Stability Analysis of Liquid Film in
an Electric Field
Yixuan Jia
Nov. 30th 2016
Problem Definition
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
Governing equations:
a) Electric potential
r2
' = 0
r2
¯' = 0
'(x) = ¯'(x) for x 2 S
'(x) ! 'e(x) = E0 · x as | x |! 1
@tq + n ·
⇥
[ E]
⇤
+ rs · (qu) = 0
BCs:
q(x) = n ·
⇥
[✏E]
⇤
= n · (¯✏¯E ✏E), E = r'
⇥
[ E]
⇤
= ¯ ¯E E, rs ⌘ (I nn) · r
where
r · u = 0 , µr2
u + rpH
= 0
r · ¯u = 0 , ¯µr2
¯u + r¯pH
= 0
b) Stokes flow
u = ¯u for x 2 S
u ! 0 as | x |! 1
⇥
[fE
]
⇤
+
⇥
[fH
]
⇤
= (rs · n)n for x 2 S
BCs:
⇥
[fE
]
⇤
= n ·
⇥
[✏(EE
1
2
E2
I)]
⇤
⇥
[fH
]
⇤
= n ·
⇥
[ pH
I + µ(ru + ruT
)]
⇤
where
Non-dimensionalization
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
a) Characteristic scale:
• length: h
• time: ⌧MW = ¯✏+2✏
¯+2
• pressure: ✏E2
0
• velocity: h
⌧MW
• electric potential: E0h
b) Dimensionless numbers:
• Material properties
Q =
¯✏
✏
, R =
¯
, =
¯µ
µ
• Electric capillary number CaE, Mason number Ma:
CaE =
h✏E2
0
, Ma =
2µ
✏⌧MW E2
0
• Electric Reynolds number ReE
ReE =
1
Ma
2(1 + 2R)
R(Q + 2)
Non-dimensionalization
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
• Surface charge density BCs
@t
⇥
n · (Q¯E E)
⇤
+
2
MaReE
n · (
1
R
¯E E)
+ rs ·
⇥
n · (Q¯E E)u
⇤
= 0
• Dynamic BCs
n ·
⇥
Q(¯E¯E
1
2
¯E2
I) (EE
1
2
E2
I)
⇤
+ n ·
⇥
¯pH
I
+
Ma
2
(r¯u + r¯uT
) + pH
I
Ma
2
(ru + ruT
)
⇤
=
1
CaE
(rs · n)n
c) Dimensionless governing equations:
• Electric potential
r2
' = 0
r2
¯' = 0
• Stokes flow
r · u = 0
r2
u +
2
Ma
rpH
= 0
r · ¯u = 0
r2
¯u +
2
Ma
r¯pH
= 0
Base Flow
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
1. Velocity
¯U = U = 0
2. Hydrodynamic pressure
¯PH
+ PH
=
1
2
(QR2
1)
3. Electric potential
=
8
><
>:
z + (1 R) z > 1
Rz 1 < z < 1
z (1 R) z < 1
Electric field
E = (0 0 1), ¯E = (0 0 R)
Surface charge density
Q1 = 1 RQ, Q2 = 1 + RQ
n1 = (0 0 1)
n2 = (0 0 1)
Perturbation Linearization
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
• Hydrodynamic pressure
pH
= PH
+ p0H
, ¯pH
= ¯PH
+ ¯p0H
• Electric potential
' = + '0
(x), ¯' = ¯ + ¯'0
(x)
• Electric field
E = (
@'
@x
@'
@y
1
@'
@z
), ¯E = (
@ ¯'
@x
@ ¯'
@y
R
@ ¯'
@z
)
Define the perturbation ⇣1 atz = 1 and ⇣2 at z = 1.
