SlideShare a Scribd company logo
ADVANCE POWER ELCTRONICS 
Power Converters Report 
COMSATS INSTITUTE OF INFORMATION & TECHNOLOGY, ABBOTABAD 
PREPARED BY: 
ZUNAIB ALI FA13-R09-013 
DEPTT: ELECTRICAL ENGINEERING (POWER)
Power Converters 
Note: 
 All simulation results are taken by using mosfet at frequency of 
Buck BOOST CONVERTER 
Table 1: Conduction Mode & Efficiency For Different values of duty cycle of Buck-Boost Converter 
For Constant Duty Cycle, 
Inductance Value 
Condition Mode 
Efficiency, 
DCM 
50.71% 
BCM 
57.02% 
CCM 
57.53% 
Continuouspowergui v+ - V2v+ - V1Scope2Scope1R1PulseGenerator1gmDSMosfetInMeanMean Value3L1i+ - IL2i+ - IL1i+ - IL[H] Goto[H] FromDisplay1Diode1DC Voltage Source1C1
Inductor Current vs. Gate Signal Figures for Buck-Boost Converter 
Figure 1: For D=50%, DCM (BUCK BOOST) 
Figure 2: For D=50%, BCM ( BUCK BOOST)
Figure 3: For D=50%, L=130μH CCM (BUCK BOOST) 
Table 2: Conduction Mode & Efficiency For Different values of duty cycle of Buck-Boost Converter 
For Constant Inductance, 
Inductance Value 
Condition Mode 
Efficiency, 
DCM 
49.47% 
BCM 
51.99% 
CCM 
52.33% 
Conclusion: 
 By increasing the value of inductor the peal to peak value of ripple decreased. 
 Efficiency of converter is maximum in continuous conduction mode. 
 Conduction modes can be varied by keeping inductance constant and changing duty cycle, there by ripple value remains the same. Hence filter is designed for specific value.
Buck CONVERTER 
Table 3: Conduction Mode & Efficiency For Different values of Inductance of Buck Converter 
For Constant Duty Cycle, 
Inductance Value 
Condition Mode 
Efficiency, 
DCM 
62.27% 
BCM 
64.78% 
CCM 
66.56% 
Continuouspowerguiv+ - VScope3RPulseGeneratorgmDSMosfet1InMeanMean Value3InMeanMean Value2InMeanMean Value1Li+ - I_L2i+ - I_L1i+ - I_L[E] Goto1Divide2Divide1Divide0.6656DisplayDiodeDC Voltage Source10ConstantC
Inductor Current vs. Gate Signal Figures for Buck Converter 
Figure 4: For D=50%, BCM (BUCK) 
Figure 5: For D=50%, L=90μH DCM (BUCK)
Figure 6: For D=50%, L=110μH CCM (BUCK) 
Table 4: Conduction Mode & Efficiency For Different values of duty cycle of Buck Converter 
For Constant Inductance, 
Inductance Value 
Condition Mode 
Efficiency, 
DCM 
63.29% 
BCM 
64.78% 
CCM 
65.45% 
Conclusion: 
 By increasing the value of inductor the peal to peak value of ripple decreased. 
 Efficiency of converter is maximum in continuous conduction mode. 
 Conduction modes can be varied by keeping inductance constant and changing duty cycle, there by ripple value remains the same. Hence filter is designed for specific value.
Boost CONVERTER 
Table 5: Conduction Mode & Efficiency For Different values of Inductance of Boost Converter 
For Constant Duty Cycle, 
Inductance Value 
Condition Mode 
Efficiency, 
DCM 
74.91% 
BCM 
76.47% 
CCM 
79.28% 
Continuouspowerguiv+ - V2Scope1R2PulseGenerator2InMeanMean Value3InMeanMean Value2InMeanMean Value1L2 gm12 Ideal Switch2i+ - I_L1[A] Goto2Divide2Divide1Divide0.5182DisplayDiode2DC Voltage Source2i+ - Current Measurement10ConstantC2
Inductor Current vs. Gate Signal Figures for Buck Converter 
Figure 7: For D=50%, L=338μH DCM (BOOST) 
Figure 8: For D=50%, L=340μH BCM (BOOST)
Figure 9: For D=50%, L=380μH DCM (BOOST) 
Table 6: Conduction Mode & Efficiency For Different values of duty cycle of Boost Converter 
For Constant Inductance, 
Inductance Value 
Condition Mode 
Efficiency, 
DCM 
73.11% 
BCM 
75.21% 
CCM 
76.96% 
Conclusion: 
 By increasing the value of inductor the peal to peak value of ripple decreased. 
 Efficiency of converter is maximum in continuous conduction mode. 
 Conduction modes can be varied by keeping inductance constant and changing duty cycle, there by ripple value remains the same. Hence filter is designed for specific value.

