SlideShare a Scribd company logo
Pharmacology Basics
Definitions
• Pharmacokinetics
– The process by which a drug is absorbed, distributed,
metabolized and eliminated by the body
• Pharmacodynamics
– The interactions of a drug and the receptors responsible for its
action in the body
The Life Cycle of a Drug
(pharmacokinetics)
• Absorption
• Distribution
• Degradation
• Excretion
Slow Absorption
• Orally (swallowed)
• through Mucus Membranes
– Oral Mucosa (e.g. sublingual)
– Nasal Mucosa (e.g. insufflated)
• Topical/Transdermal
(through skin)
• Rectally (suppository)
Faster Absorption
• Parenterally (injection)
– Intravenous (IV)
– Intramuscular (IM)
– Subcutaneous (SC)
– Intraperitoneal (IP)
• Inhaled (through lungs)
Fastest Absorption
• Directly into brain
– Intracerebral (into brain tissue)
– Intracerebroventricular (into brain
ventricles)
General Principle: The faster the absorption, the quicker the
onset, the higher the addictiveness, but the shorter the duration
Absorption: Solubility
• Water-soluble
– Ionized (have electrical charge)
– Crosses through pores in capillaries, but not cell membranes
• Lipid(fat)-soluble
– Non-ionized (no electrical charge)
– Crosses pores, cell membranes, blood-brain-barrier
Dissociation constant or pKa  indicates the pH where 50% of
the drug is ionized (water soluble) and 50% non-ionized (lipid
soluble);
pKeq = pH + log [X]ionized/[X]non-ionized
This affects a drug's solubility, permeability, binding, and other
characteristics.
(hydroxyl group)
(amine group)
Distribution: Depends on Blood Flow and
Blood Brain Barrier
• Excludes ionized
substances;
• Active transport
mechanisms;
• Not uniform – leaky
(circumventricular areas)
Bioavailability
• The fraction of an administered dose of drug that reaches the
blood stream.
• What determines bioavailability?
– Physical properties of the drug (hydrophobicity, pKa, solubility)
– The drug formulation (immediate release, delayed release, etc.)
– If the drug is administered in a fed or fasted state
– Gastric emptying rate
– Circadian differences
– Interactions with other drugs
– Age
– Diet
– Gender
– Disease state
Depot Binding
(accumulation in fatty tissue)
• Drugs bind to “depot sites” or “silent receptors” (fat,
muscle, organs, bones, etc)
• Depot binding reduces bioavailability, slows elimination,
can increase drug detection window
• Depot-bound drugs can be released during sudden weight
loss – may account for flashback experiences?
Degradation & Excretion
• Kidneys
– Traps water-soluble (ionized)
compounds for elimination via urine
(primarily), feces, air, sweat
• Liver
– Enzymes(cytochrome P-450)
transform drugs into more water-
soluble metabolites
– Repeated drug exposure increases
efficiency  tolerance
Excretion: Other routes
• Lungs
alcohol breath
• Breast milk
acidic ---> ion traps alkaloids
alcohol: same concentration as blood
antibiotics
• Also bile, skin, saliva ~~
Metabolism and Elimination (cont.)
• Half-lives and Kinetics
– Half-life:
• Plasma half-life: Time it takes for plasma concentration of a
drug to drop to 50% of initial level.
• Whole body half-life: Time it takes to eliminate half of the
body content of a drug.
– Factors affecting half-life
• age
• renal excretion
• liver metabolism
• protein binding
First order kinetics
A constant fraction of drug is eliminated per unit of time.
When drug concentration is high, rate of disappearance
is high.
Zero order kinetics
Rate of elimination is constant.
Rate of elimination is independent of drug concentration.
Constant amount eliminated per unit of time.
Example: Alcohol
Comparison
• First Order Elimination
– [drug] decreases
exponentially w/ time
– Rate of elimination is
proportional to [drug]
– Plot of log [drug] or
ln[drug] vs. time are
linear
– t 1/2 is constant regardless
of [drug]
• Zero Order Elimination
– [drug] decreases linearly
with time
– Rate of elimination is
constant
– Rate of elimination is
independent of [drug]
– No true t 1/2
Drug Effectiveness
• Dose-response (DR) curve
– Depicts the relation between
drug dose and magnitude of drug
effect
• Drugs can have more than one
effect
• Drugs vary in effectiveness
– Different sites of action
– Different affinities for
receptors
• The effectiveness of a drug is
considered relative to its safety
(therapeutic index)
ED50 = effective dose in 50% of population
100
50
0
DRUG DOSE
0 X
ED50
% subjects
Therapeutic Index
• Effective dose (ED50) = dose at which 50% population shows response
• Lethal dose (LD50) =dose at which 50% population dies
• TI = LD50/ED50, an indication of safety of a drug (higher is better)
ED50 LD50
Potency
• Relative strength of response for a given dose
– Effective concentration (EC50) is the concentration of an agonist needed to
elicit half of the maximum biological response of the agonist
– The potency of an agonist is inversely related to its EC50 value
• D-R curve shifts left with greater potency
Efficacy
• Maximum possible effect
relative to other agents
• Indicated by peak of D-R curve
