SlideShare a Scribd company logo
1 of 90
1
IMPACT OF AIR-SEA INTERACTION
ON THE OCEAN AND ATMOSPHERE
Air mass source regions and their paths
ITCZ dan Front ITCZ merupakan singkatan dari Inter-Tropical Convergence
Zones merupakan tempat bertemunya dua masssa udara yang
memiliki sifat dan kekuatan yang sama.
 Lokasi yang identik dengan terjadinya konvergensi (naiknya
massa udara) lalu tekanan udara menjadi rendah dikenal dengan
istilah siklon, pada akhirnya menjadi wilayah tempat semua
angin akan bergerak.
 Dampak yang terjadi adalah wilayah ITCZ menjadi wilayah yang
bercuaca buruk akan terbentuk awan besar yang berkembang
vertikal (Cumulonimbos, Cb).
 Sehingga terjadi hujan badai besar dengan angin dan petir.
ITCZ
Posisi ITCZ bulan Januari dan Juli
FRONT
 Front didefinisikan sebagai wilayah transisi tempat
bertemunya dua massa udara yang berbeda sifat fisik
dan kekuatannya.
 Lokasi kejadian lintang tinggi sekitar 66.5o lintang
utara atau selatan.
 Awal pembentukan, perkembangan hingga penguatan
front dikenal dengan istilah FRONTOGENESIS
What is an atmospheric front?
 A front is a transition zone between two air masses of different
densities.
 The density contrast results from:
 Difference in temperature;
 Difference in humidity.
 The frontal zone (surface) is the
upward extension of the front.
 Sometimes the frontal zones can be very sharp.
 The intensity of the weather along the front depends on the contrast of
the air mass properties.
 The type of front depends on both the direction in which the air mass is
moving and the characteristics of the air mass.
FRONT
Pada kondisi normal (a) dan tingkat pembentukan front (b)
FRONT
 Sedangkan fase akhir pelenyapan atau penghancuran
front dikenal sebagai FRONTOLISIS.
 Front sama halnya dengan ITCZ merupakan siklon
(pusat tekanan rendah) sehingga cuaca buruk.
 Gambar sebaran suhu ke arah tegak di dalam daerah
front dapat dilihat pada Gambar merupakan
indikator front adanya perbedaan suhu yang
tajam sepanjang front.
FRONT
Distribusi suhu pada penampang melintang front
JENIS-JENIS FRONTBerdasarkan hasil akhir dari pertempuran dua massa udara, mana
yang menjadi dominan akan dijadikan nama dari front tersebut:
(1). Front dingin: massa udara dingin menggilas massa udara
panas
(2). Front panas: massa udara panas mendesak massa udara
dingin
(3). Front campuran: front dingin dan front panas bertemu
sehingga front dingin akan lebih cepat mengambil alih lokasi
front panas.
(4). Front quasi stasioner: apabila dua massa udara baik dingin
mapun panas masing-masing tidak cukup kuat untuk saling
mendesak, sehingga tidak jelas mana yang mendominasi.
(5). Siklon frontal: adalah siklon ekstratropis yang mengandung
sistem frontal.
Cold Fronts
 Associated with low pressure centers (low pressure troughs): follow the
dashed line
 The pressure is minimum as the front passes (first decreases as the front
approaches and then increases behind the front)
 Steep leading edge: the vertical slope of a cold front surface is 1:50 - 1:100
(ratio of vertical rise to horizontal distance). For comparison: warm fronts
have ratios 1:200 – 1:300.
 The steeper the edge, the faster the front (the effect of surface friction).
 Cold fronts tend to move faster than all other types of fronts.
 Cold fronts tend to be associated with the most violent weather among all
types of fronts.
 Cold fronts tend to move the farthest while maintaining their intensity.
 Cirrus clouds well ahead of the front
 Strong thunderstorms with heavy showers and gusty winds along and ahead
of the front: squall lines
 Broad area of cumulus clouds immediately behind the front (although fast
moving fronts may be mostly clear behind the front).
Characteristics of a Warm Front
 The slope of a typical warm front is 1:200 (more gentle than cold
fronts) -> warm fronts tend to advance more slowly.
 Warm fronts are typically less violent than cold fronts.
 Overrunning: warmer, less-dense air rides up and over the colder,
more-dense surface air.
 Frontal inversion: temperature inversion at the front -> stable
atmosphere
Warm Fronts: cloud and precipitation patterns
 Although they can trigger thunderstorms, warm fronts
are more likely to be associated with large regions of
stratus clouds and light to moderate continuous rain.
 Warm fronts are usually preceded by cirrus first, then
altostratus or altocumulus, then stratus and possibly
fog.
 At the warm front, gradual transition.
 Behind the warm front, skies are relatively clear.
1. The weather during a WARM FRONT starts with
cirrus clouds about 24-48 hours before the rain
begins
