Algebraic Aspects of Quantum Lévy
Process
Rei Mizuta
The Uniersity of Tokyo, Japan
August 29, 2018
Notation and Preliminaries
Quantum Lévy Process
Appendix
Contents
1 Notation and Preliminaries
Algebraic Terminology
Stochastic Background
2 Quantum Lévy Process
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
3 Appendix
Proofs
2 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Algebraic Terminology
Stochastic Background
Notation
For pre-Hilbert space D, L(D) denotes
fF : D ! D j F is linear adjointableg
Definition
A: a unital C-*-algebra is called *-bialgebra if there is
unital *-homs. ´ : A ! A ˙ A and › : A ! C such
that
(1 ˙ ´)´ = (´ ˙ 1)´ and
(1 ˙ ›)´ = (› ˙ 1)´ = id.
Example
G:Group ,› : C[G] ! C :coefficient of trivial
representation.
Then, (C[G]; ›) is *-bialgebra.
3 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Algebraic Terminology
Stochastic Background
Hochschild Cohomology
Let A be unital algebra over a comm. ring R and M
be A-bimodule.
Definition (Hochschild Cohomology)
H˜(A; M) denotes the cohomology of following
cochain complex.
1 Cn(A; M) := fffi: A˙n ! M; ffi R-linearg
2 for ffi 2 Cn`1(A; M)
dffi(a1 ˙ ´ ´ ´ ˙ an) := a1ffi(a2 ˙ ´ ´ ´ ˙ an)
+
n`1X
i=1
(`1)i
ffi
“
a1 ˙ ´ ´ ´ ˙ (aiai+1) ˙ ´ ´ ´ ˙ an
”
+ (`1)n
ffi(a1 ˙ ´ ´ ´ ˙ an`1)an
4 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Algebraic Terminology
Stochastic Background
Classifier Space
Let G be a group.
Theorem ([5])
There is a path-connected topological space X which
satisfies following conditions.
ı1(X) ‰= G.
ın(X) ‰= 0 for all n – 2.
Remark ([5])
Moreover, X := BG can be constructed as a
composition of following two functors.
B: : Grp ! Set´op
j:j : Set´op
! Top
5 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Algebraic Terminology
Stochastic Background
Some Facts
Theorem ([6])
H˜(G) ‰= H˜(Z[G]; Z) ‰= H˜
sing(BG).
where H˜(G) denotes group cohomology[6]
Example
G := Z2 then BG = T2
G := Fn then BG = _nS1
Theorem
H˜(C[G]; ›C›) ‰= H˜(Z[G]; Z) ˙Z C
6 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Algebraic Terminology
Stochastic Background
Lévy Process
Definition (Lévy Process[2])
R-valued Stochastic Process Xt is said Lévy Process if
X0 = 0 a.e. and it admits following three conditions.
1 (Independence of increments) Random variables
Xt1 ` Xs1 ; : : : ; Xtn ` Xsn are independent for all
n 2 N and all 0 » s1 » t1 » s2 » ´ ´ ´ » tn.
2 (Stationarity of increments) The distribution
Xt ` Xs depends only on the difference t ` s.
3 (Continuity) limh!0 P (jXt+h ` Xtj > ›) = 0 for
all t – 0; › > 0
Example
Brownian motion.
Poisson process. 7 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Algebraic Terminology
Stochastic Background
Lévy-Khinchin decomposition
Let Xt be R-valued Lévy Process.
Theorem (Lévy-Khinchin decomposition[2])
ffiXt (u) := E[eiuXt ] =
exp(t(aiu ` 1
2
ff2u2 +
R
Rnf0g(eiux ` 1 ` iux1jxj<1)‌))
where
a 2 R; ff – 0.
‌ is Borel measure on R n f0g s.t.
R
Rnf0g min(x2; 1)‌ < 1.
Conversely, for each ffi(u) as above form, there is a
Lévy Process whose characteristic function is ffi(u).