• Full agonist = 100% efficacy
• Partial agonist = 50% efficacy
• Antagonist = 0% efficacy
• Inverse agonist = -100% efficacy
Average
Response
Magnitude
LO
DRUG DOSE
0 X
HI
A
B
C
Comparisons
Tolerance
(desensitization)
• Decreased response to same
dose with repeated (constant)
exposure
• or more drug needed to achieve
same effect
• Right-ward shift of D-R curve
• Sometimes occurs in an acute
dose (e.g. alcohol)
• Can develop across drugs (cross-
tolerance)
• Caused by compensatory
mechanisms that oppose the
effects of the drug
Sensitization
• Increased response to same dose
with repeated (binge-like)
exposure
• or less drug needed to achieve
same effect
• Left-ward shift in D-R curve
• Sometimes occurs in an acute
dose (e.g. amphetamine)
• Can develop across drugs (cross-
sensitization)
It is possible to develop tolerance to some side effects AND sensitization
to other side effects of the same drug
Mechanisms of Tolerance and Sensitization
• Pharmacokinetic
– changes in drug availability at site of action (decreased bioavailability)
– Decreased absorption
– Increased binding to depot sites
• Pharmacodynamic
– changes in drug-receptor interaction
– G-protein uncoupling
– Down regulation of receptors
Other Mechanisms of
Tolerance and Sensitization
• Psychological
As the user becomes familiar with the drug’s effects, s/he learns tricks to
hide or counteract the effects.
Set (expectations) and setting (environment)
Motivational
Habituation
Classical and instrumental conditioning (automatic physiological change in
response to cues)
• Metabolic
The user is able to break down and/or excrete the drug more quickly due
to repeated exposure.
Increased excretion
• Pharmacokinetic and pharmacodynamic
– With pharmacokinetic drug interactions, one drug affects the
absorption, distribution, metabolism, or excretion of another.
– With pharmacodynamic drug interactions, two drugs have
interactive effects in the brain.
– Either type of drug interaction can result in adverse effects in
some individuals.
– In terms of efficacy, there can be several types of interactions
between medications: cumulative, additive, synergistic, and
antagonistic.
Drug-drug Interactions
Response
Hi
Lo
Time
Cumulative Effects
Drug A
Drug B
The condition in which repeated administration of a drug may produce effects
that are more pronounced than those produced by the first dose.
Response
Hi
Lo
Time
A B
Additive Effects
A + B
The effect of two chemicals is equal to the sum of the effect of the two
chemicals taken separately, eg., aspirin and motrin.
Response
Hi
Lo
Time
A B
A + B
Synergistic Effects
The effect of two chemicals taken together is greater than the sum of their
separate effect at the same doses, e.g., alcohol and other drugs
Response
Hi
Lo
Time
A B
A + B
Antagonistic Effects
The effect of two chemicals taken together is less than the sum of their
separate effect at the same doses
Pharmacodynamics
• Receptor
– target/site of drug action (e.g. genetically-coded proteins
embedded in neural membrane)
• Lock and key or induced-fit models
– drug acts as key, receptor as lock, combination yields response
– dynamic and flexible interaction
Pharmacodynamics (cont.)
• Affinity
– propensity of a drug to bind with a receptor
• Selectivity
– specific affinity for certain receptors (vs. others)
Agonism and Antagonism
Agonists facilitate receptor
response
Antagonists inhibit receptor
response
(direct ant/agonists)
Modes of Action
• Agonism
– A compound that does the
job of a natural substance.
– Does not effect the rate of
an enzyme catalyzed
reaction.
• Up/down regulation
– Tolerance/sensitivity at the
cellular level may be due to
a change in # of receptors
(without the appropriate
subunit) due to changes in
stimulation
• Antagonism
– A compound inhibits an
enzyme from doing its job.
– Slows down an
enzymatically catalyzed
reaction.
Agonists/Antagonists
• Full
• Partial
• Direct/Competitive
• Indirect/Noncompetitive
• Inverse
A single drug can bind to a single
receptor and cause a mix of effects
(agonist, partial agonist, inverse agonist,
antagonist)
Functional Selectivity Hypothesis:
Conformational change induced by a
ligand-receptor interaction may cause
differential functional activation
depending on the G-protein and other
proteins associated with the target
receptor
Important implications of
drug-receptor interaction
• drugs can potentially alter rate of any bodily/brain function
• drugs cannot impart entirely new functions to cells
• drugs do not create effects, only modify ongoing ones
• drugs can allow for effects outside of normal physiological
range
Law of Mass Action
(a model to explain ligand-receptor binding)
• When a drug combines with a receptor, it does so at a rate which
is dependent on the concentration of the drug and of the
receptor
• Assumes it’s a reversible reaction
• Equilibrium dissociation (Kd) and association/affinity (Ka)
constants
– Kd = Kon/Koff = [D][R]/[DR]
– Ka = 1/Kd = Koff/Kon = [DR]/[D][R]