• Surface normal vector
n1 = (
@⇣1
@x
@⇣1
@y
1)
n2 = (
@⇣2
@x
@⇣2
@y
1)
• Velocity
u = (v0
x v0
y v0
z)
¯u = (¯v0
x ¯v0
y ¯v0
z)
n1
n2
⇣2
⇣1
Perturbation Linearization
• Surface charge density BCs
@t( Q
@ ¯'0
@z
+
@'0
@z
) +
2
MaReE
(
1
R
@ ¯'0
@z
+
@'0
@z
)+
(QR 1)(
@v0
x
@x
+
@v0
y
@y
) = 0, at z = ±1
• Dynamic BCs
z = 1
(
QR@ ¯'0
@x + @'0
@x + Ma
2 (
@¯v0
z
@x +
@¯v0
x
@z ) Ma
2 (
@v0
z
@x +
@v0
x
@z ) + (QR2
1)@⇣1
@x = 0
QR@ ¯'0
@z + @'0
@z ¯p0H
+ p0H
+ Ma
@¯v0
z
@z Ma
@v0
z
@z + 1
CaE
(@2
⇣1
@x2 + @2
⇣1
@y2 ) = 0
z = 1
(
QR@ ¯'0
@x + @'0
@x + Ma
2 (
@¯v0
z
@x +
@¯v0
x
@z ) Ma
2 (
@v0
z
@x +
@v0
x
@z ) + (QR2
1)@⇣2
@x = 0
QR@ ¯'0
@z + @'0
@z ¯p0H
+ p0H
+ Ma
@¯v0
z
@z Ma
@v0
z
@z
1
CaE
(@2
⇣2
@x2 + @2
⇣2
@y2 ) = 0
• Kinematic BCs
@⇣1
@t
v0
z = 0, at z = 1,
@⇣2
@t
v0
z = 0, at z = 1
• No jump condition at the interfaces – electric potential
¯'0
'0
+ (1 R)⇣1 = 0, at z = 1, ¯'0
'0
(1 R)⇣2 = 0, at z = 1
• No jump condition at the interfaces – velocity
¯u0
= u0
, at z = ±1
Normal Mode Analysis
'0
= ˆ'(z)eikx+st
, ¯'0
= ˆ¯'(z)eikx+st
u0
=
⇥
ˆvx(z) ˆvy(z) ˆvz(z)
⇤
eikx+st
, ¯u0
=
⇥
ˆ¯vx(z) ˆ¯vy(z) ˆ¯vz(z)
⇤
eikx+st
p0H
= ˆpH
(z)eikx+st
, ¯p0H
= ˆ¯pH
(z)eikx+st
⇣1 = ˆ⇣1eikx+st
, ⇣2 = ˆ⇣2eikx+st
Electric potential profile
ˆ' =
8
><
>:
A1e kz
z > 1
A2e kz
+ B2ekz
1 < z < 1
B3ekz
z < 1
Velocity profile
ˆvz =
8
><
>:
(C1 + D1z)e kz
z > 1
(C2 + D2z)e kz
+ (E2 + F2z)ekz
1 < z < 1
(E3 + F3z)ekz
z < 1
Hydraulic pressure profile
ˆpH
=
8
><
>:
MaD1e kz
z > 1
MaD2e kz
+ MaF2ekz
1 < z < 1
MaF3ekz
z < 1
k2
ˆ' +
d2
ˆ'
dz2
= 0
d4
ˆvz
dz4
2k2 d2
ˆvz
dz2
+ k4
ˆvz = 0
Results — Growth Rate
k
0 1 2 3 4 5 6
sr
0
500
1000
1500
2000
2500
3000
3500
4000
Biggest growth rate sr
(k)
system 1a
system 1b
system 1c
system 2
Results — Streamlines
x
-25 -20 -15 -10 -5 0 5 10 15 20 25
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 1a and k = 0.3
Results — Streamlines
x
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 1a and k = 3
Results — Streamlines
x
-25 -20 -15 -10 -5 0 5 10 15 20 25
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 2 and k = 0.3
Results — Streamlines
x
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 2 and k = 3
Results — Hydraulic Pressure Contour
Thanks!