8 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Definition of QLP
Let A be *-bialgebra,
and (B; ffi) be the tuple of unital C-*-algebra and a
state.
Definition (Quantum Lévy Process[3])
The family of unital *-hom. (js;t)0»s»t : A ! B is
called Quantum Lévy Process if it satisfies following
four conditions.
1 (Increment property)
jrs ? jst = jrt for all 0 » r » s » t
jtt = 1 ´ › for all 0 » t:
where jrs ? jst(a) := (jrs ˙ jst)(´(a)) for a 2 A
9 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Definition of QLP (contd.)
Definition (Quantum Lévy Process[3] (contd.),)
2 (Independence of increments) The family
(jst)0»s»t is independent, i.e. js1t1 ; : : : ; jsntn are
independent for all n 2 N and all
0 » s1 » t1 » s2 » ´ ´ ´ » tn.
3 (Stationarity of increments) The distribution
’s;t = ffi(js;t) of js;t depends only on the
difference t ` s.
4 (Weak continuity) ’s;t converge to ’s;s in
distribution for t & s.
10 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Schürmann triple
Definition (Schürmann triple[1])
A tuple (ȷ; ”; ) is called Schürmann triple if there is
a C-pre-Hilbert space D and
ȷ : A ! L(D) is unital *-hom.
” : A ! D is linear map satisfying
”(ab) = ȷ(a)”(b) + ”(a)›(b).
: A ! C is linear map satisfying
(a˜b) = h”(a); ”(b)i + ›(a˜) (b) + (a˜)›(b)
Remark
Last condition is equivalent that
a ˙ b 7! h”(a˜); ”(b)i is 0 in H2(A; ›C›).
”(1) = 0; (1) = 0 and 8a 2 ker›; (a˜a) – 0 follow
by definition. 11 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Basic Properties
Definition
two QLPs are equivalent if their distributions are
same, where QLP’s dist. is defined by ’t := ffi(j0;t)
Theorem ([1])
Let (js;t)0»s»t be QLP, then There is a Schürmann
triple (ȷ; ”; ) s.t. exp(t ) = ’t.
we call generator of QLP.
Conversely, Let (ȷ; ”; ) be a Schürmann triple, then
there is a QLP s.t. exp(t ) = ’t.
Remark ([1])
In the construction of latter direction, (B; ffi) is always
obtained as symmetric Fock space.
12 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Classical Example
Let (Xt)0»t be real valued Lévy Process with finite
moments.
Example ([3])
A := C[X] with ´(X) := X ˙ 1 + 1 ˙ X; ›(X) := 0.
Then, js;t : A ! p–1Lp(˙; C); f 7! f(Xt ` Xs) is
QLP.
Proposition ([3])
Let be generator in this setting. TFAE.
K3 := fpqr j p; q; r 2 ker›g ȷ ker .
(ȷ; ”; ) : Sch. tri. ) ȷ = 1 ´ ›.
Xt = aBt + bt for some a; b 2 R.
In general, we call a generator Gaussian if the first or
second of above conditions follows. 13 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Lévy-Khinchin decomposition property
Definition (Lévy-Khinchin decomposition property[7])
Schürmann triple (ȷ; ”; ) satisfies
Lévy-Khinchin decomposition property if There is two
Schürmann triples (ȷG; ”G; G); (ȷP ; ”P ; P ) whose
represantation space DG and DP is orthogonal
subspace of —D such that
ȷ = ȷG ˘ ȷP ; ” = ”G + ”P and = G + P .
DG = f(ȷ(a) ` ›(a))v j a 2 A; v 2 Dg?
Remark
Existence of (ȷG; ”G); (ȷP ; ”P ) is trivial.
14 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Some Notations
Definition
Let (A; ›) be a tuple of C-*-algebra and unital *-hom
from A to C, it is said to satisfy
(H2Z) if H2(A; ›C›) = 0.
(AC) if all ȷ; ” admits gen. fct. . i.e. (ȷ; ”; )
becomes Schürmann triple.