More Related Content

What's hot

Membrane transport
Membrane transport Membrane transport
Membrane transport
Naser Tadvi
 
Drug metabolism : Biotransformation
Drug metabolism : BiotransformationDrug metabolism : Biotransformation
Drug metabolism : Biotransformation
Rahul Kunkulol
 
Developmental toxicology 18 nov-11-1
Developmental toxicology 18 nov-11-1Developmental toxicology 18 nov-11-1
Developmental toxicology 18 nov-11-1Iyad Abou Rabii
 
Drug receptors in pharmacology
Drug receptors in pharmacologyDrug receptors in pharmacology
Drug receptors in pharmacologyBindu Pulugurtha
 
Drug actions
Drug actionsDrug actions
Drug actionsraj kumar
 
mechanism of action of drugs
mechanism of action of drugsmechanism of action of drugs
mechanism of action of drugs
Koppala RVS Chaitanya
 
Drug receptor interactions and types of receptor
Drug receptor interactions and types of receptorDrug receptor interactions and types of receptor
Drug receptor interactions and types of receptor
Dr. Siddhartha Dutta
 
Biopharmaceutical factors affecting metabolism
Biopharmaceutical factors affecting metabolismBiopharmaceutical factors affecting metabolism
Biopharmaceutical factors affecting metabolism
SR drug laboratories
 
Non receptor mediated drug action
Non receptor mediated drug actionNon receptor mediated drug action
Non receptor mediated drug action
Dr. PARUL PREETY
 
Vijay biotransformation
Vijay biotransformationVijay biotransformation
Vijay biotransformation
Srikanth Doc
 
Reproductive Toxicology
Reproductive ToxicologyReproductive Toxicology
Reproductive Toxicology
elegacki
 
Types of receptors
Types of receptorsTypes of receptors
Types of receptors
DrSahilKumar
 
Nuclear receptor
Nuclear receptorNuclear receptor
Nuclear receptor
DR.HARI SINGH GOUR
 
Pharmacodynamics (Mechanisn of drug action)
Pharmacodynamics (Mechanisn of drug action) Pharmacodynamics (Mechanisn of drug action)
Pharmacodynamics (Mechanisn of drug action)
http://neigrihms.gov.in/
 
Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...
Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...
Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...Dr.UMER SUFYAN M
 
Genotoxicity
GenotoxicityGenotoxicity
Genotoxicity
Narsingh Kashyap
 
Absorption and distribution of drugs
Absorption and distribution of drugsAbsorption and distribution of drugs
Absorption and distribution of drugs
Viraj Shinde
 

