SlideShare a Scribd company logo
1 of 4
Dynamical Shiba states Yi-Hua Lai 04/30/2017 1 / 4
Abastract
The goal of this note is to discuss the dynamical Shiba states induced from the single precessing
magnetic impurity in an s-wave superconductor. The reference is from arXiv: 1611.09722, 29
Nov., 2016.
Precessing Magnetic Impurity
Let's consider the spin of the magnetic impurity S(t) = S0 (sin θ sin(2ωt), sin θ cos(2ωt), cos θ),
precessing with the frequency 2ω, the magnitude S0, and the angle between z axis and itself θ.
Note that we don't use the conventional spherical coordinate such that
S(t) = S0 (sin θ cos(2ωt), sin θ sin(2ωt), cos θ) because S(t) = S0 (sin θ sin(2ωt), sin θ cos(2ωt), cos θ)
will be more convenient to be unitarily transformed to be time-independent later. Also. it does
not aect the actual physics.
The coupling term between the magnetic impurity and the spin is
S(t) · σ = s0 sin θ sin(2ωt)
0 1
1 0
+ sin θ cos(2ωt)
0 −i
i 0
+ cos
1 0
0 −1
= S0
cos θ −i sin θei(2ωt)
i sin θe−i(2ωt)
− cos θ
According to the note Shiba state from BdG, the eective Hamiltonian with precessing
magnetic impurity in the four-component Nambu basis Ψ = ψ↑, ψ↓, ψ†
↓, ψ†
↑
T
is
H(t) = ξp (1spin ⊗ τz) + ∆ (1spin ⊗ τx) − JS(t) · (σ ⊗ 1e−h) δ(r)
=




ξp − JS0 cos θδ(r) iJS0 sin θei(2ωt)
δ(r) ∆ 0
−iJS0 sin θe−i(2ωt)
δ(r) ξp + JS0 cos θδ(r) 0 ∆
∆ 0 −ξp − JS0 cos θδ(r) iJS0 sin θei(2ωt)
δ(r)
0 ∆ −iJS0 sin θe−i(2ωt)
δ(r) −ξp + JS0 cos θδ(r)




where ξp = p2
/2m−µ, ∆ is the superconducting gap, and J denotes the strength of the exchange
coupling between the magetic impurity with spin S and the electrons in the superconductor.
σi are the Pauli matrices operating in spin space, while τi are the Pauli matricess operating in
electron-hole space.
Rotating wave transformation
We will transform to the rotating frame of the precessing magnetic impurity, in which case the
eectibe Hamiltonian becomes static. Thus, we can perform the calculations similarly to the
static Shiba impurity.
The original time-dependent Schrodinger equation:
H(t)|ψ(t) = i
∂
∂t
|ψ(t)
Dynamical Shiba states Yi-Hua Lai 04/30/2017 2 / 4
Multiply the unitary operator U†
(t) on the left of both sides, and insert 1 = U(t)U†
(t) to the
equation,
U†
(t)H(t) U(t)U†
(t) |ψ(t) = i U†
(t)
∂
∂t
U(t)U†
(t) |ψ(t)
= i U†
(t)
∂
∂t
U(t) U†
(t)|ψ(t) + U(t)
∂
∂t
U†
(t)|ψ(t)
⇒ U†
(t)H(t)U(t) − i U†
(t)
∂
∂t
U(t) U†
(t)|ψ(t) = i
∂
∂t
U†
(t)|ψ(t)
Dene the new eective Hamiltonian ˜H(t) = U†
(t)H(t)U(t) − i U†
(t) ∂
∂t
U(t) and new wave
function | ˜ψ(t) = U†
(t)|ψ(t) , then we obtain the new transformed Schrodinger equation:
˜H(t)| ˜ψ(t) = i
∂
∂t
| ˜ψ(t)
If we choose
U(t) = eiσzωt
=




eiωt
0 0 0
0 e−iωt
0 0
0 0 eiωt
0
0 0 0 e−iωt




, then the new eective Hamiltonian becomes time-independent:
˜H(t) = U†
(t)H(t)U(t) + ω (σz ⊗ 1e−h)
=