ProjectPresentation_11:30:2016

  • 1.
    Stability Analysis ofLiquid Film in an Electric Field Yixuan Jia Nov. 30th 2016
  • 2.
    Problem Definition h h ✏, ,µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz Governing equations: a) Electric potential r2 ' = 0 r2 ¯' = 0 '(x) = ¯'(x) for x 2 S '(x) ! 'e(x) = E0 · x as | x |! 1 @tq + n · ⇥ [ E] ⇤ + rs · (qu) = 0 BCs: q(x) = n · ⇥ [✏E] ⇤ = n · (¯✏¯E ✏E), E = r' ⇥ [ E] ⇤ = ¯ ¯E E, rs ⌘ (I nn) · r where r · u = 0 , µr2 u + rpH = 0 r · ¯u = 0 , ¯µr2 ¯u + r¯pH = 0 b) Stokes flow u = ¯u for x 2 S u ! 0 as | x |! 1 ⇥ [fE ] ⇤ + ⇥ [fH ] ⇤ = (rs · n)n for x 2 S BCs: ⇥ [fE ] ⇤ = n · ⇥ [✏(EE 1 2 E2 I)] ⇤ ⇥ [fH ] ⇤ = n · ⇥ [ pH I + µ(ru + ruT )] ⇤ where
  • 3.
    Non-dimensionalization h h ✏, , µ ✏,, µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz a) Characteristic scale: • length: h • time: ⌧MW = ¯✏+2✏ ¯+2 • pressure: ✏E2 0 • velocity: h ⌧MW • electric potential: E0h b) Dimensionless numbers: • Material properties Q = ¯✏ ✏ , R = ¯ , = ¯µ µ • Electric capillary number CaE, Mason number Ma: CaE = h✏E2 0 , Ma = 2µ ✏⌧MW E2 0 • Electric Reynolds number ReE ReE = 1 Ma 2(1 + 2R) R(Q + 2)
  • 4.
    Non-dimensionalization h h ✏, , µ ✏,, µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz • Surface charge density BCs @t ⇥ n · (Q¯E E) ⇤ + 2 MaReE n · ( 1 R ¯E E) + rs · ⇥ n · (Q¯E E)u ⇤ = 0 • Dynamic BCs n · ⇥ Q(¯E¯E 1 2 ¯E2 I) (EE 1 2 E2 I) ⇤ + n · ⇥ ¯pH I + Ma 2 (r¯u + r¯uT ) + pH I Ma 2 (ru + ruT ) ⇤ = 1 CaE (rs · n)n c) Dimensionless governing equations: • Electric potential r2 ' = 0 r2 ¯' = 0 • Stokes flow r · u = 0 r2 u + 2 Ma rpH = 0 r · ¯u = 0 r2 ¯u + 2 Ma r¯pH = 0
  • 5.
    Base Flow h h ✏, ,µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz 1. Velocity ¯U = U = 0 2. Hydrodynamic pressure ¯PH + PH = 1 2 (QR2 1) 3. Electric potential = 8 >< >: z + (1 R) z > 1 Rz 1 < z < 1 z (1 R) z < 1 Electric field E = (0 0 1), ¯E = (0 0 R) Surface charge density Q1 = 1 RQ, Q2 = 1 + RQ n1 = (0 0 1) n2 = (0 0 1)
  • 6.
    Perturbation Linearization h h ✏, ,µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz • Hydrodynamic pressure pH = PH + p0H , ¯pH = ¯PH + ¯p0H • Electric potential ' = + '0 (x), ¯' = ¯ + ¯'0 (x) • Electric field E = ( @' @x @' @y 1 @' @z ), ¯E = ( @ ¯' @x @ ¯' @y R @ ¯' @z ) Define the perturbation ⇣1 atz = 1 and ⇣2 at z = 1. • Surface normal vector n1 = ( @⇣1 @x @⇣1 @y 1) n2 = ( @⇣2 @x @⇣2 @y 1) • Velocity u = (v0 x v0 y v0 z) ¯u = (¯v0 x ¯v0 y ¯v0 z) n1 n2 ⇣2 ⇣1
  • 7.