What's hot (20)

Membrane transport
Membrane transport Membrane transport
Membrane transport
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 
Drug metabolism : Biotransformation
Drug metabolism : BiotransformationDrug metabolism : Biotransformation
Drug metabolism : Biotransformation
 
Developmental toxicology 18 nov-11-1
Developmental toxicology 18 nov-11-1Developmental toxicology 18 nov-11-1
Developmental toxicology 18 nov-11-1
 
Drug receptors in pharmacology
Drug receptors in pharmacologyDrug receptors in pharmacology
Drug receptors in pharmacology
 
Drug actions
Drug actionsDrug actions
Drug actions
 
Cell signaling
Cell signalingCell signaling
Cell signaling
 
mechanism of action of drugs
mechanism of action of drugsmechanism of action of drugs
mechanism of action of drugs
 
Drug receptor interactions and types of receptor
Drug receptor interactions and types of receptorDrug receptor interactions and types of receptor
Drug receptor interactions and types of receptor
 
Ion channels
Ion channelsIon channels
Ion channels
 
Biopharmaceutical factors affecting metabolism
Biopharmaceutical factors affecting metabolismBiopharmaceutical factors affecting metabolism
Biopharmaceutical factors affecting metabolism
 
Non receptor mediated drug action
Non receptor mediated drug actionNon receptor mediated drug action
Non receptor mediated drug action
 
Vijay biotransformation
Vijay biotransformationVijay biotransformation
Vijay biotransformation
 
Reproductive Toxicology
Reproductive ToxicologyReproductive Toxicology
Reproductive Toxicology
 
Types of receptors
Types of receptorsTypes of receptors
Types of receptors
 
Nuclear receptor
Nuclear receptorNuclear receptor
Nuclear receptor
 
Pharmacodynamics (Mechanisn of drug action)
Pharmacodynamics (Mechanisn of drug action) Pharmacodynamics (Mechanisn of drug action)
Pharmacodynamics (Mechanisn of drug action)
 
Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...
Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...
Pharmacokinetics :Passage of drug molecules across cell membrane and its dris...
 
Genotoxicity
GenotoxicityGenotoxicity
Genotoxicity
 
Absorption and distribution of drugs
Absorption and distribution of drugsAbsorption and distribution of drugs
Absorption and distribution of drugs
 

Similar to Pharmacology basics

Pharmacology
PharmacologyPharmacology
Pharmacology
tejamba
 
Basic of Pharmacology.ppt
Basic of Pharmacology.pptBasic of Pharmacology.ppt
Basic of Pharmacology.ppt
Alankar Shrivastav
 
Pharmacologyfrom zero to hero.pdf
Pharmacologyfrom zero to hero.pdfPharmacologyfrom zero to hero.pdf
Pharmacologyfrom zero to hero.pdf
Mohamed Alashram
 
Psychopharmacology-Unit-5.1 PSYCHIATRY.pptx
Psychopharmacology-Unit-5.1 PSYCHIATRY.pptxPsychopharmacology-Unit-5.1 PSYCHIATRY.pptx
Psychopharmacology-Unit-5.1 PSYCHIATRY.pptx
Mostafa Elsapan
 
Chapter 10 basic pharmaceutics
Chapter 10 basic pharmaceuticsChapter 10 basic pharmaceutics
Chapter 10 basic pharmaceuticsAnn Bentley
 
PHARMACOLGY I-Lecturer 1.pptx
PHARMACOLGY I-Lecturer 1.pptxPHARMACOLGY I-Lecturer 1.pptx
PHARMACOLGY I-Lecturer 1.pptx
KeyaArere
 
Pharmacology a subject of interest
Pharmacology  a subject of interestPharmacology  a subject of interest
Pharmacology a subject of interest
Nirmala College of Health Science
 
Drugs & behavior_tsdw
Drugs & behavior_tsdwDrugs & behavior_tsdw
Drugs & behavior_tsdwyb12g
 
Pharmacodynamics
PharmacodynamicsPharmacodynamics
Pharmacodynamics
sumitmahato20
 
SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15
Michelle Meyer
 
Pharma 2012 introduction lec 1 final 2012
Pharma 2012 introduction lec 1 final 2012Pharma 2012 introduction lec 1 final 2012
Pharma 2012 introduction lec 1 final 2012
Beth Villanueva Rey Matias
 