(LK) if all Schürmann triples over (A; ›) admit
Lévy-Khinchin decomposition property.
Theorem ([7])
(H2Z) ) (AC) ) (LK)
15 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Counterexamples (in Group Algebras)
Theorem (counterexamples[7])
G := ı1(clo. ori. surf. of genus 2). (:(LK))
G := ha; b; r j aba`1b`1r2 = (ra)2 = (rb)2 = ei.
((LK) ^ :(AC))
A := Chx; y; j x˜ = x; x2y = `y; y˜y = 0i
›(x) = ›(y) = 0.((AC) ^ :(H2Z))
Remark ([7])
A group algebra (and trivial representation) which
satisfies (AC) ^ :(H2Z) is unknown.
16 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Known Results (in Quantum Groups)
Theorem (LK property of CMQGs[10][8][9])
Q. Symmetry Algebra As(n; d) admits (H2Z).[10]
Free Orthogonal Q. Group O
+
n does not admit
(LK).[8]
SUq(2) for q 2 (0; 1) admits (LK).[8]
SUq(d) does not admit (AC) for
q 2 (0; 1); d – 3.[8]
Remark ([10][8])
Whether SUq(d) has (LK) for q 2 (0; 1); d – 3 is
unknown.
17 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Definition and Basic Property
Lévy-Khinchin decomposition property in QLP
Future Work and Known Results
Trying to find group algebra counterexamples which
satisfy :(H2Z) ^ (AC).
Proposition
finite groups always satisfy (H2Z).
Trying to classify QLP over group algebra.
Remark (classification of QLP[4][9])
All QLPs of Quantum Permutation Group[9] S
+
n and
SUq(2)[4] are classified.
18 / 23
Notation and Preliminaries
Quantum Lévy Process
Appendix
Proofs
Proof of Prop 1/2
Proof
According to [7], we obtain following exact sequence
0 ! H1
! K0
1 ! (K1 ˙C[G] K1)0
! H2
! 0
where K1 := ker›.
Obviously,
dimK1 = jGj ` 1
dimK1 ˙C[G] K1 = jGj ` 1
dimH1 = 0.
Then (H2Z) follows by dimension theorem.
19 / 23
References I
[1] Schürmann, M. White noise on bialgebras. Lecture
notes in mathematics, Springer-Verlag, 1993.
[2] A, David. Lévy Processes―From Probability to
Finance and Quantum Groups, Notices of the
American Mathematical Society. Providence, RI:
American Mathematical Society. 51 (11): 1336 ‒
1347, 2004.
[3] U. Franz, The Theory of Quantum Lévy
Processes, arXiv:math/0407488, 2004.
20 / 23
References II
[4] M. Schürmann and M. Skeide, Infinitesimal
generators on the quantum group SUq(2). Infin.
Dimens. Anal. Quantum Probab. Relat. Top. 1
(1998), no. 4, 573 ‒ 598.
[5] J-L.Loday, Free loop space and homology
arXiv:1110.0405, 2011.
[6] K. S. Brown, Group cohomology, Springer Science
& Business Media, 1982
21 / 23
References III
[7] U. Franz, M. Gerhold and A. Thom, On the
Lévy-Khinchin decomposition of generating
functionals, arXiv:1510.03292, 2015.
[8] B. Das, U. Franz, A. Kula, A. Skalski,
Lévy-Khintchine decompositions for generating
functionals on algebras associated to universal
compact quantum groups, arXiv:1711.02755, 2018.
[9] U. Franz, A. Kula, A. Skalski, Lévy Processes on
Quantum Permutation Groups, arXiv:1510.08321,
2016.
22 / 23
References IV
[10] J. Bichon, U. Franz, M. Gerhold, Homological
properties of quantum permutation algebras,
arXiv:1704.00589, 2017.
23 / 23

qlp

  • 1.
    Algebraic Aspects ofQuantum Lévy Process Rei Mizuta The Uniersity of Tokyo, Japan August 29, 2018
  • 2.
