SlideShare a Scribd company logo
Properties of Gaussian PDF
Dr. Ahmad Gomaa
Contact: aarg_2010@yahoo.com
Bivariate Gaussian PDF
• Joint (bivariate) PDF of two jointly Gaussian
random variables x and y is
 
1
,
1 1
( , ) exp
22
C
C
x
x y x y
y
x
f x y x y
y


 


 

 
         
  
 
2
2
Covariance matrix of and
Deter
C
C
C
x
y
x x xy
x y
y xy y
E x Expectation of x
E y Expectation of y
x
x
E x y
y
y


  
 
  



    
            

   



minant of C
0
1 0
0 1
C
x y  
 
  
 
σy = σx
Joint PDF 3-D plot
0
0.25 0
0 1
C
x y  
 
  
 
σy > σx
Joint PDF 3-D plot
0
1 0
0 0.25
C
x y  
 
  
 
σx > σy
Joint PDF 3-D plot
Contour
• Contour of a 3-D plot is 2-D plot showing
relationship between x and y when fx,y(x,y) =
constant
• Set f (x,y) = constant  Gives an equation of• Set fx,y(x,y) = constant  Gives an equation of
x and y  Plotting this equation (y versus x)
gives the so-called contour
• As constant varies, we get different contours
• Let’s plot contours of previous figures
Contour
   
   
,
22
, 2 2
22
( , )
1
( , ) exp Constant
2 2
:Get Contou
12ln
r equation of wit
2
h 0
C
yx
x y
yx
x
y
xy
y
x
E f x y
y
T
y
xam
x
l
f
e
x y
p
x 
 



        
   
  
  
 

   
2 2
12ln
This is an equation f
2
o Ellips
yx
x yx y
yx
T

   
  
   
 
 
     
 
22 2
2
2
2 2
12 l
centered @ ( , ) = ,
If ==> It becomes
This is equation of centered @ ( , ) = , .Its radius depend
n
2
s on
e
Circle
x y
x
y
x
x
y
x
x
x y
x
y
y
T
T
  

 
  

 
   
 
0
1 0
0 1
C
x y  
 
  
 
σy = σx
1
2
3
0.7
0.8
0.9
1
,
Plot of versus
when
( , ) 0.3x y
y x
f x y 
Contour is
circle
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
0.1
0.2
0.3
0.4
0.5
0.6
,
Plot of y versus x
when
( , ) 0.9x yf x y 
1
2
3
0.7
0.8
0.9
0
0.25 0
0 1
C
x y  
 
  
 
σy > σx
Contour is
Ellipse with
major axis on
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
0.1
0.2
0.3
0.4
0.5
0.6major axis on
y-axis and
minor axis on
x-axis
because
σy > σx
Contour is
Ellipse with
major axis on
0
1 0
0 0.25
C
x y  
 
  
 
σx > σy
1
2
3
0.7
0.8
0.9
1
major axis on
x-axis and
minor axis on
y-axis
because
σx > σy
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
0.1
0.2
0.3
0.4
0.5
0.6
Effect of Correlation
• Now, we saw PDF and contour when σxy = 0,
i.e., when x and y are uncorrelated
• How would contour look like when x and y are
correlated, i.e., σxy ≠ 0 ?
• Correlation coefficient  ρ = σ / (σ σ )• Correlation coefficient  ρ = σxy / (σx σy )
-1 < ρ < 1
• ρ > 0  x and y are positively correlated, i.e.,
as x increases , y increases
• ρ < 0  x and y are negatively correlated, i.e.,
as x increases, y decreases
0.50,
1 0.5
0.5 1
C
x y   


 
 
 
ρ = 0.5 Contour is
Rotated Ellipse
x y x y
1
2
3
0.7
0.8
0.9
Major axis
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Major axis
has positive
slop as ρ > 0
0.50,
1 0.5
0.5 1
C
x y   
 








ρ = - 0.5 Contour is
Rotated Ellipse
Major axis
x y x y
1
2
3
0.7
0.8
0.9
1
Major axis
has negative
slop as ρ < 0
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Effect of Correlation
• As correlation ρ increases, knowing one
variable gives more information about the
other
• For large ρ  Given any value of x, variance of
y decreases [because more information abouty decreases [because more information about
y is available]
• This means that y will become more
consternated around its mean at any given
value of x
• See next slide for Contour @ ρ = 0.98
0.980,
1 0.98
0.98 1
C
x y  
 
 