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
wakogeleta
 
SOC 204 Goldberg Ch 5
SOC 204 Goldberg Ch 5SOC 204 Goldberg Ch 5
SOC 204 Goldberg Ch 5
Michelle Cottrell
 
Drug interactions in psychiatry
Drug interactions in psychiatryDrug interactions in psychiatry
Drug interactions in psychiatry
Dr.Pj Chakma
 
PSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptxPSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptx
SabaJahan2
 
Pharmacology pdf
Pharmacology pdfPharmacology pdf
Pharmacology pdf
Ömer aslankan
 
Understanding Pharmacodynamics
Understanding PharmacodynamicsUnderstanding Pharmacodynamics
Understanding Pharmacodynamics
Dr Pankaj Kumar Gupta
 
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A PPharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Ravinandan A P
 

Similar to Pharmacology basics (20)

Pharmacology
PharmacologyPharmacology
Pharmacology
 
Basic of Pharmacology.ppt
Basic of Pharmacology.pptBasic of Pharmacology.ppt
Basic of Pharmacology.ppt
 
Pharmacologyfrom zero to hero.pdf
Pharmacologyfrom zero to hero.pdfPharmacologyfrom zero to hero.pdf
Pharmacologyfrom zero to hero.pdf
 
Psychopharmacology-Unit-5.1 PSYCHIATRY.pptx
Psychopharmacology-Unit-5.1 PSYCHIATRY.pptxPsychopharmacology-Unit-5.1 PSYCHIATRY.pptx
Psychopharmacology-Unit-5.1 PSYCHIATRY.pptx
 
Chapter 10 basic pharmaceutics
Chapter 10 basic pharmaceuticsChapter 10 basic pharmaceutics
Chapter 10 basic pharmaceutics
 
PHARMACOLGY I-Lecturer 1.pptx
PHARMACOLGY I-Lecturer 1.pptxPHARMACOLGY I-Lecturer 1.pptx
PHARMACOLGY I-Lecturer 1.pptx
 
Pharmacology a subject of interest
Pharmacology  a subject of interestPharmacology  a subject of interest
Pharmacology a subject of interest
 
Drugs & behavior_tsdw
Drugs & behavior_tsdwDrugs & behavior_tsdw
Drugs & behavior_tsdw
 
Pharmacodynamics
PharmacodynamicsPharmacodynamics
Pharmacodynamics
 
SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15
 
4556210.ppt
4556210.ppt4556210.ppt
4556210.ppt
 
Pharma 2012 introduction lec 1 final 2012
Pharma 2012 introduction lec 1 final 2012Pharma 2012 introduction lec 1 final 2012
Pharma 2012 introduction lec 1 final 2012
 
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
 
SOC 204 Goldberg Ch 5
SOC 204 Goldberg Ch 5SOC 204 Goldberg Ch 5
SOC 204 Goldberg Ch 5
 
Drug interactions in psychiatry
Drug interactions in psychiatryDrug interactions in psychiatry
Drug interactions in psychiatry
 
PSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptxPSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptx
 
Pharmacology pdf
Pharmacology pdfPharmacology pdf
Pharmacology pdf
 
Understanding Pharmacodynamics
Understanding PharmacodynamicsUnderstanding Pharmacodynamics
Understanding Pharmacodynamics
 
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A PPharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
 
MBBS Year 1 Intro to pharamcology 2016
MBBS Year 1 Intro to pharamcology 2016MBBS Year 1 Intro to pharamcology 2016
MBBS Year 1 Intro to pharamcology 2016
 

Recently uploaded

BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
Krishan Murari
 
The Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic PrinciplesThe Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic Principles
MedicoseAcademics
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
micro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdfmicro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdf
Anurag Sharma
 
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in DehradunDehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
chandankumarsmartiso
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
greendigital
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
Adv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMS
Adv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMSAdv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMS
Adv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMS
AkankshaAshtankar
 
Non-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdfNon-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdf
MedicoseAcademics
 
Aortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 BernAortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 Bern
suvadeepdas911
 