    Notation and Preliminaries QuantumLévy Process Appendix Contents 1 Notation and Preliminaries Algebraic Terminology Stochastic Background 2 Quantum Lévy Process Definition and Basic Property Lévy-Khinchin decomposition property in QLP 3 Appendix Proofs 2 / 23
  • 3.
    Notation and Preliminaries QuantumLévy Process Appendix Algebraic Terminology Stochastic Background Notation For pre-Hilbert space D, L(D) denotes fF : D ! D j F is linear adjointableg Definition A: a unital C-*-algebra is called *-bialgebra if there is unital *-homs. ´ : A ! A ˙ A and › : A ! C such that (1 ˙ ´)´ = (´ ˙ 1)´ and (1 ˙ ›)´ = (› ˙ 1)´ = id. Example G:Group ,› : C[G] ! C :coefficient of trivial representation. Then, (C[G]; ›) is *-bialgebra. 3 / 23
  • 4.
    Notation and Preliminaries QuantumLévy Process Appendix Algebraic Terminology Stochastic Background Hochschild Cohomology Let A be unital algebra over a comm. ring R and M be A-bimodule. Definition (Hochschild Cohomology) H˜(A; M) denotes the cohomology of following cochain complex. 1 Cn(A; M) := fffi: A˙n ! M; ffi R-linearg 2 for ffi 2 Cn`1(A; M) dffi(a1 ˙ ´ ´ ´ ˙ an) := a1ffi(a2 ˙ ´ ´ ´ ˙ an) + n`1X i=1 (`1)i ffi “ a1 ˙ ´ ´ ´ ˙ (aiai+1) ˙ ´ ´ ´ ˙ an ” + (`1)n ffi(a1 ˙ ´ ´ ´ ˙ an`1)an 4 / 23
  • 5.
    Notation and Preliminaries QuantumLévy Process Appendix Algebraic Terminology Stochastic Background Classifier Space Let G be a group. Theorem ([5]) There is a path-connected topological space X which satisfies following conditions. ı1(X) ‰= G. ın(X) ‰= 0 for all n – 2. Remark ([5]) Moreover, X := BG can be constructed as a composition of following two functors. B: : Grp ! Set´op j:j : Set´op ! Top 5 / 23
  • 6.
    Notation and Preliminaries QuantumLévy Process Appendix Algebraic Terminology Stochastic Background Some Facts Theorem ([6]) H˜(G) ‰= H˜(Z[G]; Z) ‰= H˜ sing(BG). where H˜(G) denotes group cohomology[6] Example G := Z2 then BG = T2 G := Fn then BG = _nS1 Theorem H˜(C[G]; ›C›) ‰= H˜(Z[G]; Z) ˙Z C 6 / 23
  • 7.
    Notation and Preliminaries QuantumLévy Process Appendix Algebraic Terminology Stochastic Background Lévy Process Definition (Lévy Process[2]) R-valued Stochastic Process Xt is said Lévy Process if X0 = 0 a.e. and it admits following three conditions. 1 (Independence of increments) Random variables Xt1 ` Xs1 ; : : : ; Xtn ` Xsn are independent for all n 2 N and all 0 » s1 » t1 » s2 » ´ ´ ´ » tn. 2 (Stationarity of increments) The distribution Xt ` Xs depends only on the difference t ` s. 3 (Continuity) limh!0 P (jXt+h ` Xtj > ›) = 0 for all t – 0; › > 0 Example Brownian motion. Poisson process. 7 / 23
  • 8.