ρ = 0.98 Contour is
Rotated Ellipse
1
2
3
0.5
0.6
0.7
Compare with
Contour for
ρ = 0.5 in
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
0.1
0.2
0.3
0.4
0.5
ρ = 0.5 in
slide ρ=0.5
where y has
larger variance
around its
mean
for any given
value of x
y has small variance
around its mean
At any given value
of x
Effect of Correlation
• For ρ>0, increasing x makes average level of y
(mean of y) increases
• For ρ<0, increasing x makes average level of y• For ρ<0, increasing x makes average level of y
(mean of y) decreases
• For ρ=0, increasing/decreasing x does not affect
average level of y (mean of y)
Effect of Correlation
y-axis
0
1
2
0.4
0.5
0.6
E(y|x=1) = Mean of y when x = 1
ρ = 0.98
x-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0.1
0.2
0.3
E(y|x=0) = Mean of y when x = 0
E(y|x=1) > E(y|x=0)  As x increases, E(y|x) increases  ρ>0
Effect of Correlationρ = 0
y-axis
0
1
2
3
0.6
0.7
0.8
0.9
E(y|x=0) =
Mean of y
when x = 0
E(y|x=1) = E(y|x=0)  As x changes, E(y|x) doesn’t change  ρ=0
x-axis
y-axis
-3 -2 -1 0 1 2 3
-3
-2
-1
0
0.1
0.2
0.3
0.4
0.5
E(y|x=1) =
Mean of y
when x = 1
Effect of Correlation
• For ρ>0, E(y|x) increases as x increases
• For ρ<0, E(y|x) decreases as x increases
• For ρ=0, E(y|x) doesn’t change as x changes
 E(y|x) not function of x
Conditional PDF
• So, we have seen that correlation ρ
determines how E(y|x) changes as function of
x  See slide_ ρ _0.98 and slide_ ρ_0
• We also saw how magnitude of ρ affects
variance of y around its mean E(y|x) at anyvariance of y around its mean E(y|x) at any
given x  See Slide_var
• Let’s develop these relationship analytically
and further verifies it through graphs
• We will get fy(y|x) and observe its mean E(y|x)
and variance var(y|x)
Conditional PDF
 
 
 
   
, 0
0
0 , 0
0 Bayes' Rule
,
|
,
x
x x y
y
x y
y
f x
f x f x
f y x x
f x y
y dy
  
 
   
   
   
,
,
0
0
0
0
0
0
,
Just a scalar to make 1
is a scaled version of
|
| ,
, Cross section , @of =x
y
x
y
x y
x y y
y
y
f
f y x x
f y x
x y x x
x f x y
f x d
f x
y
y
 



Conditional PDF
   
   
, 00
0 , 0
is a scaled version of
To plot we just plot
Since | ,
| , ,
y x y
y yx
f x y
f
f y x x
f y x x x y

   
   
0
0
, 0
, 0
To plot we just plot
We plot Scaled version of
against for different
|
|
, ,
, [ ]
y y
y y
x
x
ff y x x x y
f x y
y
f y x x



Conditional PDF  ρ = zero
0.14
0.16
x
= y
= 1,  = 0, x
= 0, y
= 0
xo
= 0
xo
= 0.5
x = 1ρ = 0
   
   
, 0
, 0 , 0
0Vertical axis ==> Scaled version o, [ ]
,
f
==> Cross , @section of =
|
x y
x y
x y
yf y x x
f
f x y
f x y x y x x

-3 -2 -1 0 1 2 3
0
0.02
0.04
0.06
0.08
0.1
0.12
y-axis
fy
(y|x=xo)scalar
xo
= 1
xo
= 1.5
ρ = 0
Conditional PDF  ρ = zero
• From previous plot of Conditional PDF when
ρ=0, we observe:
A. fy(y|x=xo) is Gaussian
B. Location of maximum of fy(y|x=xo), i.e., its
Mean, i.e. E(y|x=x ), is fixed regardless of xMean, i.e. E(y|x=xo), is fixed regardless of xo
 Cross section of fx,y(x=xo,y) is centered
around same point regardless of position of
cross section
C. Variance of fy(y|x=xo), i.e., var(y|x=xo) does
not depend on xo
0.16
0.18
0.2
x
= 1, y
= 1,  = 0.5, x
= 0, y
= 0
xo
= 0
xo
= 0.5
Conditional PDF  ρ = 0.5
   
   
, 0
, 0 , 0
0Vertical axis ==> Scaled version o, [ ]
,
f
==> Cross , @section of =
|
x y
x y
x y
yf y x x
f
f x y
f x y x y x x

-3 -2 -1 0 1 2 3
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
y-axis
fy(y|x=xo)scalar
xo
= 1
xo
= 1.5
ρ = 0.5
y=0= 0 x ρ
y=0.25=0.5 ρ
y=0.5=1 x ρ
y=0.75=1.5 ρ
Conditional PDF  ρ = 0.5
• From previous plot of Conditional PDF when
ρ=0.5, we observe:
A. fy(y|x=xo) has a Gaussian shape ==> Gaussian
B. Location of maximum of fy(y|x=xo), i.e., its
Mean, i.e. E(y|x=xo), increases as xo increases
 Cross section of fx,y(x=xo,y) @x=xo is Cross section of fx,y(x=xo,y) @x=xo is
centered at different positions of the cross
section
C. Location of maximum of fy(y|x=xo), i.e.,
E(y|x=xo) = ρ xo
D. Variance of fy(y|x=xo), i.e., var(y|x=xo) does not
depend on xo
10
12
x
= 1, y
= 1,  = -0.9999, x
= 0, y
= 0
xo
= 0
xo
= 0.5
xo
= 1
x = 1.5
Conditional PDF  ρ ≈ -1
   
   
, 0
, 0 , 0
0Vertical axis ==> Scaled version o, [ ]
,
f
==> Cross , @section of =
|
x y
x y
x y
yf y x x
f
f x y
f x y x y x x