2. As more warm air is pushed upward, more moisture
condenses forming cirrostratus clouds
3. Warm front: rain or snow is steady over several
hours or days
Occluded fronts.
 Cold fronts move faster than warm fronts.
They can catch up and overtake their related
warm front. When they do, an occluded
front is formed.
 Cold occlusion: very cold air behind, not so
cold air ahead of, the warm front
 The upper warm front follows the surface
occluded front
Cold occlusion
Warm Occlusion
 Very cold air ahead of, not so cold air
behind, the warm front
 The cooler air from the cold front cannot
lift the very cold air ahead, rides
“piggyback”
 The warm front aloft precedes the surface
occluded front
Stationary Front
 Stationary front- a front which does not move or barely moves.
 Stationary fronts behave like warm fronts, but are more quiescent.
 Many times the winds on both sides of a stationary front are parallel to the
front and have opposite direction.
 Typically stationary fronts form when polar air masses are modified
significantly so as to lose their character (e.g., cold fronts which stall).
 Typically there is no strong precipitation associated with stationary fronts
(why? – no big contrast in the air mass properties, no air uplifting and
condensation).
Weakening/Strengthening of the Front
 Frontogenesis:
 The front intensifies.
 Why? – The temperature
(humidity) contrast across the
front is increasing.
 Example: cP air mass moves
over warm ocean water.
• Frontolysis:
♦ The front weakens and dissipates
♦ Why?-the air masses start losing
their identities.
♦ The temperature (humidity)
contrast across the front is
decreasing.
♦ Typical for slow moving fronts
Clouds and Fronts - Example
Perbedaan Siklon & Antisiklon
ANTI SIKLON SIKLON
Pusat tekanan udara tinggi semi
permanen, simbol HTerbentuk di suatu
wilayah yang sedang berlangsung musim
winter. Pola angin divergen (massa udara
turun). Cuaca cerah, sulit terbentuk awan
sehingga jarang hujan
Pusat tekanan udara rendah semi
permanen, simbol LTerbentuk di suatu
wilayah yang sedang berlangsung musim
summerPola angin konvergen (massa udara
naik)Cuaca berkabut, Terbentuk awan-
awan berpotensi sebagai hujan
Bila terjadi polusi udara akan
terperangkap di dekat permukaan contoh
kejadian di Kota London Desember
1952, sebanyak 5.000 penduduk tewas
karena polutan.
Akibat gaya coriolis badai tropis dengan
angin 60 km/jam, siklon trpois > 120
km/jam (Hurricane, Typhoon), dilaut
kecepatan angin > 250 km/jam. Contoh di
Banglades Nop 1970, sebanyak 20.000
penduduk tewas diterjang siklon tropis.
Pusat antisiklon tetap:
-23.5oLU/LS di darat pada wilayah
gurun dan di laut pada lintang kuda
-90oKU/KS dingin dan kering
Pusat siklon tetap:-di equator 0o: ITCZ
-di 66.5oLU/LS
32
Katrina, 2005 Dean, 2007 Felix, 2007
In the back part of the cyclone
propagating over the GS front, cold
and dry Arctic air masses are
advected over the relatively warm
water (cold-air outbreak). In this case
the largest sea-air temperature
differences are observed exactly over
the SST front due to much smoother
spatial temperature gradients in the
atmosphere in comparison to the
ocean. South of the SST front
thermodynamic adjustment works to
decrease the air-sea temperature and
humidity differences. In the forward
part of cyclone the advection of the
moist and warm air to the north (warm
air outbreak) results in the local
decrease of surface fluxes, associated
with the advective fogs and strong
vertical motions in the lower 100-200
m layer of the atmosphere.
SST
Tair
cold
warm
SMMR
 Generating electric power from wind energy at sea
(floating wind farms)
 Avoid hazard conditions in shipping
 Ocean-atmosphere exchanges, in heat, water, and
greenhouse gases
Distribution of Wind Speed
Center of cyclonic currents
Center of cyclonic currents
Center of cyclonic currents
Center of cyclonic currents
Center of cyclonic currents
E-P
Flux Divergence
E-P
Subtropical
South Pacific
CC=0.856
CC=0.913
Equatorial
western Pacific
CC=0.81
CC=0.764
Global Water Balance - JASON
Global Water Balance-GRACE
Global Water Balance-GRACE
Water Balance over Global Ocean
Ocean’s Influence on Water Balance of South America
The approximate balance of dM/dt with ∫-R bolsters not
only the credibity of the spacebased measurements, but
supports the characterization of ocean’s influence on
continental water balance.
Liu et al., GRL 2006
Filtered ENW (color) and SST (contour)
Collocation of ENW magnitude with SST is inherent in
the definition of ENW and turbulent mixing theory.
Filtered precipitation (color) and SST (contour)