    Perturbation Linearization • Surfacecharge density BCs @t( Q @ ¯'0 @z + @'0 @z ) + 2 MaReE ( 1 R @ ¯'0 @z + @'0 @z )+ (QR 1)( @v0 x @x + @v0 y @y ) = 0, at z = ±1 • Dynamic BCs z = 1 ( QR@ ¯'0 @x + @'0 @x + Ma 2 ( @¯v0 z @x + @¯v0 x @z ) Ma 2 ( @v0 z @x + @v0 x @z ) + (QR2 1)@⇣1 @x = 0 QR@ ¯'0 @z + @'0 @z ¯p0H + p0H + Ma @¯v0 z @z Ma @v0 z @z + 1 CaE (@2 ⇣1 @x2 + @2 ⇣1 @y2 ) = 0 z = 1 ( QR@ ¯'0 @x + @'0 @x + Ma 2 ( @¯v0 z @x + @¯v0 x @z ) Ma 2 ( @v0 z @x + @v0 x @z ) + (QR2 1)@⇣2 @x = 0 QR@ ¯'0 @z + @'0 @z ¯p0H + p0H + Ma @¯v0 z @z Ma @v0 z @z 1 CaE (@2 ⇣2 @x2 + @2 ⇣2 @y2 ) = 0 • Kinematic BCs @⇣1 @t v0 z = 0, at z = 1, @⇣2 @t v0 z = 0, at z = 1 • No jump condition at the interfaces – electric potential ¯'0 '0 + (1 R)⇣1 = 0, at z = 1, ¯'0 '0 (1 R)⇣2 = 0, at z = 1 • No jump condition at the interfaces – velocity ¯u0 = u0 , at z = ±1
  • 8.
    Normal Mode Analysis '0 =ˆ'(z)eikx+st , ¯'0 = ˆ¯'(z)eikx+st u0 = ⇥ ˆvx(z) ˆvy(z) ˆvz(z) ⇤ eikx+st , ¯u0 = ⇥ ˆ¯vx(z) ˆ¯vy(z) ˆ¯vz(z) ⇤ eikx+st p0H = ˆpH (z)eikx+st , ¯p0H = ˆ¯pH (z)eikx+st ⇣1 = ˆ⇣1eikx+st , ⇣2 = ˆ⇣2eikx+st Electric potential profile ˆ' = 8 >< >: A1e kz z > 1 A2e kz + B2ekz 1 < z < 1 B3ekz z < 1 Velocity profile ˆvz = 8 >< >: (C1 + D1z)e kz z > 1 (C2 + D2z)e kz + (E2 + F2z)ekz 1 < z < 1 (E3 + F3z)ekz z < 1 Hydraulic pressure profile ˆpH = 8 >< >: MaD1e kz z > 1 MaD2e kz + MaF2ekz 1 < z < 1 MaF3ekz z < 1 k2 ˆ' + d2 ˆ' dz2 = 0 d4 ˆvz dz4 2k2 d2 ˆvz dz2 + k4 ˆvz = 0
  • 9.
    Results — GrowthRate k 0 1 2 3 4 5 6 sr 0 500 1000 1500 2000 2500 3000 3500 4000 Biggest growth rate sr (k) system 1a system 1b system 1c system 2
  • 10.
    Results — Streamlines x -25-20 -15 -10 -5 0 5 10 15 20 25 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 1a and k = 0.3
  • 11.
    Results — Streamlines x -2.5-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 1a and k = 3
  • 12.
    Results — Streamlines x -25-20 -15 -10 -5 0 5 10 15 20 25 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 2 and k = 0.3
  • 13.
    Results — Streamlines x -2.5-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 2 and k = 3
  • 14.
    Results — HydraulicPressure Contour
  • 15.