-3 -2 -1 0 1 2 3
0
2
4
6
8
y
fy
(y|x=xo)scalar
xo
= 1.5
ρ ≈ -1y=0= 0 x ρ
y=-0.5=0.5 ρ
y=-1=1 x ρ
y=-1.5=1.5 ρ
Conditional PDF  ρ ≈ -1
• From previous plot of Conditional PDF when ρ ≈ -1,
we observe:
A. fy(y|x=xo) has a Gaussian shape ==> Gaussian
B. Location of maximum of fy(y|x=xo), i.e., its Mean,
i.e. E(y|x=xo), increases as xo increases  Cross
section of fx,y(x=xo,y) @x=xo is centered atsection of fx,y(x=xo,y) @x=xo is centered at
different positions of the cross section
C. Location of maximum of fy(y|x=xo), i.e., E(y|x=xo)
= ρ xo
D. Variance of fy(y|x=xo), i.e., var(y|x=xo) does not
depend on xo
E. var(y|x=xo) is smaller than case of ρ = 0.5
Conclusion on Conditional PDF
1) If , are jointly Gaussian
2) with coefficient
( | ) when 0,
( | ) is also
( | ) is in
Gaussian
LINEAR al
x y
E y x x
f y x
E y x x  
   

    ( | ) when 0,
3)
4)var( | )
var( | ) is function of
Asdepends on ,
NOT
x y x yE y x x
y x
y x x
   



   
 

var( | )y x 
Analytical expression of fy|x(y|x)
 
 
 
   
2
|,
22
||
| 2
, 1
( | ) exp
22
|
y xx y
x y xy x
xy x
y x y x y y
x x
yf x y
f y x
f x
x
E y x x


 
    
 
 
   
 
 
 
       
 
   
2
2 2 2 2
|
| 2
function ofvar 1|
x x
xy
y x y y
x
x
y x y x
y
x
xy x
  

 

   

 
   
    
 
 
 
     
 As var |y x   
Analytical expression of fy|x(y|x)
• We see that analytical expressions are inline with
our graphical observations:
– E(y|x) is linear in x
– var(y|x) does not depend on x
– var(y|x) decreases as |ρ| increases
• If ρ = 0, we have
– E(y|x) = μy  Not function of x
– var(y|x) = var(y)
MATAB Code (1/2)
% User inputs
mu_x = 0;
mu_y = 0;
sigma_x = 1;
sigma_y = 1;
rho = -0.9999;
%% f(x,y) computation%% f(x,y) computation
C=[sigma_x^2 rho*sigma_x*sigma_y;rho*sigma_x*sigma_y sigma_y^2];
x=[-3*max(sigma_x,sigma_y):0.1:3*max(sigma_x,sigma_y)];
y=[-3*max(sigma_x,sigma_y):0.1:3*max(sigma_x,sigma_y)];
[X,Y]=meshgrid(x,y);
xn = (X-mu_x)/sigma_x;
yn = (Y-mu_y)/sigma_y;
f_xy = exp(-(xn.^2 -2*rho*xn.*yn +yn.^2)/(2-
2*rho^2))/(2*pi*sqrt(det(C))); % f(x,y)
MATAB Code (2/2)
%% Plot 3-D bivariate (joint) PDF of x,y
figure; surfc(X,Y,f_xy);
colormap hsv
%% Plot Contour of bivariate (joint) PDF of x,y
figure; contour(X,Y,f_xy); grid on;
%% Plot cross-section of f(x,y) at x=xo, i.e., plot f(xo,y) vs y
xo = 1.5;xo = 1.5;
figure; plot(Y(abs(X-xo)<1e-2), f_xy(abs(X-xo)<1e-2))
xlabel('ityrm');
ylabel(['f_y( ity | x=x_orm ) times scalar'])
title(['sigma_x = ' num2str(sigma_x), ', sigma_y = ' num2str(sigma_y), ', rho
= ' num2str(rho) ', mu_x = ' num2str(mu_x) ', mu_y = ' num2str(mu_y)])
legend(['itx_orm = ' num2str(xo)])
grid on
%% Plot cross-section of f(x,y) at y=yo, i.e., plot f(x,yo) vs x
yo = 3;
figure; plot(X(abs(Y-yo)<1e-2),f_xy(abs(Y-yo)<1e-2))

More Related Content

What's hot

Numerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTNumerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPT
Panchal Anand
 
Unit1 vrs
Unit1 vrsUnit1 vrs
C2 st lecture 5 handout
C2 st lecture 5 handoutC2 st lecture 5 handout
C2 st lecture 5 handoutfatima d
 
C2 st lecture 6 handout
C2 st lecture 6 handoutC2 st lecture 6 handout
C2 st lecture 6 handoutfatima d
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
Ep 5512 lecture-02
Ep 5512 lecture-02Ep 5512 lecture-02
Ep 5512 lecture-02
Kindshih Berihun
 
Methods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematicsMethods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematics
Kaushal Patel
 