More Related Content

What's hot

Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
ZunAib Ali
 
space vector
space vectorspace vector
space vector
elsayed soliman
 
Space vector PWM
Space vector PWMSpace vector PWM
Space vector PWM
Long Thang Pham
 
Study of sinusoidal and space vector pulse width modulation techniques for a ...
Study of sinusoidal and space vector pulse width modulation techniques for a ...Study of sinusoidal and space vector pulse width modulation techniques for a ...
Study of sinusoidal and space vector pulse width modulation techniques for a ...
eSAT Journals
 
pwm inverter
pwm inverterpwm inverter
pwm inverter
Subzero Bill
 
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
emredurna
 
Advanced techniques of PULSE WIDTH MODULATION.
Advanced techniques of PULSE WIDTH MODULATION.Advanced techniques of PULSE WIDTH MODULATION.
Advanced techniques of PULSE WIDTH MODULATION.
Subashini Puchalapalli
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM Inverter
Purushotam Kumar
 
Design Space Vector Modulated PWM Three-Phase Inverter
Design Space Vector Modulated PWM Three-Phase InverterDesign Space Vector Modulated PWM Three-Phase Inverter
Design Space Vector Modulated PWM Three-Phase InverterNicholas Mochnacki, P.Eng.
 
Pwm techniques for converters
Pwm techniques for convertersPwm techniques for converters
Pwm techniques for converters
ABHINAV KUMAR BABUL
 
Harmonic comparisons of various PWM techniques for basic MLI
Harmonic comparisons of various PWM techniques for basic MLIHarmonic comparisons of various PWM techniques for basic MLI
Harmonic comparisons of various PWM techniques for basic MLI
Saquib Maqsood
 
Design of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpDesign of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpSteven Ernst, PE
 
Two Stage Amplifier
Two Stage AmplifierTwo Stage Amplifier
Two Stage AmplifierJacob Ramey
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
Vishal Pathak
 
Project review
Project reviewProject review
Project review
Sudhakar Reddy
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
Karthik Rathinavel
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierSteven Ernst, PE
 
Powerelectronics questionbank
Powerelectronics questionbankPowerelectronics questionbank
Powerelectronics questionbankSudhakar Reddy
 

What's hot (20)

Inverter
InverterInverter
Inverter
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
 
space vector
space vectorspace vector
space vector
 
Space vector PWM
Space vector PWMSpace vector PWM
Space vector PWM
 
Study of sinusoidal and space vector pulse width modulation techniques for a ...
Study of sinusoidal and space vector pulse width modulation techniques for a ...Study of sinusoidal and space vector pulse width modulation techniques for a ...
Study of sinusoidal and space vector pulse width modulation techniques for a ...
 
Balaji mini proj
Balaji mini projBalaji mini proj
Balaji mini proj
 
pwm inverter
pwm inverterpwm inverter
pwm inverter
 
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
 
Advanced techniques of PULSE WIDTH MODULATION.
Advanced techniques of PULSE WIDTH MODULATION.Advanced techniques of PULSE WIDTH MODULATION.
Advanced techniques of PULSE WIDTH MODULATION.
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM Inverter
 
Design Space Vector Modulated PWM Three-Phase Inverter
Design Space Vector Modulated PWM Three-Phase InverterDesign Space Vector Modulated PWM Three-Phase Inverter
Design Space Vector Modulated PWM Three-Phase Inverter
 
Pwm techniques for converters
Pwm techniques for convertersPwm techniques for converters
Pwm techniques for converters
 