    Notation and Preliminaries QuantumLévy Process Appendix Algebraic Terminology Stochastic Background Lévy-Khinchin decomposition Let Xt be R-valued Lévy Process. Theorem (Lévy-Khinchin decomposition[2]) ffiXt (u) := E[eiuXt ] = exp(t(aiu ` 1 2 ff2u2 + R Rnf0g(eiux ` 1 ` iux1jxj<1)‌)) where a 2 R; ff – 0. ‌ is Borel measure on R n f0g s.t. R Rnf0g min(x2; 1)‌ < 1. Conversely, for each ffi(u) as above form, there is a Lévy Process whose characteristic function is ffi(u). 8 / 23
  • 9.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Definition of QLP Let A be *-bialgebra, and (B; ffi) be the tuple of unital C-*-algebra and a state. Definition (Quantum Lévy Process[3]) The family of unital *-hom. (js;t)0»s»t : A ! B is called Quantum Lévy Process if it satisfies following four conditions. 1 (Increment property) jrs ? jst = jrt for all 0 » r » s » t jtt = 1 ´ › for all 0 » t: where jrs ? jst(a) := (jrs ˙ jst)(´(a)) for a 2 A 9 / 23
  • 10.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Definition of QLP (contd.) Definition (Quantum Lévy Process[3] (contd.),) 2 (Independence of increments) The family (jst)0»s»t is independent, i.e. js1t1 ; : : : ; jsntn are independent for all n 2 N and all 0 » s1 » t1 » s2 » ´ ´ ´ » tn. 3 (Stationarity of increments) The distribution ’s;t = ffi(js;t) of js;t depends only on the difference t ` s. 4 (Weak continuity) ’s;t converge to ’s;s in distribution for t & s. 10 / 23
  • 11.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Schürmann triple Definition (Schürmann triple[1]) A tuple (ȷ; ”; ) is called Schürmann triple if there is a C-pre-Hilbert space D and ȷ : A ! L(D) is unital *-hom. ” : A ! D is linear map satisfying ”(ab) = ȷ(a)”(b) + ”(a)›(b). : A ! C is linear map satisfying (a˜b) = h”(a); ”(b)i + ›(a˜) (b) + (a˜)›(b) Remark Last condition is equivalent that a ˙ b 7! h”(a˜); ”(b)i is 0 in H2(A; ›C›). ”(1) = 0; (1) = 0 and 8a 2 ker›; (a˜a) – 0 follow by definition. 11 / 23
  • 12.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Basic Properties Definition two QLPs are equivalent if their distributions are same, where QLP’s dist. is defined by ’t := ffi(j0;t) Theorem ([1]) Let (js;t)0»s»t be QLP, then There is a Schürmann triple (ȷ; ”; ) s.t. exp(t ) = ’t. we call generator of QLP. Conversely, Let (ȷ; ”; ) be a Schürmann triple, then there is a QLP s.t. exp(t ) = ’t. Remark ([1]) In the construction of latter direction, (B; ffi) is always obtained as symmetric Fock space. 12 / 23
  • 13.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Classical Example Let (Xt)0»t be real valued Lévy Process with finite moments. Example ([3]) A := C[X] with ´(X) := X ˙ 1 + 1 ˙ X; ›(X) := 0. Then, js;t : A ! p–1Lp(˙; C); f 7! f(Xt ` Xs) is QLP. Proposition ([3]) Let be generator in this setting. TFAE. K3 := fpqr j p; q; r 2 ker›g ȷ ker . (ȷ; ”; ) : Sch. tri. ) ȷ = 1 ´ ›. Xt = aBt + bt for some a; b 2 R. In general, we call a generator Gaussian if the first or second of above conditions follows. 13 / 23
  • 14.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Lévy-Khinchin decomposition property Definition (Lévy-Khinchin decomposition property[7]) Schürmann triple (ȷ; ”; ) satisfies Lévy-Khinchin decomposition property if There is two Schürmann triples (ȷG; ”G; G); (ȷP ; ”P ; P ) whose represantation space DG and DP is orthogonal subspace of —D such that ȷ = ȷG ˘ ȷP ; ” = ”G + ”P and = G + P . DG = f(ȷ(a) ` ›(a))v j a 2 A; v 2 Dg? Remark Existence of (ȷG; ”G); (ȷP ; ”P ) is trivial. 14 / 23