Optimal Finite Difference Grids
Optimal Finite Difference GridsOptimal Finite Difference Grids
Optimal Finite Difference Grids
Alex (Oleksiy) Varfolomiyev
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Rai University
 
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
FernandoDanielMamani1
 
Ch02
Ch02Ch02
Ch02
waiwai28
 
Topic5
Topic5Topic5
Topic5
HAM Karim
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Rai University
 

What's hot (19)

Unit vi
Unit viUnit vi
Unit vi
 
Numerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTNumerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPT
 
Unit1 vrs
Unit1 vrsUnit1 vrs
Unit1 vrs
 
C2 st lecture 5 handout
C2 st lecture 5 handoutC2 st lecture 5 handout
C2 st lecture 5 handout
 
C2 st lecture 6 handout
C2 st lecture 6 handoutC2 st lecture 6 handout
C2 st lecture 6 handout
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Ep 5512 lecture-02
Ep 5512 lecture-02Ep 5512 lecture-02
Ep 5512 lecture-02
 
Methods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematicsMethods of variation of parameters- advance engineering mathe mathematics
Methods of variation of parameters- advance engineering mathe mathematics
 
Optimal Finite Difference Grids
Optimal Finite Difference GridsOptimal Finite Difference Grids
Optimal Finite Difference Grids
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
 
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Ch02
Ch02Ch02
Ch02
 
Ch05 2
Ch05 2Ch05 2
Ch05 2
 
Topic5
Topic5Topic5
Topic5
 
Ch07 3
Ch07 3Ch07 3
Ch07 3
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Es272 ch7
Es272 ch7Es272 ch7
Es272 ch7
 

Similar to Properties of bivariate and conditional Gaussian PDFs

Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
MamadArip
 
Linear function and slopes of a line
Linear function and slopes of a lineLinear function and slopes of a line
Linear function and slopes of a lineJerlyn Fernandez
 
Quadratic equation.pptx
Quadratic equation.pptxQuadratic equation.pptx
Quadratic equation.pptx
Thuthuka Mahlangu
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
RhiannonBanksss
 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions Lecture
Froyd Wess
 
Graph a function
Graph a functionGraph a function
Graph a function
SanaullahMemon10
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Gabriel Peyré
 
1538 graphs &amp; linear equations
1538 graphs &amp; linear equations1538 graphs &amp; linear equations
1538 graphs &amp; linear equations
Dr Fereidoun Dejahang
 
Average value by integral method
Average value by integral methodAverage value by integral method
Average value by integral method
Arun Umrao
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
Rohan Bhatkar
 
Series solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointSeries solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular point
vaibhav tailor
 
Whats u need to graphing polynomials
Whats u  need to  graphing polynomialsWhats u  need to  graphing polynomials
Whats u need to graphing polynomialsTarun Gehlot
 
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Neeraj Bhandari
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
Mervin Dayrit
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
Edrian Gustin Camacho
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
OchiriaEliasonyait
 
Graph of a linear equation horizontal lines
Graph of a linear equation   horizontal linesGraph of a linear equation   horizontal lines
Graph of a linear equation horizontal lines
julienorman80065
 
2006_2_2 (2).ppt
2006_2_2 (2).ppt2006_2_2 (2).ppt
2006_2_2 (2).ppt
JennilynBalusdan3
 

Similar to Properties of bivariate and conditional Gaussian PDFs (20)

Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
Linear equations 2-2 a graphing and x-y intercepts
Linear equations   2-2 a graphing and x-y interceptsLinear equations   2-2 a graphing and x-y intercepts
Linear equations 2-2 a graphing and x-y intercepts
 
Linear function and slopes of a line
Linear function and slopes of a lineLinear function and slopes of a line
Linear function and slopes of a line
 
Quadratic equation.pptx
Quadratic equation.pptxQuadratic equation.pptx
Quadratic equation.pptx
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions Lecture
 
Graph a function
Graph a functionGraph a function
Graph a function
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
1538 graphs &amp; linear equations
1538 graphs &amp; linear equations1538 graphs &amp; linear equations
1538 graphs &amp; linear equations
 
Average value by integral method
Average value by integral methodAverage value by integral method
Average value by integral method
 
Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
Series solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular pointSeries solutions at ordinary point and regular singular point
Series solutions at ordinary point and regular singular point
 
Whats u need to graphing polynomials
Whats u  need to  graphing polynomialsWhats u  need to  graphing polynomials
Whats u need to graphing polynomials
 
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
Graph of a linear equation horizontal lines
Graph of a linear equation   horizontal linesGraph of a linear equation   horizontal lines
Graph of a linear equation horizontal lines
 
2006_2_2 (2).ppt
2006_2_2 (2).ppt2006_2_2 (2).ppt
2006_2_2 (2).ppt
 

More from Ahmad Gomaa

Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)
Ahmad Gomaa
 
Estimation Theory Class (Handout 12)
Estimation Theory Class (Handout 12)Estimation Theory Class (Handout 12)
Estimation Theory Class (Handout 12)
Ahmad Gomaa
 
Estimation Theory Class (Handout 11)
Estimation Theory Class (Handout 11)Estimation Theory Class (Handout 11)
Estimation Theory Class (Handout 11)
Ahmad Gomaa
 