ξp − JS0 cos θδ(r) iJS0 sin θδ(r) ∆ 0
−iJS0 sin θδ(r) ξp + JS0 cos θδ(r) 0 ∆
∆ 0 −ξp − JS0 cos θδ(r) iJS0 sin θδ(r)
0 ∆ −iJS0 sin θδ(r) −ξp + JS0 cos θδ(r)




+




ω 0 0 0
0 − ω 0 0
0 0 ω 0
0 0 0 − ω




= ξp (1spin ⊗ τz) + ∆ (1spin ⊗ τx) − JS(0) · (σ ⊗ 1e−h) δ(r) + ω (σz ⊗ 1e−h)
≡ ˜H
where the unitary transformation changes S(t) to the initial S(0) = S0 (sin θ sin Φ, sin θ cos Φ, cos θ).
Thus, we get the time-independent Schrodinger equation, which is the BdG equation:
˜Hψ(r) = Eψ(r)
⇒ [E − ξpτz − ∆τx − ωσz] ψ(r) = −JS(0) · σδ(r)ψ(0)
After the Fourier transform ψ(r) = [d3
p/(2π)3
] eip·r
ψp, we get
[E − ξpτz − ∆τx − ωσz] ψp = −JS(0) · σψ(0)
⇒ ψp = −J [E − ξpτz − ∆τx − ωσz]−1
S(0) · σψ(0) (1)
Note that
[E − ξpτz − ∆τx − ωσz]
=




E − ξp − ω 0 ∆ 0
0 E − ξp + ω 0 ∆
∆ 0 E − ξp − ω 0
0 ∆ 0 E − ξp + ω




Dynamical Shiba states Yi-Hua Lai 04/30/2017 3 / 4
and
[E − ξpτz − ∆τx − ωσz]−1
=






E+ξp− ω
( ω−E)2−(∆2+ξ2
p)
0 ∆
( ω−E)2−(∆2+ξ2
p)
0
0 E+ξp+ ω
( ω+E)2−(∆2+ξ2
p)
0 ∆
( ω+E)2−(∆2+ξ2
p)
∆
( ω−E)2−(∆2+ξ2
p)
0 E−ξp− ω
( ω−E)2−(∆2+ξ2
p)
0
0 ∆
( ω+E)2−(∆2+ξ2
p)
0 E−ξp+ ω
( ω+E)2−(∆2+ξ2
p)






Since only the matrix [E − ξpτz − ∆τx − ωσz]−1
depends on p, (1) can be inverse Fourier trans-
formed back to the real space in this form:
ψ(0) = −J [E − ξpτz − ∆τx − ωσz]−1 d3
p
(2π)3
(S(0) · σ) ψ(0) (2)
Cancelling ψ(0) on both sides, we get
14×4 + J [E − ξpτz − ∆τx − ωσz]−1 d3
p
(2π)3
(S(0) · σ) = 0 (3)
(a)
[E − ξpτz − ∆τx − ωσz]−1 d3
p
(2π)3
= − πν








(E− ω)
√
∆2−(E− ω)2
0 ∆√
∆2−(E− ω)2
0
0 (E+ ω)
√
∆2−(E+ ω)2
0 ∆√
∆2−(E+ ω)2
∆√
∆2−(E− ω)2
0 (E− ω)
√
∆2−(E− ω)2
0
0 ∆√
∆2−(E+ ω)2
0 (E+ ω)
√
∆2−(E+ ω)2








(b)
S(0) · σ = S0




cos θ −i sin θeiΦ
0 0
i sin θe−iΦ
− cos θ 0 0
0 0 cos θ −i sin θeiΦ
0 0 i sin θe−iΦ
− cos θ