Harmonic comparisons of various PWM techniques for basic MLI
Harmonic comparisons of various PWM techniques for basic MLIHarmonic comparisons of various PWM techniques for basic MLI
Harmonic comparisons of various PWM techniques for basic MLI
 
Design of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-AmpDesign of a Two-Stage Single Ended CMOS Op-Amp
Design of a Two-Stage Single Ended CMOS Op-Amp
 
Two Stage Amplifier
Two Stage AmplifierTwo Stage Amplifier
Two Stage Amplifier
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
 
Project review
Project reviewProject review
Project review
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Powerelectronics questionbank
Powerelectronics questionbankPowerelectronics questionbank
Powerelectronics questionbank
 

Viewers also liked

Report buck boost k10972
Report buck boost k10972Report buck boost k10972
Report buck boost k10972
Vinit Rajput
 
Vinit buck bost ppt
Vinit buck bost pptVinit buck bost ppt
Vinit buck bost ppt
Vinit Rajput
 
EE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost ConverterEE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost Converterki hei chan
 
8 ee362_l_dc_dc_buckboost_ppt (1)
 8 ee362_l_dc_dc_buckboost_ppt (1) 8 ee362_l_dc_dc_buckboost_ppt (1)
8 ee362_l_dc_dc_buckboost_ppt (1)balaji kumar
 
7 ee462_l_dc_dc_boost_ppt
 7 ee462_l_dc_dc_boost_ppt 7 ee462_l_dc_dc_boost_ppt
7 ee462_l_dc_dc_boost_ppt
Raja d
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converterSathiya kumar
 
Buck Boost Converter
Buck Boost ConverterBuck Boost Converter
Buck Boost Converter
Chardian Arguta
 
Transformers Project report
Transformers Project reportTransformers Project report
Transformers Project reportTanuj Gupta
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
Luminary Labs
 

Viewers also liked (10)

Report buck boost k10972
Report buck boost k10972Report buck boost k10972
Report buck boost k10972
 
Vinit buck bost ppt
Vinit buck bost pptVinit buck bost ppt
Vinit buck bost ppt
 
Final Report
Final ReportFinal Report
Final Report
 
EE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost ConverterEE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost Converter
 
8 ee362_l_dc_dc_buckboost_ppt (1)
 8 ee362_l_dc_dc_buckboost_ppt (1) 8 ee362_l_dc_dc_buckboost_ppt (1)
8 ee362_l_dc_dc_buckboost_ppt (1)
 
7 ee462_l_dc_dc_boost_ppt
 7 ee462_l_dc_dc_boost_ppt 7 ee462_l_dc_dc_boost_ppt
7 ee462_l_dc_dc_boost_ppt
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
 
Buck Boost Converter
Buck Boost ConverterBuck Boost Converter
Buck Boost Converter
 
Transformers Project report
Transformers Project reportTransformers Project report
Transformers Project report
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
 

Similar to Power converter report

IRJET- Investigation on DC-DC Converter Topologies for PV Applications
IRJET-  	  Investigation on DC-DC Converter Topologies for PV ApplicationsIRJET-  	  Investigation on DC-DC Converter Topologies for PV Applications
IRJET- Investigation on DC-DC Converter Topologies for PV Applications
IRJET Journal
 
15 47-58
15 47-5815 47-58
15 47-58
idescitation
 
Integrated double buck boost converter for power led lamps using fuzzy logic ...
Integrated double buck boost converter for power led lamps using fuzzy logic ...Integrated double buck boost converter for power led lamps using fuzzy logic ...
Integrated double buck boost converter for power led lamps using fuzzy logic ...
IAEME Publication
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convertki hei chan
 
39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)
IAESIJEECS
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
Tsuyoshi Horigome
 
Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...
Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...
Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...
theijes
 
Comparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFC
Comparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFCComparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFC
Comparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFC
IJMTST Journal
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
Tsuyoshi Horigome
 
C010242128
C010242128C010242128
C010242128
IOSR Journals
 
10.1109@IPACT.2017.8245072.pdf
10.1109@IPACT.2017.8245072.pdf10.1109@IPACT.2017.8245072.pdf
10.1109@IPACT.2017.8245072.pdf
RavipatiSrikanth1
 
