y and in a department based in Madrid some time earlier. Answers, e.g.: X = e1 as Y = [1999, 2000]. S. Klarman and T. Meyer 3 / 16
  • 8. RR 2014 Querying Temporal Databases via OWL 2 QL Temporal data Time: A time domain is a pair (T, <) (linear, point-based). An interval τ = [τ−, τ+], for τ− ≤ τ+ ∈ T, is the set {t ∈ T | τ− ≤ t ≤ τ+}. Temporal ABoxes: A concrete temporal ABox is a set A of time-stamped ABox axioms: τ : α where τ is an interval and α is an ABox axiom, e.g.: [1, 2] : Employee(john), [2, 2] : worksAt(john, dep1) Every A corresponds to some abstract temporal ABox via a mapping · , such that A = (At)t∈T, where At = {α | τ : α ∈ A and t ∈ τ}. S. Klarman and T. Meyer 4 / 16
  • 9. RR 2014 Querying Temporal Databases via OWL 2 QL Temporal query language: syntax • an interval-based temporal language (FOMLO), • epistemic interpretation of CQs in the temporal language. TQL formulas: ψ ::= [q](u) | u∗ < v∗ | ¬ψ | ψ1 ∧ ψ2 | ∃y.ψ where: • q is a CQ, • u, v, y are temporal interval terms, • ∗ ∈ {−, +}. Example: ψ(x, y) := [∃z.(Person(x) ∧ worksAt(x, z) ∧ basedIn(z, barcelona))](y) ∧ ∃v.(v+ < y− ∧ [∃z.(worksAt(x, z) ∧ basedIn(z, madrid))](v)) S. Klarman and T. Meyer 5 / 16
  • 10. RR 2014 Querying Temporal Databases via OWL 2 QL Temporal query language: semantics For a (temporal) substitution π: T , A, π |= u∗ < v∗ iff π(u)∗ < π(v)∗ , T , A, π |= ¬ψ iff T , A, π |= ψ, T , A, π |= ψ1 ∧ ψ2 iff T , A, π |= ψ1 and T , A, π |= ψ2, T , A, π |= ∃y.ψ iff there exists τ ∈ I, such that T , A, π[y → τ] |= ψ. CQs are embedded in TQL using epistemic semantics. T , A, π |= [q](u) iff T , At |= q, for every t ∈ π(u) Therefore... • read [q](τ) as: it is true that q is entailed in all time points in τ. • ¬[q](τ) interpreted via negation-as-failure: it is not true that... • CQ rewriting can be directly applied: T , At |= q iff tdb(At) |= qT S. Klarman and T. Meyer 6 / 16
  • 11. RR 2014 Querying Temporal Databases via OWL 2 QL From DLs to 2FO Two-sorted FO language: ϕ ::= R(d1, . . . , dn, t1, t2) | ¬ϕ | ϕ1 ∧ ϕ2 | t1 < t2 | ∃x.ϕ | ∃y.ϕ Temporal database: The temporal database corresponding to A is the tuple tdb(A) = (NI, T, <, ·D), where: • NI is the data domain and (T, <) the time domain, • ·D is the interpretation over Γ = {Rα | α ∈ NC ∪ NR}, where: • RD A = {(a, τ− , τ+ ) | τ : A(a) ∈ A}, for every A ∈ NC, • RD r = {(a, b, τ− , τ+ ) | τ : r(a, b) ∈ A}, for every r ∈ NR. S. Klarman and T. Meyer 7 / 16
  • 12. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering Temporal semantics is not effectively supported by SQL:2011 systems: tdb(A) RA(a, t1, t2) iff (a, t1, t2) ∈ RD A E.g., for A = {[1, 2] : A(a), [2, 3] : A(a)} we get: tdb(A) RA(a, 1, 3) Key problems: • computing temporal joins, i.e., identifying maximal time intervals over which conjunctions of atoms are satisfied, • applying coalescing, i.e., merging overlapping and adjacent intervals for the (intermediate) query results. S. Klarman and T. Meyer 8 / 16