Precipitation is in quadrature with SST and in phase
with surface wind convergence.
Major currents, gyres, rings, and eddies
(basin scale)
 Winds and wind-driven basin circulation
 Meanders, rings, eddies and gyres
 The thermohaline circulation
Winds
Unevenly heating
by the sun
Spinning sphere
Winds and wind-driven basin circulation
Subtropical
gyre
Strong and narrow
western boundary
current
Subtropical
gyre
Subpolar gyre
1. The Coriolis force causes the moving water to be deflected
to the right of the right of the wind (in NH). The net effect
of winds in the upper ocean is a flow perpendicular to the
wind (i.e. Ekman transport).
2. The strong western boundary currents are formed due to the
variation of the Coriolis parameter with latitude.
Meanders, rings, eddies and gyres
gyre
•Meanders: Jet stream develop large oscillations caused by
its unstable.
•Rings: Eddy pinched off from meander as it become too
large.
Anticlockwise and clockwise rotating rings are cold and
warm rings, respectively.
They contain water from the opposite side of the stream
having the other side’s physical, chemical and biological
properties.
The interaction of meander and rings create significant
vertical transports of nutrient and plankton which enhance
biological activity
•Eddies: The closed circulation with horizontal scale of
10-100km and time scale of 10-30 days. The upward
and downward vertical velocities in cyclonic and
anticyclonic will enhance biological productivity,
respectively.
High surface Chl-a
•Gyres: A circular current that is confined by or
associated with bathymetric features and covers a wide
range of spatial scales.
The Thermohaline Circulation (north-south vertical
circulation
Sinking of
dense water
due to
cooling in mid
to high
latitude.
•The global conveyor belt thermohaline circulation
is driven primarily by the formation and sinking of
deep water (from around 1500m to the Antarctic
bottom water overlying the bottom of the ocean) in
the Norwegian Sea.
•This circulation is thought to be responsible for
the large flow of upper ocean water from the
tropical Pacific to the Indian Ocean through the
Indonesian Archipelogo.
•The two counteracting forcings operating in the
North Atlantic control the conveyor belt circulation:
(1) the thermal forcing (high-latitude cooling and the
low-latitude heating) which drives a polar southward
flow; and (2) haline forcing (net high-latitude
freshwater gain and low-latitude evaporation) which
moves in the opposite direction. In today's Atlantic
the thermal forcing dominates, hence, the flow of
upper current from south to north.
What is an Eddy?
Turbulent rings that trap cold or
warm water in their centers and
then separate from the main
flow
Eddies or "rings "can be
detected from satellite infrared
sensors
69
How are they formed?
Cold-core Warm-core
 Forms from cold water
trapped within the
warmer Gulf Stream
water
 Cyclonic , Rotate
counterclockwise
 (N. Hemisphere)
 Forms from warm Gulf
Stream water
meandering and causes
a warm ring to break
off
 Anticyclonic ,Rotate
clockwise
 (N. Hemisphere)
70
Where Eddies are formed?
 You can find eddies in all parts of the ocean
but highly energetic rings and eddies are
commonly associated with faster flowing
currents, western boundary currents (Gulf
Stream, Kuroshio)
 Eddy formation from water flowing around
seamounts
 Areas of convergent or divergent water
masses
71
Sargasso Sea
15-25 deg C
“Slope water” Colder
more nutrient-rich
< 10 deg C
72
Warm-core
Core-core
73
Pictures from
www.jochemnet.de/fiu/Gulfstream.gif
74
Mesoscale Eddies
 Diameter of an eddy can range from 10 to 1oos of
kilometers
 Formation time from the start of a meander and the
separation of the eddy is on the order of 40 days
 Eddies can last a month and up to a year- Average
lifetime of a few months ex. Cold-core eddies can be
tracked up to 2 yrs before it fully dissipates into the
Sargasso Sea, Warm-core eddies can last up to 1 yr
 They are maintained b/c of the strong density
difference between the eddy and the surrounding
water
75
Why are Eddies Important?
 Physical-They are an important mechanism for
mixing in the surface ocean and transporting
energy (ex. heat)
 Chemical- Cold-core eddies bring nutrients (N,
P, O) up to the surface for biological use
 Biological- Cold-core eddies can fertilize the
upper ocean to support phytoplankton blooms,
Warm-core can trap and transport a variety of
organisms (ecological importance ex. Larval
dispersal)
76
Research on Eddies
 Biological- Ecological
Perspective
 Entrainment of Antarctic
euphausiids across the