A Predictive Control Strategy for Power Factor Correction
A Predictive Control Strategy for Power Factor CorrectionA Predictive Control Strategy for Power Factor Correction
A Predictive Control Strategy for Power Factor Correction
IOSR Journals
 
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
IJPEDS-IAES
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
Ramaraochowdary Kantipudi
 
IRJET- Diode Clamped Multilevel Inverter for Induction Motor Drive
IRJET- Diode Clamped Multilevel Inverter for Induction Motor DriveIRJET- Diode Clamped Multilevel Inverter for Induction Motor Drive
IRJET- Diode Clamped Multilevel Inverter for Induction Motor Drive
IRJET Journal
 
Digital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost ConverterDigital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost Converter
IJERA Editor
 
M1028993
M1028993M1028993
M1028993
IJERD Editor
 
Fuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost ConverterFuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost Converter
IJSRD
 
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
IAEME Publication
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Claudia Sin
 

Similar to Power converter report (20)

IRJET- Investigation on DC-DC Converter Topologies for PV Applications
IRJET-  	  Investigation on DC-DC Converter Topologies for PV ApplicationsIRJET-  	  Investigation on DC-DC Converter Topologies for PV Applications
IRJET- Investigation on DC-DC Converter Topologies for PV Applications
 
15 47-58
15 47-5815 47-58
15 47-58
 
Integrated double buck boost converter for power led lamps using fuzzy logic ...
Integrated double buck boost converter for power led lamps using fuzzy logic ...Integrated double buck boost converter for power led lamps using fuzzy logic ...
Integrated double buck boost converter for power led lamps using fuzzy logic ...
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
 
39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)39 9146 a novel single source multi output (edit lafi)
39 9146 a novel single source multi output (edit lafi)
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...
Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...
Boost Converter with Improved Voltage Conversion Ratio Using Bootstrap Capaci...
 
Comparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFC
Comparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFCComparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFC
Comparison of Buck-Boost and Cuk Converters for BLDC Drive Applications with PFC
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
C010242128
C010242128C010242128
C010242128
 
10.1109@IPACT.2017.8245072.pdf
10.1109@IPACT.2017.8245072.pdf10.1109@IPACT.2017.8245072.pdf
10.1109@IPACT.2017.8245072.pdf
 
A Predictive Control Strategy for Power Factor Correction
A Predictive Control Strategy for Power Factor CorrectionA Predictive Control Strategy for Power Factor Correction
A Predictive Control Strategy for Power Factor Correction
 
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
 
IRJET- Diode Clamped Multilevel Inverter for Induction Motor Drive
IRJET- Diode Clamped Multilevel Inverter for Induction Motor DriveIRJET- Diode Clamped Multilevel Inverter for Induction Motor Drive
IRJET- Diode Clamped Multilevel Inverter for Induction Motor Drive
 
Digital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost ConverterDigital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost Converter
 
M1028993
M1028993M1028993
M1028993
 
Fuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost ConverterFuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost Converter
 
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 

More from ZunAib Ali

Lcl filter design
Lcl filter designLcl filter design
Lcl filter design
ZunAib Ali
 
Performance of Six-Pulse Line-Commutated Converter in DC Motor Drive Application
Performance of Six-Pulse Line-Commutated Converter in DC Motor Drive ApplicationPerformance of Six-Pulse Line-Commutated Converter in DC Motor Drive Application
Performance of Six-Pulse Line-Commutated Converter in DC Motor Drive Application
ZunAib Ali
 
SVM Simulation for three level inverter
SVM Simulation for three level inverterSVM Simulation for three level inverter
SVM Simulation for three level inverter
ZunAib Ali
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverterZunAib Ali
 
Power transformer
Power transformerPower transformer
Power transformer
ZunAib Ali
 
7 channel Interleaved Boost Converter
7 channel Interleaved Boost Converter7 channel Interleaved Boost Converter
7 channel Interleaved Boost Converter
ZunAib Ali
 
Instrumentational Amplifier
Instrumentational Amplifier Instrumentational Amplifier
Instrumentational Amplifier
ZunAib Ali
 