Estimation Theory Class (Handout 10)
Estimation Theory Class (Handout 10)Estimation Theory Class (Handout 10)
Estimation Theory Class (Handout 10)
Ahmad Gomaa
 
Estimation Theory Class (Handout 9)
Estimation Theory Class (Handout 9)Estimation Theory Class (Handout 9)
Estimation Theory Class (Handout 9)
Ahmad Gomaa
 
Estimation Theory Class (Handout 8)
Estimation Theory Class (Handout 8)Estimation Theory Class (Handout 8)
Estimation Theory Class (Handout 8)
Ahmad Gomaa
 
Estimation Theory Class (handout 7)
Estimation Theory Class (handout 7)Estimation Theory Class (handout 7)
Estimation Theory Class (handout 7)
Ahmad Gomaa
 
Estimation Theory Class (handout 6)
Estimation Theory Class (handout 6)Estimation Theory Class (handout 6)
Estimation Theory Class (handout 6)
Ahmad Gomaa
 
Electric Circuits Class (Solved problem set E)
Electric Circuits Class (Solved problem set E)Electric Circuits Class (Solved problem set E)
Electric Circuits Class (Solved problem set E)
Ahmad Gomaa
 
Electric Circuits Class (Solved problem set D)
Electric Circuits Class (Solved problem set D)Electric Circuits Class (Solved problem set D)
Electric Circuits Class (Solved problem set D)
Ahmad Gomaa
 
Electric Circuits Class (Solved problem set F)
Electric Circuits Class (Solved problem set F)Electric Circuits Class (Solved problem set F)
Electric Circuits Class (Solved problem set F)
Ahmad Gomaa
 
Eectric Circuits Class (Revision problems set 2)
Eectric Circuits Class (Revision problems set 2)Eectric Circuits Class (Revision problems set 2)
Eectric Circuits Class (Revision problems set 2)
Ahmad Gomaa
 
Electric Circuits Class (Handout 12)
Electric Circuits Class (Handout 12)Electric Circuits Class (Handout 12)
Electric Circuits Class (Handout 12)
Ahmad Gomaa
 
Electric Circuits Class (Handout 10)
Electric Circuits Class (Handout 10)Electric Circuits Class (Handout 10)
Electric Circuits Class (Handout 10)
Ahmad Gomaa
 
Electric Circuits Class (Handout 11)
Electric Circuits Class (Handout 11)Electric Circuits Class (Handout 11)
Electric Circuits Class (Handout 11)
Ahmad Gomaa
 
Estimation Theory Class (handout 5)
Estimation Theory Class (handout 5)Estimation Theory Class (handout 5)
Estimation Theory Class (handout 5)
Ahmad Gomaa
 
Estimation Theory Class (handout 4)
Estimation Theory Class (handout 4)Estimation Theory Class (handout 4)
Estimation Theory Class (handout 4)
Ahmad Gomaa
 
Electric Circuits Class (Solution of Problem set A)
Electric Circuits Class (Solution of Problem set A)Electric Circuits Class (Solution of Problem set A)
Electric Circuits Class (Solution of Problem set A)
Ahmad Gomaa
 
Electric Circuits Class (Problem set A)
Electric Circuits Class (Problem set A)Electric Circuits Class (Problem set A)
Electric Circuits Class (Problem set A)
Ahmad Gomaa
 
Electric Circuits Class (project specifications)
Electric Circuits Class (project specifications)Electric Circuits Class (project specifications)
Electric Circuits Class (project specifications)
Ahmad Gomaa
 

More from Ahmad Gomaa (20)

Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)
 
Estimation Theory Class (Handout 12)
Estimation Theory Class (Handout 12)Estimation Theory Class (Handout 12)
Estimation Theory Class (Handout 12)
 
Estimation Theory Class (Handout 11)
Estimation Theory Class (Handout 11)Estimation Theory Class (Handout 11)
Estimation Theory Class (Handout 11)
 
Estimation Theory Class (Handout 10)
Estimation Theory Class (Handout 10)Estimation Theory Class (Handout 10)
Estimation Theory Class (Handout 10)
 
Estimation Theory Class (Handout 9)
Estimation Theory Class (Handout 9)Estimation Theory Class (Handout 9)
Estimation Theory Class (Handout 9)
 
Estimation Theory Class (Handout 8)
Estimation Theory Class (Handout 8)Estimation Theory Class (Handout 8)
Estimation Theory Class (Handout 8)
 
Estimation Theory Class (handout 7)
Estimation Theory Class (handout 7)Estimation Theory Class (handout 7)
Estimation Theory Class (handout 7)
 
Estimation Theory Class (handout 6)
Estimation Theory Class (handout 6)Estimation Theory Class (handout 6)
Estimation Theory Class (handout 6)
 
Electric Circuits Class (Solved problem set E)
Electric Circuits Class (Solved problem set E)Electric Circuits Class (Solved problem set E)
Electric Circuits Class (Solved problem set E)
 
Electric Circuits Class (Solved problem set D)
Electric Circuits Class (Solved problem set D)Electric Circuits Class (Solved problem set D)
Electric Circuits Class (Solved problem set D)
 