J [E − ξpτz − ∆τx − ωσz]−1 d3
p
(2π)3
(S(0) · σ)
= − α








(E− ω) cos θ
√
∆2−(E− ω)2
−i(E− ω)eiΦ sin θ
√
∆2−(E− ω)2
∆ cos θ√
∆2−(E− ω)2
−i∆eiΦ sin θ√
∆2−(E− ω)2
i(E+ ω)e−iΦ sin θ
√
∆2−(E+ ω)2
− (E+ ω) cos θ
√
∆2−(E+ ω)2
i∆e−iΦ sin θ√
∆2−(E+ ω)2
− ∆ cos θ√
∆2−(E+ ω)2
∆ cos θ√
∆2−(E− ω)2
−i∆eiΦ sin θ√
∆2−(E− ω)2
(E− ω) cos θ
√
∆2−(E− ω)2
−i(E− ω)eiΦ sin θ
√
∆2−(E− ω)2
i∆e−iΦ sin θ√
∆2−(E+ ω)2
− ∆ cos θ√
∆2−(E+ ω)2
i(E+ ω)e−iΦ sin θ
√
∆2−(E+ ω)2
− (E+ ω) cos θ
√
∆2−(E+ ω)2








≡ − αB(E, θ, Φ)
Thus, (3) turns out to be
14×4 − αB(E, θ, Φ) = 0 (4)
To solve the eigen-energies, one can calculate the determinant of (4), i.e.
det (14×4 − αB(E, θ, Φ)) = 0 (5)
Dynamical Shiba states Yi-Hua Lai 04/30/2017 4 / 4
4 Special Cases of Shiba energy
Generally, the eigen-energies, which depend on θ and α, are too complicated. Hence, we here
only calculate 4 special cases.
(a) θ = 0,
E = ±
1 − α2
1 + α2
∆ + ω
which is the same result as the one of the static magnetic impurity, except that the energy shift
by ω. Indeed, we expect to reduce our case to the static one because θ = 0 means there is no
precession at all.
(b) θ = π
2
,
E = ±
(1 + α4
) − (1 − α4)2δ2 + 4α4
1 − α4
∆
where δ ≡ ( ω)/∆. This result highlights the non-linear behavior of the Shiba energy as a
function of the driving ω. Furthermore, when α → 1,
E ≈ ±
(1 + α4
) −
√
4α4
1 − α4
∆ = ±
1 − α2
1 + α2
∆
which is independent of the driving frequency.
(c) Full θ dependence, with α = 1,
E = ±
2δ2 − tan2
θ + tan2
θ
√
1 − 4δ2 cos2 θ
2
∆
where δ ≡ ( ω)/∆.
(d) Full θ dependence, with δ  1 and α = 1,
E = ±
2δ2 − tan2
θ + tan2
θ
√
1 − 4δ2 cos2 θ
2
∆
≈ ±
2δ2 − tan2
θ + tan2
θ(1 − 2δ2 cos2 θ)
2
∆
= δ 1 − sin2
θ∆
=
ω
∆
cos θ∆ = ω cos θ
s(α = 1) =
1 − α2
1 + α2
∆|α=1 ≈ 0
⇒ E ∼= s + ω cos θ

More Related Content

What's hot

Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
Mit2 092 f09_lec06
Mit2 092 f09_lec06Mit2 092 f09_lec06
Mit2 092 f09_lec06Rahman Hakim
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Qiang LI
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqwRene Kotze
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Rene Kotze
 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccfoxtrot jp R
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocityRene Kotze
 
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...SEENET-MTP
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesDaisuke Satow
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theoriesSolo Hermelin
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3SEENET-MTP
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...SEENET-MTP
 

What's hot (19)

Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Mit2 092 f09_lec06
Mit2 092 f09_lec06Mit2 092 f09_lec06
Mit2 092 f09_lec06
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbacc
 
M1l3
M1l3M1l3
M1l3
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
 
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
Fourier series
Fourier seriesFourier series
Fourier series
 