Electronic Device pakages
Electronic Device pakagesElectronic Device pakages
Electronic Device pakages
ZunAib Ali
 
Concept of energy transmission & distribution
Concept of energy transmission & distribution Concept of energy transmission & distribution
Concept of energy transmission & distribution
ZunAib Ali
 
DC Motor Model
DC Motor Model DC Motor Model
DC Motor Model
ZunAib Ali
 
High Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmissionHigh Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmission
ZunAib Ali
 
Cambridge ielts 9 full
Cambridge ielts 9 fullCambridge ielts 9 full
Cambridge ielts 9 fullZunAib Ali
 
Water level buzzer
Water level buzzerWater level buzzer
Water level buzzerZunAib Ali
 
Fourier Specturm via MATLAB
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLABZunAib Ali
 
8051-mazidi-solution
8051-mazidi-solution8051-mazidi-solution
8051-mazidi-solutionZunAib Ali
 
Gauss Jordan Method
Gauss Jordan MethodGauss Jordan Method
Gauss Jordan MethodZunAib Ali
 
Contemporary theories of motivation
Contemporary theories of motivationContemporary theories of motivation
Contemporary theories of motivationZunAib Ali
 
Gaussian Elimination
Gaussian EliminationGaussian Elimination
Gaussian EliminationZunAib Ali
 
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...ZunAib Ali
 
To design a common base amplifier using multisim
To design a common base amplifier using multisimTo design a common base amplifier using multisim
To design a common base amplifier using multisimZunAib Ali
 

More from ZunAib Ali (20)

Lcl filter design
Lcl filter designLcl filter design
Lcl filter design
 
Performance of Six-Pulse Line-Commutated Converter in DC Motor Drive Application
Performance of Six-Pulse Line-Commutated Converter in DC Motor Drive ApplicationPerformance of Six-Pulse Line-Commutated Converter in DC Motor Drive Application
Performance of Six-Pulse Line-Commutated Converter in DC Motor Drive Application
 
SVM Simulation for three level inverter
SVM Simulation for three level inverterSVM Simulation for three level inverter
SVM Simulation for three level inverter
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverter
 
Power transformer
Power transformerPower transformer
Power transformer
 
7 channel Interleaved Boost Converter
7 channel Interleaved Boost Converter7 channel Interleaved Boost Converter
7 channel Interleaved Boost Converter
 
Instrumentational Amplifier
Instrumentational Amplifier Instrumentational Amplifier
Instrumentational Amplifier
 
Electronic Device pakages
Electronic Device pakagesElectronic Device pakages
Electronic Device pakages
 
Concept of energy transmission & distribution
Concept of energy transmission & distribution Concept of energy transmission & distribution
Concept of energy transmission & distribution
 
DC Motor Model
DC Motor Model DC Motor Model
DC Motor Model
 
High Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmissionHigh Voltage Dc (HVDC) transmission
High Voltage Dc (HVDC) transmission
 
Cambridge ielts 9 full
Cambridge ielts 9 fullCambridge ielts 9 full
Cambridge ielts 9 full
 
Water level buzzer
Water level buzzerWater level buzzer
Water level buzzer
 
Fourier Specturm via MATLAB
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLAB
 
8051-mazidi-solution
8051-mazidi-solution8051-mazidi-solution
8051-mazidi-solution
 
Gauss Jordan Method
Gauss Jordan MethodGauss Jordan Method
Gauss Jordan Method
 
Contemporary theories of motivation
Contemporary theories of motivationContemporary theories of motivation
Contemporary theories of motivation
 
Gaussian Elimination
Gaussian EliminationGaussian Elimination
Gaussian Elimination
 
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
 
To design a common base amplifier using multisim
To design a common base amplifier using multisimTo design a common base amplifier using multisim
To design a common base amplifier using multisim
 

Recently uploaded

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 

Recently uploaded (20)