Electric Circuits Class (Solved problem set F)
Electric Circuits Class (Solved problem set F)Electric Circuits Class (Solved problem set F)
Electric Circuits Class (Solved problem set F)
 
Eectric Circuits Class (Revision problems set 2)
Eectric Circuits Class (Revision problems set 2)Eectric Circuits Class (Revision problems set 2)
Eectric Circuits Class (Revision problems set 2)
 
Electric Circuits Class (Handout 12)
Electric Circuits Class (Handout 12)Electric Circuits Class (Handout 12)
Electric Circuits Class (Handout 12)
 
Electric Circuits Class (Handout 10)
Electric Circuits Class (Handout 10)Electric Circuits Class (Handout 10)
Electric Circuits Class (Handout 10)
 
Electric Circuits Class (Handout 11)
Electric Circuits Class (Handout 11)Electric Circuits Class (Handout 11)
Electric Circuits Class (Handout 11)
 
Estimation Theory Class (handout 5)
Estimation Theory Class (handout 5)Estimation Theory Class (handout 5)
Estimation Theory Class (handout 5)
 
Estimation Theory Class (handout 4)
Estimation Theory Class (handout 4)Estimation Theory Class (handout 4)
Estimation Theory Class (handout 4)
 
Electric Circuits Class (Solution of Problem set A)
Electric Circuits Class (Solution of Problem set A)Electric Circuits Class (Solution of Problem set A)
Electric Circuits Class (Solution of Problem set A)
 
Electric Circuits Class (Problem set A)
Electric Circuits Class (Problem set A)Electric Circuits Class (Problem set A)
Electric Circuits Class (Problem set A)
 
Electric Circuits Class (project specifications)
Electric Circuits Class (project specifications)Electric Circuits Class (project specifications)
Electric Circuits Class (project specifications)
 

Recently uploaded

WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 

Recently uploaded (20)

WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 

Properties of bivariate and conditional Gaussian PDFs

  • 1. Properties of Gaussian PDF Dr. Ahmad Gomaa Contact: aarg_2010@yahoo.com
  • 2. Bivariate Gaussian PDF • Joint (bivariate) PDF of two jointly Gaussian random variables x and y is   1 , 1 1 ( , ) exp 22 C C x x y x y y x f x y x y y                           2 2 Covariance matrix of and Deter C C C x y x x xy x y y xy y E x Expectation of x E y Expectation of y x x E x y y y                                        minant of C
  • 3. 0 1 0 0 1 C x y          σy = σx Joint PDF 3-D plot
  • 4. 0 0.25 0 0 1 C x y          σy > σx Joint PDF 3-D plot
  • 5. 0 1 0 0 0.25 C x y          σx > σy Joint PDF 3-D plot
  • 6. Contour • Contour of a 3-D plot is 2-D plot showing relationship between x and y when fx,y(x,y) = constant • Set f (x,y) = constant  Gives an equation of• Set fx,y(x,y) = constant  Gives an equation of x and y  Plotting this equation (y versus x) gives the so-called contour • As constant varies, we get different contours • Let’s plot contours of previous figures
  • 7. Contour         , 22 , 2 2 22 ( , ) 1 ( , ) exp Constant 2 2 :Get Contou 12ln r equation of wit 2 h 0 C yx x y yx x y xy y x E f x y y T y xam x l f e x y p x                                 2 2 12ln This is an equation f 2 o Ellips yx x yx y yx T                         22 2 2 2 2 2 12 l centered @ ( , ) = , If ==> It becomes This is equation of centered @ ( , ) = , .Its radius depend n 2 s on e Circle x y x y x x y x x x y x y y T T                  
  • 8. 0 1 0 0 1 C x y          σy = σx 1 2 3 0.7 0.8 0.9 1 , Plot of versus when ( , ) 0.3x y y x f x y  Contour is circle x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 0.1 0.2 0.3 0.4 0.5 0.6 , Plot of y versus x when ( , ) 0.9x yf x y 
  • 9. 1 2 3 0.7 0.8 0.9 0 0.25 0 0 1 C x y          σy > σx Contour is Ellipse with major axis on x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 0.1 0.2 0.3 0.4 0.5 0.6major axis on y-axis and minor axis on x-axis because σy > σx
  • 10. Contour is Ellipse with major axis on 0 1 0 0 0.25 C x y          σx > σy 1 2 3 0.7 0.8 0.9 1 major axis on x-axis and minor axis on y-axis because σx > σy x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 0.1 0.2 0.3 0.4 0.5 0.6
  • 11. Effect of Correlation • Now, we saw PDF and contour when σxy = 0, i.e., when x and y are uncorrelated • How would contour look like when x and y are correlated, i.e., σxy ≠ 0 ? • Correlation coefficient  ρ = σ / (σ σ )• Correlation coefficient  ρ = σxy / (σx σy ) -1 < ρ < 1 • ρ > 0  x and y are positively correlated, i.e., as x increases , y increases • ρ < 0  x and y are negatively correlated, i.e., as x increases, y decreases
  • 12. 0.50, 1 0.5 0.5 1 C x y            ρ = 0.5 Contour is Rotated Ellipse x y x y 1 2 3 0.7 0.8 0.9 Major axis x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Major axis has positive slop as ρ > 0
  • 13. 0.50, 1 0.5 0.5 1 C x y              ρ = - 0.5 Contour is Rotated Ellipse Major axis x y x y 1 2 3 0.7 0.8 0.9 1 Major axis has negative slop as ρ < 0 x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7
  • 14. Effect of Correlation • As correlation ρ increases, knowing one variable gives more information about the other • For large ρ  Given any value of x, variance of y decreases [because more information abouty decreases [because more information about y is available] • This means that y will become more consternated around its mean at any given value of x • See next slide for Contour @ ρ = 0.98
  • 15. 0.980, 1 0.98 0.98 1 C x y           ρ = 0.98 Contour is Rotated Ellipse 1 2 3 0.5 0.6 0.7 Compare with Contour for ρ = 0.5 in x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 0.1 0.2 0.3 0.4 0.5 ρ = 0.5 in slide ρ=0.5 where y has larger variance around its mean for any given value of x y has small variance around its mean At any given value of x
  • 16. Effect of Correlation • For ρ>0, increasing x makes average level of y (mean of y) increases • For ρ<0, increasing x makes average level of y• For ρ<0, increasing x makes average level of y (mean of y) decreases • For ρ=0, increasing/decreasing x does not affect average level of y (mean of y)
  • 17. Effect of Correlation y-axis 0 1 2 0.4 0.5 0.6 E(y|x=1) = Mean of y when x = 1 ρ = 0.98 x-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0.1 0.2 0.3 E(y|x=0) = Mean of y when x = 0 E(y|x=1) > E(y|x=0)  As x increases, E(y|x) increases  ρ>0
  • 18. Effect of Correlationρ = 0 y-axis 0 1 2 3 0.6 0.7 0.8 0.9 E(y|x=0) = Mean of y when x = 0 E(y|x=1) = E(y|x=0)  As x changes, E(y|x) doesn’t change  ρ=0 x-axis y-axis -3 -2 -1 0 1 2 3 -3 -2 -1 0 0.1 0.2 0.3 0.4 0.5 E(y|x=1) = Mean of y when x = 1
  • 19. Effect of Correlation • For ρ>0, E(y|x) increases as x increases • For ρ<0, E(y|x) decreases as x increases • For ρ=0, E(y|x) doesn’t change as x changes  E(y|x) not function of x
  • 20. Conditional PDF • So, we have seen that correlation ρ determines how E(y|x) changes as function of x  See slide_ ρ _0.98 and slide_ ρ_0 • We also saw how magnitude of ρ affects variance of y around its mean E(y|x) at anyvariance of y around its mean E(y|x) at any given x  See Slide_var • Let’s develop these relationship analytically and further verifies it through graphs • We will get fy(y|x) and observe its mean E(y|x) and variance var(y|x)