Antarctic Polar Front by a
cold eddy(2007)Bernard et al.
 Cold eddies transporting
Antarctic euphausiid (krill)
species equatorward,
contributing to the spatial
diversity of the zooplankton
community within the region
 Chemical-Biogeochemical
Perspective
 On the role of eddies for
coastal productivity and
carbon export to the open-
ocean (2007) Gruber et al.
 Model study of the California
Current that resulted in
weakening coastal upwelling,
reducing biological
productivity and carbon
export from the warm-core
nutrient depleted eddies
brought to the shore
77
Role of Eddies
Eddies are important to all aspects of
oceanography (Biological, Chemical
and Physical) and often involve the
overlap of research areas (ex.
Biogeochemical, Biophysical)
78
Western
Boundaries
Loder, Boicourt
and Simpson,
Vol. 11, THE SEA
Lohrenz and Castro
Vol. 14A, THE SEA
Western Ocean Boundaries
• Complex circulation patterns, typified by eddies and current instabilities, are
key to enhanced nutrient entrainment and high biological productivity.
• Exchanges between offshore and coastal waters create a dynamic
environment, in many cases stimulating high primary productivity.
• Role of intrusions of subsurface waters in enhancing nutrient supply is
important for extensive areas of continental shelves.
• Linkages are evident within regions, and important linkages exist between
western boundary current systems and other regions. Consequences and
importance for ecosystem processes have only begun to be explored.
• Lack of observations limits understanding of physics and associated ecosystem
processes. Examples: linkages between primary production and higher trophic
levels, and impact on recruitment of key fisheries species; biogeochemical
rates critical for carbon and nitrogen budgets; microbial processing of
terrigeneous organic matter; denitrification; and, nitrogen fixation.
Eastern Boundaries
Hill, Hickey, Shillington,
Strub, Brink, Barton,
Thomas,
Mackas, Strub,
Thomas,
Montecino,
Eastern Ocean Boundaries
• Mechanisms and rates of nutrient supply, and differences in these between
macronutrients (N, P, Si) vs. micronutrients (Fe, Cu, . . .)
• Within-region zonation of habitat utilization – ‘hotspots’ of high productivity
and abundance, spawning centers, nursery grounds.
• Strong variability at interannual to decadal time scales. Important between-
and within-region contrasts in seasonal and event-scale timing and
sequencing of key processes, especially relative phasing of nutrient supply,
advection, mixing, and somatic and reproductive growth of biota.
• Role of topographic complexity: islands, capes, canyons and shelf-edge
irregularities produce important and recurrent perturbations of distribution
fields.
Important research issues and oceanographic mechanisms are
important in all or most regions, including:
Polar Boundaries
Ingram, Carmack,
McLaughlin,
Nicol
Vol. 14A, THE
Ingram, Carmack,
McLaughlin,
Nicol
Vol. 14A, THE
Ingram, Carmack,
McLaughlin,
Nicol
Vol. 14A, THE
Three types:
i) nearly-enclosed with limited
exchanges with the open ocean (e.g.
Sea of Okhotsk, Bohai Sea, Japan
Sea)
ii) Partially-enclosed with moderate
exchanges along 1 or 2 boundaries
(e.g. Yellow Sea)
iii) Peripheral seas extending along
continental margins and having
strong interactions (e.g. Outer SE
China Sea, shelf seas around
Australia)
Semi-Enclosed Seas and Islands
Church, Bethoux, Theocharis, Vol. 11, THE SEA; Oguz and Su, Vol. 14, THE SEA
The effective management and protection of coastal ecosystems must
be science-based. With this general purpose in mind, the COASTS
Programme, sponsored by the Intergovernmental Oceanographic
Commission of UNESCO and the Scientific Committee on Oceanic
Research, was established to promote and facilitate research and
applications in interdisciplinary coastal and shelf ocean
sciences and technology on a global basis to increase scientific
understanding of coastal ocean processes.
Literature Sited
 Bernard, A.T.F, Ansorger, I.J., Froneman,P.W., Lutjeharms, J.R.E. and Swart, N.C. 2007.
Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy.
Deep Sea Research Part I. 54.10.1841-1851
 Gruber, N., Frenzel, H., Marchesiello, P., McWilliams, J.C., Nagai, T and Platter, G, -K.
(2007). On the role of eddies for coastal productivity and carbon export to the open
ocean. Geophysical Research Abstracts. 9.
 Garrison, T. Oceanography An Invitation to Marine Science 4th Edition
 Knass, J.A. Introduction to Physical Oceanography 2nd Edition
 Pickart, G.L. and Emery, W.J. An Introduction: Descriptive Physical Oceanography 5th
Edition
90