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 

Power converter report

  • 1. ADVANCE POWER ELCTRONICS Power Converters Report COMSATS INSTITUTE OF INFORMATION & TECHNOLOGY, ABBOTABAD PREPARED BY: ZUNAIB ALI FA13-R09-013 DEPTT: ELECTRICAL ENGINEERING (POWER)
  • 2. Power Converters Note:  All simulation results are taken by using mosfet at frequency of Buck BOOST CONVERTER Table 1: Conduction Mode & Efficiency For Different values of duty cycle of Buck-Boost Converter For Constant Duty Cycle, Inductance Value Condition Mode Efficiency, DCM 50.71% BCM 57.02% CCM 57.53% Continuouspowergui v+ - V2v+ - V1Scope2Scope1R1PulseGenerator1gmDSMosfetInMeanMean Value3L1i+ - IL2i+ - IL1i+ - IL[H] Goto[H] FromDisplay1Diode1DC Voltage Source1C1
  • 3. Inductor Current vs. Gate Signal Figures for Buck-Boost Converter Figure 1: For D=50%, DCM (BUCK BOOST) Figure 2: For D=50%, BCM ( BUCK BOOST)
  • 4. Figure 3: For D=50%, L=130μH CCM (BUCK BOOST) Table 2: Conduction Mode & Efficiency For Different values of duty cycle of Buck-Boost Converter For Constant Inductance, Inductance Value Condition Mode Efficiency, DCM 49.47% BCM 51.99% CCM 52.33% Conclusion:  By increasing the value of inductor the peal to peak value of ripple decreased.  Efficiency of converter is maximum in continuous conduction mode.  Conduction modes can be varied by keeping inductance constant and changing duty cycle, there by ripple value remains the same. Hence filter is designed for specific value.
  • 5. Buck CONVERTER Table 3: Conduction Mode & Efficiency For Different values of Inductance of Buck Converter For Constant Duty Cycle, Inductance Value Condition Mode Efficiency, DCM 62.27% BCM 64.78% CCM 66.56% Continuouspowerguiv+ - VScope3RPulseGeneratorgmDSMosfet1InMeanMean Value3InMeanMean Value2InMeanMean Value1Li+ - I_L2i+ - I_L1i+ - I_L[E] Goto1Divide2Divide1Divide0.6656DisplayDiodeDC Voltage Source10ConstantC
  • 6. Inductor Current vs. Gate Signal Figures for Buck Converter Figure 4: For D=50%, BCM (BUCK) Figure 5: For D=50%, L=90μH DCM (BUCK)
  • 7. Figure 6: For D=50%, L=110μH CCM (BUCK) Table 4: Conduction Mode & Efficiency For Different values of duty cycle of Buck Converter For Constant Inductance, Inductance Value Condition Mode Efficiency, DCM 63.29% BCM 64.78% CCM 65.45% Conclusion:  By increasing the value of inductor the peal to peak value of ripple decreased.  Efficiency of converter is maximum in continuous conduction mode.  Conduction modes can be varied by keeping inductance constant and changing duty cycle, there by ripple value remains the same. Hence filter is designed for specific value.
  • 8. Boost CONVERTER Table 5: Conduction Mode & Efficiency For Different values of Inductance of Boost Converter For Constant Duty Cycle, Inductance Value Condition Mode Efficiency, DCM 74.91% BCM 76.47% CCM 79.28% Continuouspowerguiv+ - V2Scope1R2PulseGenerator2InMeanMean Value3InMeanMean Value2InMeanMean Value1L2 gm12 Ideal Switch2i+ - I_L1[A] Goto2Divide2Divide1Divide0.5182DisplayDiode2DC Voltage Source2i+ - Current Measurement10ConstantC2
  • 9. Inductor Current vs. Gate Signal Figures for Buck Converter Figure 7: For D=50%, L=338μH DCM (BOOST) Figure 8: For D=50%, L=340μH BCM (BOOST)
  • 10. Figure 9: For D=50%, L=380μH DCM (BOOST) Table 6: Conduction Mode & Efficiency For Different values of duty cycle of Boost Converter For Constant Inductance, Inductance Value Condition Mode Efficiency, DCM 73.11% BCM 75.21% CCM 76.96% Conclusion:  By increasing the value of inductor the peal to peak value of ripple decreased.  Efficiency of converter is maximum in continuous conduction mode.  Conduction modes can be varied by keeping inductance constant and changing duty cycle, there by ripple value remains the same. Hence filter is designed for specific value.