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptxThyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
Top 10 Best Ayurvedic Kidney Stone Syrups in India
Top 10 Best Ayurvedic Kidney Stone Syrups in IndiaTop 10 Best Ayurvedic Kidney Stone Syrups in India
Top 10 Best Ayurvedic Kidney Stone Syrups in India
Swastik Ayurveda
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Prof. Marcus Renato de Carvalho
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
Dr. Rabia Inam Gandapore
 
Netter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdfNetter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdf
BrissaOrtiz3
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
Sapna Thakur
 
Journal Article Review on Rasamanikya
Journal Article Review on RasamanikyaJournal Article Review on Rasamanikya
Journal Article Review on Rasamanikya
Dr. Jyothirmai Paindla
 
Light House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat EuropeLight House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat Europe
Lighthouse Retreat
 
Temporomandibular Joint By RABIA INAM GANDAPORE.pptx
Temporomandibular Joint By RABIA INAM GANDAPORE.pptxTemporomandibular Joint By RABIA INAM GANDAPORE.pptx
Temporomandibular Joint By RABIA INAM GANDAPORE.pptx
Dr. Rabia Inam Gandapore
 
Sex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skullSex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skull
ShashankRoodkee
 

Recently uploaded (20)

BRACHYTHERAPY OVERVIEW AND APPLICATORS
BRACHYTHERAPY OVERVIEW  AND  APPLICATORSBRACHYTHERAPY OVERVIEW  AND  APPLICATORS
BRACHYTHERAPY OVERVIEW AND APPLICATORS
 
The Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic PrinciplesThe Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic Principles
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
micro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdfmicro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdf
 
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in DehradunDehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
Adv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMS
Adv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMSAdv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMS
Adv. biopharm. APPLICATION OF PHARMACOKINETICS : TARGETED DRUG DELIVERY SYSTEMS
 
Non-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdfNon-respiratory Functions of the Lungs.pdf
Non-respiratory Functions of the Lungs.pdf
 
Aortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 BernAortic Association CBL Pilot April 19 – 20 Bern
Aortic Association CBL Pilot April 19 – 20 Bern
 
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptxThyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
Thyroid Gland- Gross Anatomy by Dr. Rabia Inam Gandapore.pptx
 
Top 10 Best Ayurvedic Kidney Stone Syrups in India
Top 10 Best Ayurvedic Kidney Stone Syrups in IndiaTop 10 Best Ayurvedic Kidney Stone Syrups in India
Top 10 Best Ayurvedic Kidney Stone Syrups in India
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
 
Netter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdfNetter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdf
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
 
Journal Article Review on Rasamanikya
Journal Article Review on RasamanikyaJournal Article Review on Rasamanikya
Journal Article Review on Rasamanikya
 
Light House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat EuropeLight House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat Europe
 
Temporomandibular Joint By RABIA INAM GANDAPORE.pptx
Temporomandibular Joint By RABIA INAM GANDAPORE.pptxTemporomandibular Joint By RABIA INAM GANDAPORE.pptx
Temporomandibular Joint By RABIA INAM GANDAPORE.pptx
 
Sex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skullSex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skull
 