More Related Content

What's hot

Paleontologi 2: Fossil, Evolusi & Waktu Geologi
Paleontologi 2: Fossil, Evolusi & Waktu GeologiPaleontologi 2: Fossil, Evolusi & Waktu Geologi
Paleontologi 2: Fossil, Evolusi & Waktu GeologiBudhi Kuswan Susilo
 
Perencanaan bangunan pantai
Perencanaan bangunan pantaiPerencanaan bangunan pantai
Perencanaan bangunan pantaiAgus Subandrio
 
Pim1221 7 menangkap ikan dengan trawl
Pim1221 7 menangkap ikan dengan trawlPim1221 7 menangkap ikan dengan trawl
Pim1221 7 menangkap ikan dengan trawlPT. SASA
 
Pengantar oseanografi
Pengantar oseanografiPengantar oseanografi
Pengantar oseanografinaufalulhaq2
 
Materi Air Tanah Mata Kuliah Hidrologi
Materi Air Tanah Mata Kuliah HidrologiMateri Air Tanah Mata Kuliah Hidrologi
Materi Air Tanah Mata Kuliah HidrologiNurul Afdal Haris
 
Unsur unsur mayor-air_laut
Unsur unsur mayor-air_lautUnsur unsur mayor-air_laut
Unsur unsur mayor-air_lautAhmad Nur
 
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTIONMEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTIONSumarno Feriyal
 