  • 21. Conditional PDF           , 0 0 0 , 0 0 Bayes' Rule , | , x x x y y x y y f x f x f x f y x x f x y y dy                  , , 0 0 0 0 0 0 , Just a scalar to make 1 is a scaled version of | | , , Cross section , @of =x y x y x y x y y y y f f y x x f y x x y x x x f x y f x d f x y y     
  • 22. Conditional PDF         , 00 0 , 0 is a scaled version of To plot we just plot Since | , | , , y x y y yx f x y f f y x x f y x x x y          0 0 , 0 , 0 To plot we just plot We plot Scaled version of against for different | | , , , [ ] y y y y x x ff y x x x y f x y y f y x x   
  • 23. Conditional PDF  ρ = zero 0.14 0.16 x = y = 1,  = 0, x = 0, y = 0 xo = 0 xo = 0.5 x = 1ρ = 0         , 0 , 0 , 0 0Vertical axis ==> Scaled version o, [ ] , f ==> Cross , @section of = | x y x y x y yf y x x f f x y f x y x y x x  -3 -2 -1 0 1 2 3 0 0.02 0.04 0.06 0.08 0.1 0.12 y-axis fy (y|x=xo)scalar xo = 1 xo = 1.5 ρ = 0
  • 24. Conditional PDF  ρ = zero • From previous plot of Conditional PDF when ρ=0, we observe: A. fy(y|x=xo) is Gaussian B. Location of maximum of fy(y|x=xo), i.e., its Mean, i.e. E(y|x=x ), is fixed regardless of xMean, i.e. E(y|x=xo), is fixed regardless of xo  Cross section of fx,y(x=xo,y) is centered around same point regardless of position of cross section C. Variance of fy(y|x=xo), i.e., var(y|x=xo) does not depend on xo
  • 25. 0.16 0.18 0.2 x = 1, y = 1,  = 0.5, x = 0, y = 0 xo = 0 xo = 0.5 Conditional PDF  ρ = 0.5         , 0 , 0 , 0 0Vertical axis ==> Scaled version o, [ ] , f ==> Cross , @section of = | x y x y x y yf y x x f f x y f x y x y x x  -3 -2 -1 0 1 2 3 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 y-axis fy(y|x=xo)scalar xo = 1 xo = 1.5 ρ = 0.5 y=0= 0 x ρ y=0.25=0.5 ρ y=0.5=1 x ρ y=0.75=1.5 ρ
  • 26. Conditional PDF  ρ = 0.5 • From previous plot of Conditional PDF when ρ=0.5, we observe: A. fy(y|x=xo) has a Gaussian shape ==> Gaussian B. Location of maximum of fy(y|x=xo), i.e., its Mean, i.e. E(y|x=xo), increases as xo increases  Cross section of fx,y(x=xo,y) @x=xo is Cross section of fx,y(x=xo,y) @x=xo is centered at different positions of the cross section C. Location of maximum of fy(y|x=xo), i.e., E(y|x=xo) = ρ xo D. Variance of fy(y|x=xo), i.e., var(y|x=xo) does not depend on xo
  • 27. 10 12 x = 1, y = 1,  = -0.9999, x = 0, y = 0 xo = 0 xo = 0.5 xo = 1 x = 1.5 Conditional PDF  ρ ≈ -1         , 0 , 0 , 0 0Vertical axis ==> Scaled version o, [ ] , f ==> Cross , @section of = | x y x y x y yf y x x f f x y f x y x y x x  -3 -2 -1 0 1 2 3 0 2 4 6 8 y fy (y|x=xo)scalar xo = 1.5 ρ ≈ -1y=0= 0 x ρ y=-0.5=0.5 ρ y=-1=1 x ρ y=-1.5=1.5 ρ
  • 28. Conditional PDF  ρ ≈ -1 • From previous plot of Conditional PDF when ρ ≈ -1, we observe: A. fy(y|x=xo) has a Gaussian shape ==> Gaussian B. Location of maximum of fy(y|x=xo), i.e., its Mean, i.e. E(y|x=xo), increases as xo increases  Cross section of fx,y(x=xo,y) @x=xo is centered atsection of fx,y(x=xo,y) @x=xo is centered at different positions of the cross section C. Location of maximum of fy(y|x=xo), i.e., E(y|x=xo) = ρ xo D. Variance of fy(y|x=xo), i.e., var(y|x=xo) does not depend on xo E. var(y|x=xo) is smaller than case of ρ = 0.5
  • 29. Conclusion on Conditional PDF 1) If , are jointly Gaussian 2) with coefficient ( | ) when 0, ( | ) is also ( | ) is in Gaussian LINEAR al x y E y x x f y x E y x x            ( | ) when 0, 3) 4)var( | ) var( | ) is function of Asdepends on , NOT x y x yE y x x y x y x x               var( | )y x 
  • 30. Analytical expression of fy|x(y|x)           2 |, 22 || | 2 , 1 ( | ) exp 22 | y xx y x y xy x xy x y x y x y y x x yf x y f y x f x x E y x x                                      2 2 2 2 2 | | 2 function ofvar 1| x x xy y x y y x x y x y x y x xy x                                     As var |y x   
  • 31. Analytical expression of fy|x(y|x) • We see that analytical expressions are inline with our graphical observations: – E(y|x) is linear in x – var(y|x) does not depend on x – var(y|x) decreases as |ρ| increases • If ρ = 0, we have – E(y|x) = μy  Not function of x – var(y|x) = var(y)
  • 32. MATAB Code (1/2) % User inputs mu_x = 0; mu_y = 0; sigma_x = 1; sigma_y = 1; rho = -0.9999; %% f(x,y) computation%% f(x,y) computation C=[sigma_x^2 rho*sigma_x*sigma_y;rho*sigma_x*sigma_y sigma_y^2]; x=[-3*max(sigma_x,sigma_y):0.1:3*max(sigma_x,sigma_y)]; y=[-3*max(sigma_x,sigma_y):0.1:3*max(sigma_x,sigma_y)]; [X,Y]=meshgrid(x,y); xn = (X-mu_x)/sigma_x; yn = (Y-mu_y)/sigma_y; f_xy = exp(-(xn.^2 -2*rho*xn.*yn +yn.^2)/(2- 2*rho^2))/(2*pi*sqrt(det(C))); % f(x,y)
  • 33. MATAB Code (2/2) %% Plot 3-D bivariate (joint) PDF of x,y figure; surfc(X,Y,f_xy); colormap hsv %% Plot Contour of bivariate (joint) PDF of x,y figure; contour(X,Y,f_xy); grid on; %% Plot cross-section of f(x,y) at x=xo, i.e., plot f(xo,y) vs y xo = 1.5;xo = 1.5; figure; plot(Y(abs(X-xo)<1e-2), f_xy(abs(X-xo)<1e-2)) xlabel('ityrm'); ylabel(['f_y( ity | x=x_orm ) times scalar']) title(['sigma_x = ' num2str(sigma_x), ', sigma_y = ' num2str(sigma_y), ', rho = ' num2str(rho) ', mu_x = ' num2str(mu_x) ', mu_y = ' num2str(mu_y)]) legend(['itx_orm = ' num2str(xo)]) grid on %% Plot cross-section of f(x,y) at y=yo, i.e., plot f(x,yo) vs x yo = 3; figure; plot(X(abs(Y-yo)<1e-2),f_xy(abs(Y-yo)<1e-2))