  • 15.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Some Notations Definition Let (A; ›) be a tuple of C-*-algebra and unital *-hom from A to C, it is said to satisfy (H2Z) if H2(A; ›C›) = 0. (AC) if all ȷ; ” admits gen. fct. . i.e. (ȷ; ”; ) becomes Schürmann triple. (LK) if all Schürmann triples over (A; ›) admit Lévy-Khinchin decomposition property. Theorem ([7]) (H2Z) ) (AC) ) (LK) 15 / 23
  • 16.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Counterexamples (in Group Algebras) Theorem (counterexamples[7]) G := ı1(clo. ori. surf. of genus 2). (:(LK)) G := ha; b; r j aba`1b`1r2 = (ra)2 = (rb)2 = ei. ((LK) ^ :(AC)) A := Chx; y; j x˜ = x; x2y = `y; y˜y = 0i ›(x) = ›(y) = 0.((AC) ^ :(H2Z)) Remark ([7]) A group algebra (and trivial representation) which satisfies (AC) ^ :(H2Z) is unknown. 16 / 23
  • 17.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Known Results (in Quantum Groups) Theorem (LK property of CMQGs[10][8][9]) Q. Symmetry Algebra As(n; d) admits (H2Z).[10] Free Orthogonal Q. Group O + n does not admit (LK).[8] SUq(2) for q 2 (0; 1) admits (LK).[8] SUq(d) does not admit (AC) for q 2 (0; 1); d – 3.[8] Remark ([10][8]) Whether SUq(d) has (LK) for q 2 (0; 1); d – 3 is unknown. 17 / 23
  • 18.
    Notation and Preliminaries QuantumLévy Process Appendix Definition and Basic Property Lévy-Khinchin decomposition property in QLP Future Work and Known Results Trying to find group algebra counterexamples which satisfy :(H2Z) ^ (AC). Proposition finite groups always satisfy (H2Z). Trying to classify QLP over group algebra. Remark (classification of QLP[4][9]) All QLPs of Quantum Permutation Group[9] S + n and SUq(2)[4] are classified. 18 / 23
  • 19.
    Notation and Preliminaries QuantumLévy Process Appendix Proofs Proof of Prop 1/2 Proof According to [7], we obtain following exact sequence 0 ! H1 ! K0 1 ! (K1 ˙C[G] K1)0 ! H2 ! 0 where K1 := ker›. Obviously, dimK1 = jGj ` 1 dimK1 ˙C[G] K1 = jGj ` 1 dimH1 = 0. Then (H2Z) follows by dimension theorem. 19 / 23
  • 20.
    References I [1] Schürmann,M. White noise on bialgebras. Lecture notes in mathematics, Springer-Verlag, 1993. [2] A, David. Lévy Processes―From Probability to Finance and Quantum Groups, Notices of the American Mathematical Society. Providence, RI: American Mathematical Society. 51 (11): 1336 ‒ 1347, 2004. [3] U. Franz, The Theory of Quantum Lévy Processes, arXiv:math/0407488, 2004. 20 / 23
  • 21.
    References II [4] M.Schürmann and M. Skeide, Infinitesimal generators on the quantum group SUq(2). Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), no. 4, 573 ‒ 598. [5] J-L.Loday, Free loop space and homology arXiv:1110.0405, 2011. [6] K. S. Brown, Group cohomology, Springer Science & Business Media, 1982 21 / 23
  • 22.
    References III [7] U.Franz, M. Gerhold and A. Thom, On the Lévy-Khinchin decomposition of generating functionals, arXiv:1510.03292, 2015. [8] B. Das, U. Franz, A. Kula, A. Skalski, Lévy-Khintchine decompositions for generating functionals on algebras associated to universal compact quantum groups, arXiv:1711.02755, 2018. [9] U. Franz, A. Kula, A. Skalski, Lévy Processes on Quantum Permutation Groups, arXiv:1510.08321, 2016. 22 / 23
  • 23.
    References IV [10] J.Bichon, U. Franz, M. Gerhold, Homological properties of quantum permutation algebras, arXiv:1704.00589, 2017. 23 / 23