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 

Similar to Precessing magnetic impurity on sc

H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologySEENET-MTP
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"SEENET-MTP
 
Parameterized curves in r^3
Parameterized curves in r^3Parameterized curves in r^3
Parameterized curves in r^3Tarun Gehlot
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Abhishek Das
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikamiranteogbonna
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Prakash Dabhi
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...Alexander Decker
 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24Alexander Decker
 

Similar to Precessing magnetic impurity on sc (20)

H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
7
77
7
 
Parameterized curves in r^3
Parameterized curves in r^3Parameterized curves in r^3
Parameterized curves in r^3
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
 
Solution i ph o 26
Solution i ph o 26Solution i ph o 26
Solution i ph o 26
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Ecl17
Ecl17Ecl17
Ecl17
 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
 
Jackson 7 chap
Jackson 7 chapJackson 7 chap
Jackson 7 chap
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Sol67
Sol67Sol67
Sol67
 

Recently uploaded

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 

Recently uploaded (20)

Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 

Precessing magnetic impurity on sc

  • 1. Dynamical Shiba states Yi-Hua Lai 04/30/2017 1 / 4 Abastract The goal of this note is to discuss the dynamical Shiba states induced from the single precessing magnetic impurity in an s-wave superconductor. The reference is from arXiv: 1611.09722, 29 Nov., 2016. Precessing Magnetic Impurity Let's consider the spin of the magnetic impurity S(t) = S0 (sin θ sin(2ωt), sin θ cos(2ωt), cos θ), precessing with the frequency 2ω, the magnitude S0, and the angle between z axis and itself θ. Note that we don't use the conventional spherical coordinate such that S(t) = S0 (sin θ cos(2ωt), sin θ sin(2ωt), cos θ) because S(t) = S0 (sin θ sin(2ωt), sin θ cos(2ωt), cos θ) will be more convenient to be unitarily transformed to be time-independent later. Also. it does not aect the actual physics. The coupling term between the magnetic impurity and the spin is S(t) · σ = s0 sin θ sin(2ωt) 0 1 1 0 + sin θ cos(2ωt) 0 −i i 0 + cos 1 0 0 −1 = S0 cos θ −i sin θei(2ωt) i sin θe−i(2ωt) − cos θ According to the note Shiba state from BdG, the eective Hamiltonian with precessing