Pharmacology basics

  • 1.
  • 3. Definitions • Pharmacokinetics – The process by which a drug is absorbed, distributed, metabolized and eliminated by the body • Pharmacodynamics – The interactions of a drug and the receptors responsible for its action in the body
  • 4. The Life Cycle of a Drug (pharmacokinetics) • Absorption • Distribution • Degradation • Excretion
  • 5. Slow Absorption • Orally (swallowed) • through Mucus Membranes – Oral Mucosa (e.g. sublingual) – Nasal Mucosa (e.g. insufflated) • Topical/Transdermal (through skin) • Rectally (suppository)
  • 6. Faster Absorption • Parenterally (injection) – Intravenous (IV) – Intramuscular (IM) – Subcutaneous (SC) – Intraperitoneal (IP) • Inhaled (through lungs)
  • 7. Fastest Absorption • Directly into brain – Intracerebral (into brain tissue) – Intracerebroventricular (into brain ventricles) General Principle: The faster the absorption, the quicker the onset, the higher the addictiveness, but the shorter the duration
  • 8. Absorption: Solubility • Water-soluble – Ionized (have electrical charge) – Crosses through pores in capillaries, but not cell membranes • Lipid(fat)-soluble – Non-ionized (no electrical charge) – Crosses pores, cell membranes, blood-brain-barrier Dissociation constant or pKa  indicates the pH where 50% of the drug is ionized (water soluble) and 50% non-ionized (lipid soluble); pKeq = pH + log [X]ionized/[X]non-ionized This affects a drug's solubility, permeability, binding, and other characteristics.
  • 10. Distribution: Depends on Blood Flow and Blood Brain Barrier
  • 11. • Excludes ionized substances; • Active transport mechanisms; • Not uniform – leaky (circumventricular areas)
  • 12. Bioavailability • The fraction of an administered dose of drug that reaches the blood stream. • What determines bioavailability? – Physical properties of the drug (hydrophobicity, pKa, solubility) – The drug formulation (immediate release, delayed release, etc.) – If the drug is administered in a fed or fasted state – Gastric emptying rate – Circadian differences – Interactions with other drugs – Age – Diet – Gender – Disease state
  • 13. Depot Binding (accumulation in fatty tissue) • Drugs bind to “depot sites” or “silent receptors” (fat, muscle, organs, bones, etc) • Depot binding reduces bioavailability, slows elimination, can increase drug detection window • Depot-bound drugs can be released during sudden weight loss – may account for flashback experiences?
  • 14. Degradation & Excretion • Kidneys – Traps water-soluble (ionized) compounds for elimination via urine (primarily), feces, air, sweat • Liver – Enzymes(cytochrome P-450) transform drugs into more water- soluble metabolites – Repeated drug exposure increases efficiency  tolerance
  • 15. Excretion: Other routes • Lungs alcohol breath • Breast milk acidic ---> ion traps alkaloids alcohol: same concentration as blood antibiotics • Also bile, skin, saliva ~~
  • 16. Metabolism and Elimination (cont.) • Half-lives and Kinetics – Half-life: • Plasma half-life: Time it takes for plasma concentration of a drug to drop to 50% of initial level. • Whole body half-life: Time it takes to eliminate half of the body content of a drug. – Factors affecting half-life • age • renal excretion • liver metabolism • protein binding
  • 17. First order kinetics A constant fraction of drug is eliminated per unit of time. When drug concentration is high, rate of disappearance is high.
  • 18. Zero order kinetics Rate of elimination is constant. Rate of elimination is independent of drug concentration. Constant amount eliminated per unit of time. Example: Alcohol
  • 19. Comparison • First Order Elimination – [drug] decreases exponentially w/ time – Rate of elimination is proportional to [drug] – Plot of log [drug] or ln[drug] vs. time are linear – t 1/2 is constant regardless of [drug] • Zero Order Elimination – [drug] decreases linearly with time – Rate of elimination is constant – Rate of elimination is independent of [drug] – No true t 1/2
  • 20. Drug Effectiveness • Dose-response (DR) curve – Depicts the relation between drug dose and magnitude of drug effect • Drugs can have more than one effect • Drugs vary in effectiveness – Different sites of action – Different affinities for receptors • The effectiveness of a drug is considered relative to its safety (therapeutic index)
  • 21. ED50 = effective dose in 50% of population 100 50 0 DRUG DOSE 0 X ED50 % subjects
  • 22. Therapeutic Index • Effective dose (ED50) = dose at which 50% population shows response • Lethal dose (LD50) =dose at which 50% population dies • TI = LD50/ED50, an indication of safety of a drug (higher is better) ED50 LD50
  • 23. Potency • Relative strength of response for a given dose – Effective concentration (EC50) is the concentration of an agonist needed to elicit half of the maximum biological response of the agonist – The potency of an agonist is inversely related to its EC50 value • D-R curve shifts left with greater potency