  • 13. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16
  • 14. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) RC(a, 1, 3) 1 2 3 4 5 6 7 8 9 10 11 12
  • 15. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) RC(a, 1, 3) 1 2 3 4 5 6 7 8 9 10 11 12 q2(x) = D(x) ∧ C(x) q1(x) = B(x) ∧ C(x)
  • 16. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) Rq1 (a, 3, 7) Rq2 (a, 6, 10) RC(a, 1, 3) Rq1 (a, 1, 3) Rqi 1 2 3 4 5 6 7 8 9 10 11 12 q2(x) = D(x) ∧ C(x) q1(x) = B(x) ∧ C(x)
  • 17. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) Rq1 (a, 3, 7) Rq2 (a, 6, 10) RC(a, 1, 3) Rq1 (a, 1, 3) Rqi 1 2 3 4 5 6 7 8 9 10 11 12 qT (x) = q1(x) ∨ q2(x) q2(x) = D(x) ∧ C(x) q1(x) = B(x) ∧ C(x)
  • 18. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) Rq1 (a, 3, 7) Rq2 (a, 6, 10) RC(a, 1, 3) Rq1 (a, 1, 3) RqT (a, 1, 3) RqT (a, 3, 7) RqT (a, 6, 10) Rqi RqT 1 2 3 4 5 6 7 8 9 10 11 12 qT (x) = q1(x) ∨ q2(x) q2(x) = D(x) ∧ C(x) q1(x) = B(x) ∧ C(x)
  • 19. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) Rq1 (a, 3, 7) Rq2 (a, 6, 10) RqT (a, 1, 10)coal RC(a, 1, 3) Rq1 (a, 1, 3) RqT (a, 1, 3) RqT (a, 3, 7) RqT (a, 6, 10) Rqi RqT RqT coal 1 2 3 4 5 6 7 8 9 10 11 12 qT (x) = q1(x) ∨ q2(x) q2(x) = D(x) ∧ C(x) q1(x) = B(x) ∧ C(x)
  • 20. RR 2014 Querying Temporal Databases via OWL 2 QL Query answering temp. ABox: {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)} TBox: {D B} TQL query: [q(a)]([2, 9]), where q(x) = B(x) ∧ C(x) S. Klarman and T. Meyer 9 / 16 RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) Rq1 (a, 3, 7) Rq2 (a, 6, 10) RqT (a, 1, 10)coal RC(a, 1, 3) Rq1 (a, 1, 3) RqT (a, 1, 3) RqT (a, 3, 7) RqT (a, 6, 10) Rqi RqT RqT coal 1 2 3 4 5 6 7 8 9 10 11 12 coal [q(a)]([2,9]) qT (x) = q1(x) ∨ q2(x) q2(x) = D(x) ∧ C(x) q1(x) = B(x) ∧ C(x)
  • 21. RR 2014 Querying Temporal Databases via OWL 2 QL Query rewriting For [q(a)]([2, 9]), where q1(a) = B(a) ∧ C(a) and q2(a) = D(a) ∧ C(a): [q(a)]([2, 9]) 2FO ∃t1, t2.(Rcoal qT (a, t1, t2) ∧ t1 ≤ 2 ∧ 9 ≤ t2) Rcoal qT (a, t1, t2) ∃t3, t4.RqT (a, t1, t3) ∧ RqT (a, t4, t2) ∧ ¬∃t5, t6.(RqT (a, t5, t6) ∧ t5 < t1 ∧ t1 ≤ t6) ∧ ¬∃t5, t6.(RqT (a, t5, t6) ∧ t5 ≤ t2 ∧ t2 < t6) ∧ ¬∃t5, t6.(RqT (a, t5, t6) ∧ t1 < t5 ∧ t6 ≤ t2 ∧ ¬∃t7, t8.(RqT (a, t7, t8) ∧ t7 < t5 ∧ t5 ≤ t8)) RqT (a, u, v) Rq1 (a, u, v) ∨ Rq2 (a, u, v) Rq1 (a, u, v) ∃t1, . . . , t4.(RB(a, t1, t2) ∧ RC(a, t3, t4)) ∧ u = max(t1, t3) ∧ v = min(t2, t4) ∧ u ≤ v Rq2 (a, u, v) ∃t1, . . . , t4.(RD(a, t1, t2) ∧ RC(a, t3, t4)) ∧ u = max(t1, t3) ∧ v = min(t2, t4) ∧ u ≤ v S. Klarman and T. Meyer 10 / 16
  • 22. RR 2014 Querying Temporal Databases via OWL 2 QL SQL translation • Translation from 2FO to SQL is straightforward using standard techniques. • In practice, the domain T must be represented as an explicit relation RT in the database and used to guard temporal quantifiers. • The coalescing on the query-level is known to be inefficient. It is usually better to apply it on the data-level. S. Klarman and T. Meyer 11 / 16