magnetic impurity in the four-component Nambu basis Ψ = ψ↑, ψ↓, ψ† ↓, ψ† ↑ T is H(t) = ξp (1spin ⊗ τz) + ∆ (1spin ⊗ τx) − JS(t) · (σ ⊗ 1e−h) δ(r) =     ξp − JS0 cos θδ(r) iJS0 sin θei(2ωt) δ(r) ∆ 0 −iJS0 sin θe−i(2ωt) δ(r) ξp + JS0 cos θδ(r) 0 ∆ ∆ 0 −ξp − JS0 cos θδ(r) iJS0 sin θei(2ωt) δ(r) 0 ∆ −iJS0 sin θe−i(2ωt) δ(r) −ξp + JS0 cos θδ(r)     where ξp = p2 /2m−µ, ∆ is the superconducting gap, and J denotes the strength of the exchange coupling between the magetic impurity with spin S and the electrons in the superconductor. σi are the Pauli matrices operating in spin space, while τi are the Pauli matricess operating in electron-hole space. Rotating wave transformation We will transform to the rotating frame of the precessing magnetic impurity, in which case the eectibe Hamiltonian becomes static. Thus, we can perform the calculations similarly to the static Shiba impurity. The original time-dependent Schrodinger equation: H(t)|ψ(t) = i ∂ ∂t |ψ(t)
  • 2. Dynamical Shiba states Yi-Hua Lai 04/30/2017 2 / 4 Multiply the unitary operator U† (t) on the left of both sides, and insert 1 = U(t)U† (t) to the equation, U† (t)H(t) U(t)U† (t) |ψ(t) = i U† (t) ∂ ∂t U(t)U† (t) |ψ(t) = i U† (t) ∂ ∂t U(t) U† (t)|ψ(t) + U(t) ∂ ∂t U† (t)|ψ(t) ⇒ U† (t)H(t)U(t) − i U† (t) ∂ ∂t U(t) U† (t)|ψ(t) = i ∂ ∂t U† (t)|ψ(t) Dene the new eective Hamiltonian ˜H(t) = U† (t)H(t)U(t) − i U† (t) ∂ ∂t U(t) and new wave function | ˜ψ(t) = U† (t)|ψ(t) , then we obtain the new transformed Schrodinger equation: ˜H(t)| ˜ψ(t) = i ∂ ∂t | ˜ψ(t) If we choose U(t) = eiσzωt =     eiωt 0 0 0 0 e−iωt 0 0 0 0 eiωt 0 0 0 0 e−iωt     , then the new eective Hamiltonian becomes time-independent: ˜H(t) = U† (t)H(t)U(t) + ω (σz ⊗ 1e−h) =     ξp − JS0 cos θδ(r) iJS0 sin θδ(r) ∆ 0 −iJS0 sin θδ(r) ξp + JS0 cos θδ(r) 0 ∆ ∆ 0 −ξp − JS0 cos θδ(r) iJS0 sin θδ(r) 0 ∆ −iJS0 sin θδ(r) −ξp + JS0 cos θδ(r)     +     ω 0 0 0 0 − ω 0 0 0 0 ω 0 0 0 0 − ω     = ξp (1spin ⊗ τz) + ∆ (1spin ⊗ τx) − JS(0) · (σ ⊗ 1e−h) δ(r) + ω (σz ⊗ 1e−h) ≡ ˜H where the unitary transformation changes S(t) to the initial S(0) = S0 (sin θ sin Φ, sin θ cos Φ, cos θ). Thus, we get the time-independent Schrodinger equation, which is the BdG equation: ˜Hψ(r) = Eψ(r) ⇒ [E − ξpτz − ∆τx − ωσz] ψ(r) = −JS(0) · σδ(r)ψ(0) After the Fourier transform ψ(r) = [d3 p/(2π)3 ] eip·r ψp, we get [E − ξpτz − ∆τx − ωσz] ψp = −JS(0) · σψ(0) ⇒ ψp = −J [E − ξpτz − ∆τx − ωσz]−1 S(0) · σψ(0) (1) Note that [E − ξpτz − ∆τx − ωσz] =     E − ξp − ω 0 ∆ 0 0 E − ξp + ω 0 ∆ ∆ 0 E − ξp − ω 0 0 ∆ 0 E − ξp + ω    