  • 24. Efficacy • Maximum possible effect relative to other agents • Indicated by peak of D-R curve • Full agonist = 100% efficacy • Partial agonist = 50% efficacy • Antagonist = 0% efficacy • Inverse agonist = -100% efficacy
  • 26. Tolerance (desensitization) • Decreased response to same dose with repeated (constant) exposure • or more drug needed to achieve same effect • Right-ward shift of D-R curve • Sometimes occurs in an acute dose (e.g. alcohol) • Can develop across drugs (cross- tolerance) • Caused by compensatory mechanisms that oppose the effects of the drug
  • 27. Sensitization • Increased response to same dose with repeated (binge-like) exposure • or less drug needed to achieve same effect • Left-ward shift in D-R curve • Sometimes occurs in an acute dose (e.g. amphetamine) • Can develop across drugs (cross- sensitization) It is possible to develop tolerance to some side effects AND sensitization to other side effects of the same drug
  • 28. Mechanisms of Tolerance and Sensitization • Pharmacokinetic – changes in drug availability at site of action (decreased bioavailability) – Decreased absorption – Increased binding to depot sites • Pharmacodynamic – changes in drug-receptor interaction – G-protein uncoupling – Down regulation of receptors
  • 29. Other Mechanisms of Tolerance and Sensitization • Psychological As the user becomes familiar with the drug’s effects, s/he learns tricks to hide or counteract the effects. Set (expectations) and setting (environment) Motivational Habituation Classical and instrumental conditioning (automatic physiological change in response to cues) • Metabolic The user is able to break down and/or excrete the drug more quickly due to repeated exposure. Increased excretion
  • 30. • Pharmacokinetic and pharmacodynamic – With pharmacokinetic drug interactions, one drug affects the absorption, distribution, metabolism, or excretion of another. – With pharmacodynamic drug interactions, two drugs have interactive effects in the brain. – Either type of drug interaction can result in adverse effects in some individuals. – In terms of efficacy, there can be several types of interactions between medications: cumulative, additive, synergistic, and antagonistic. Drug-drug Interactions
  • 31. Response Hi Lo Time Cumulative Effects Drug A Drug B The condition in which repeated administration of a drug may produce effects that are more pronounced than those produced by the first dose.
  • 32. Response Hi Lo Time A B Additive Effects A + B The effect of two chemicals is equal to the sum of the effect of the two chemicals taken separately, eg., aspirin and motrin.
  • 33. Response Hi Lo Time A B A + B Synergistic Effects The effect of two chemicals taken together is greater than the sum of their separate effect at the same doses, e.g., alcohol and other drugs
  • 34. Response Hi Lo Time A B A + B Antagonistic Effects The effect of two chemicals taken together is less than the sum of their separate effect at the same doses
  • 35. Pharmacodynamics • Receptor – target/site of drug action (e.g. genetically-coded proteins embedded in neural membrane) • Lock and key or induced-fit models – drug acts as key, receptor as lock, combination yields response – dynamic and flexible interaction
  • 36. Pharmacodynamics (cont.) • Affinity – propensity of a drug to bind with a receptor • Selectivity – specific affinity for certain receptors (vs. others)
  • 37. Agonism and Antagonism Agonists facilitate receptor response Antagonists inhibit receptor response (direct ant/agonists)
  • 38. Modes of Action • Agonism – A compound that does the job of a natural substance. – Does not effect the rate of an enzyme catalyzed reaction. • Up/down regulation – Tolerance/sensitivity at the cellular level may be due to a change in # of receptors (without the appropriate subunit) due to changes in stimulation • Antagonism – A compound inhibits an enzyme from doing its job. – Slows down an enzymatically catalyzed reaction.
  • 39. Agonists/Antagonists • Full • Partial • Direct/Competitive • Indirect/Noncompetitive • Inverse A single drug can bind to a single receptor and cause a mix of effects (agonist, partial agonist, inverse agonist, antagonist) Functional Selectivity Hypothesis: Conformational change induced by a ligand-receptor interaction may cause differential functional activation depending on the G-protein and other proteins associated with the target receptor
  • 40. Important implications of drug-receptor interaction • drugs can potentially alter rate of any bodily/brain function • drugs cannot impart entirely new functions to cells • drugs do not create effects, only modify ongoing ones • drugs can allow for effects outside of normal physiological range
  • 41. Law of Mass Action (a model to explain ligand-receptor binding) • When a drug combines with a receptor, it does so at a rate which is dependent on the concentration of the drug and of the receptor • Assumes it’s a reversible reaction • Equilibrium dissociation (Kd) and association/affinity (Ka) constants – Kd = Kon/Koff = [D][R]/[DR] – Ka = 1/Kd = Koff/Kon = [DR]/[D][R]