  • 23. RR 2014 Querying Temporal Databases via OWL 2 QL Results: correctness Theorem (Correctness of 2FO rewriting) For every TBox T , temporal ABox A, TQL query ψ, and answer σ to ψ, it holds that: T , A |= σ(ψ) iff tdb(A) σ(ψ) 2FO. Corollary (TQL queries are · -generic) Whenever A = A then: 1 T , A |= σ(ψ) iff T , A |= σ(ψ), 2 tdb(A) σ(ψ) 2FO iff tdb(A ) σ(ψ) 2FO. S. Klarman and T. Meyer 12 / 16
  • 24. RR 2014 Querying Temporal Databases via OWL 2 QL Results: data complexity Theorem (Data complexity) The data complexity of TQL query entailment over finite time domains is in AC0 . Note: The finite domain restrictions is necessary to ensure that queries can be effectively evaluated on TDBs considered as finite FO structures. S. Klarman and T. Meyer 13 / 16
  • 25. RR 2014 Querying Temporal Databases via OWL 2 QL Results: combined complexity Size of TQL queries: The size of ψ 2FO is linear in the joint size of ψ and the FO rewritings qT 1 , . . . , qT n of the CQs embedded in ψ. Theorem (Combined complexity) The combined complexity of TQL query entailment over finite time domains is PSPACE-complete. • The result transfers from the entailment of Boolean FO queries over relational databases. • A PSPACE procedure cannot directly rely on the rewriting... S. Klarman and T. Meyer 14 / 16
  • 26. RR 2014 Querying Temporal Databases via OWL 2 QL Results: combined complexity Instead: • compute and coalesce intermediate answers to all embedded CQs, • and evaluate the query without rewriting the CQs. RB(a, 1, 7) RD(a, 6, 12) RC(a, 3, 10) Rq1 (a, 3, 7) Rq2 (a, 6, 10) RqT (a, 1, 10)coal RC(a, 1, 3) Rq1 (a, 1, 3) RqT (a, 1, 3) RqT (a, 3, 7) RqT (a, 6, 10) Rqi RqT RqT coal 1 2 3 4 5 6 7 8 9 10 11 12 coal [q(a)]([2,9]) A potentially better-behaved approach based on materialized view maintenance: incremental, more responsive to updates. S. Klarman and T. Meyer 15 / 16
  • 27. RR 2014 Querying Temporal Databases via OWL 2 QL Conclusions Temporal query language: • on the CQ / DL interface the approach only reuses existing techniques and tools, • the expressive power of temporal component subsumes LTL, • satisfying FO rewriting properties. Outlook: • SQL translation must be further optimized (materialized view maintenance; temp. joins and coalescing in the future ver. of SQL). • Examine the links to other approaches to temporalizing OBDA. S. Borgwardt, M. Lippmann, V. Thost. Temporal query answering in the description logic DL-Lite. In: Proc. of FroCoS-13, 2013. A. Artale, R. Kontchakov, F. Wolter, M. Zakharyaschev. Temporal description logic for ontology-based data access. In: Proc. of IJCAI-13, 2013. S. Klarman and T. Meyer 16 / 16