  • 3. Dynamical Shiba states Yi-Hua Lai 04/30/2017 3 / 4 and [E − ξpτz − ∆τx − ωσz]−1 =       E+ξp− ω ( ω−E)2−(∆2+ξ2 p) 0 ∆ ( ω−E)2−(∆2+ξ2 p) 0 0 E+ξp+ ω ( ω+E)2−(∆2+ξ2 p) 0 ∆ ( ω+E)2−(∆2+ξ2 p) ∆ ( ω−E)2−(∆2+ξ2 p) 0 E−ξp− ω ( ω−E)2−(∆2+ξ2 p) 0 0 ∆ ( ω+E)2−(∆2+ξ2 p) 0 E−ξp+ ω ( ω+E)2−(∆2+ξ2 p)       Since only the matrix [E − ξpτz − ∆τx − ωσz]−1 depends on p, (1) can be inverse Fourier trans- formed back to the real space in this form: ψ(0) = −J [E − ξpτz − ∆τx − ωσz]−1 d3 p (2π)3 (S(0) · σ) ψ(0) (2) Cancelling ψ(0) on both sides, we get 14×4 + J [E − ξpτz − ∆τx − ωσz]−1 d3 p (2π)3 (S(0) · σ) = 0 (3) (a) [E − ξpτz − ∆τx − ωσz]−1 d3 p (2π)3 = − πν         (E− ω) √ ∆2−(E− ω)2 0 ∆√ ∆2−(E− ω)2 0 0 (E+ ω) √ ∆2−(E+ ω)2 0 ∆√ ∆2−(E+ ω)2 ∆√ ∆2−(E− ω)2 0 (E− ω) √ ∆2−(E− ω)2 0 0 ∆√ ∆2−(E+ ω)2 0 (E+ ω) √ ∆2−(E+ ω)2         (b) S(0) · σ = S0     cos θ −i sin θeiΦ 0 0 i sin θe−iΦ − cos θ 0 0 0 0 cos θ −i sin θeiΦ 0 0 i sin θe−iΦ − cos θ     J [E − ξpτz − ∆τx − ωσz]−1 d3 p (2π)3 (S(0) · σ) = − α         (E− ω) cos θ √ ∆2−(E− ω)2 −i(E− ω)eiΦ sin θ √ ∆2−(E− ω)2 ∆ cos θ√ ∆2−(E− ω)2 −i∆eiΦ sin θ√ ∆2−(E− ω)2 i(E+ ω)e−iΦ sin θ √ ∆2−(E+ ω)2 − (E+ ω) cos θ √ ∆2−(E+ ω)2 i∆e−iΦ sin θ√ ∆2−(E+ ω)2 − ∆ cos θ√ ∆2−(E+ ω)2 ∆ cos θ√ ∆2−(E− ω)2 −i∆eiΦ sin θ√ ∆2−(E− ω)2 (E− ω) cos θ √ ∆2−(E− ω)2 −i(E− ω)eiΦ sin θ √ ∆2−(E− ω)2 i∆e−iΦ sin θ√ ∆2−(E+ ω)2 − ∆ cos θ√ ∆2−(E+ ω)2 i(E+ ω)e−iΦ sin θ √ ∆2−(E+ ω)2 − (E+ ω) cos θ √ ∆2−(E+ ω)2         ≡ − αB(E, θ, Φ) Thus, (3) turns out to be 14×4 − αB(E, θ, Φ) = 0 (4) To solve the eigen-energies, one can calculate the determinant of (4), i.e. det (14×4 − αB(E, θ, Φ)) = 0 (5)
  • 4. Dynamical Shiba states Yi-Hua Lai 04/30/2017 4 / 4 4 Special Cases of Shiba energy Generally, the eigen-energies, which depend on θ and α, are too complicated. Hence, we here only calculate 4 special cases. (a) θ = 0, E = ± 1 − α2 1 + α2 ∆ + ω which is the same result as the one of the static magnetic impurity, except that the energy shift by ω. Indeed, we expect to reduce our case to the static one because θ = 0 means there is no precession at all. (b) θ = π 2 , E = ± (1 + α4 ) − (1 − α4)2δ2 + 4α4 1 − α4 ∆ where δ ≡ ( ω)/∆. This result highlights the non-linear behavior of the Shiba energy as a function of the driving ω. Furthermore, when α → 1, E ≈ ± (1 + α4 ) − √ 4α4 1 − α4 ∆ = ± 1 − α2 1 + α2 ∆ which is independent of the driving frequency. (c) Full θ dependence, with α = 1, E = ± 2δ2 − tan2 θ + tan2 θ √ 1 − 4δ2 cos2 θ 2 ∆ where δ ≡ ( ω)/∆. (d) Full θ dependence, with δ 1 and α = 1, E = ± 2δ2 − tan2 θ + tan2 θ √ 1 − 4δ2 cos2 θ 2 ∆ ≈ ± 2δ2 − tan2 θ + tan2 θ(1 − 2δ2 cos2 θ) 2 ∆ = δ 1 − sin2 θ∆ = ω ∆ cos θ∆ = ω cos θ s(α = 1) = 1 − α2 1 + α2 ∆|α=1 ≈ 0 ⇒ E ∼= s + ω cos θ