Power point terumbu karang
Power point terumbu karangPower point terumbu karang
Power point terumbu karangrantikaput
 
Pesisir 06 PENGEMBANGAN KAWASAN PESISIR
Pesisir 06 PENGEMBANGAN KAWASAN PESISIRPesisir 06 PENGEMBANGAN KAWASAN PESISIR
Pesisir 06 PENGEMBANGAN KAWASAN PESISIRsuningterusberkarya
 
Dasar-Dasar Pengelolaan Pesisir Dan Laut
Dasar-Dasar Pengelolaan Pesisir Dan LautDasar-Dasar Pengelolaan Pesisir Dan Laut
Dasar-Dasar Pengelolaan Pesisir Dan LautSiti Sahati
 
Kelompok 6(makalah batuan dn mineral)
Kelompok 6(makalah batuan dn mineral)Kelompok 6(makalah batuan dn mineral)
Kelompok 6(makalah batuan dn mineral)Nanda Reda
 
Skripsi mikropastik 1 sasa new
Skripsi mikropastik 1 sasa newSkripsi mikropastik 1 sasa new
Skripsi mikropastik 1 sasa newadhehermawan
 

What's hot (20)

Sedimen.& Strat.ppt
Sedimen.& Strat.pptSedimen.& Strat.ppt
Sedimen.& Strat.ppt
 
Paleontologi 2: Fossil, Evolusi & Waktu Geologi
Paleontologi 2: Fossil, Evolusi & Waktu GeologiPaleontologi 2: Fossil, Evolusi & Waktu Geologi
Paleontologi 2: Fossil, Evolusi & Waktu Geologi
 
Perencanaan bangunan pantai
Perencanaan bangunan pantaiPerencanaan bangunan pantai
Perencanaan bangunan pantai
 
Mklh arus ekman
Mklh arus ekmanMklh arus ekman
Mklh arus ekman
 
Modul teknik pondasi 1
Modul   teknik pondasi 1Modul   teknik pondasi 1
Modul teknik pondasi 1
 
Pim1221 7 menangkap ikan dengan trawl
Pim1221 7 menangkap ikan dengan trawlPim1221 7 menangkap ikan dengan trawl
Pim1221 7 menangkap ikan dengan trawl
 
Pengantar oseanografi
Pengantar oseanografiPengantar oseanografi
Pengantar oseanografi
 
KERUNTUHAN PONDASI
KERUNTUHAN PONDASIKERUNTUHAN PONDASI
KERUNTUHAN PONDASI
 
Planktonologi
PlanktonologiPlanktonologi
Planktonologi
 
Mekanika tanah 1 ppt
Mekanika tanah 1 pptMekanika tanah 1 ppt
Mekanika tanah 1 ppt
 
Materi Air Tanah Mata Kuliah Hidrologi
Materi Air Tanah Mata Kuliah HidrologiMateri Air Tanah Mata Kuliah Hidrologi
Materi Air Tanah Mata Kuliah Hidrologi
 
Unsur unsur mayor-air_laut
Unsur unsur mayor-air_lautUnsur unsur mayor-air_laut
Unsur unsur mayor-air_laut
 
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTIONMEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
MEKANIKA REKAYASA DENGAN METODE CROSS DAN SLOPE DEFLECTION
 
Power point terumbu karang
Power point terumbu karangPower point terumbu karang
Power point terumbu karang
 
Pesisir 06 PENGEMBANGAN KAWASAN PESISIR
Pesisir 06 PENGEMBANGAN KAWASAN PESISIRPesisir 06 PENGEMBANGAN KAWASAN PESISIR
Pesisir 06 PENGEMBANGAN KAWASAN PESISIR
 
Dasar-Dasar Pengelolaan Pesisir Dan Laut
Dasar-Dasar Pengelolaan Pesisir Dan LautDasar-Dasar Pengelolaan Pesisir Dan Laut
Dasar-Dasar Pengelolaan Pesisir Dan Laut
 
7 geologi-struktur
7 geologi-struktur7 geologi-struktur
7 geologi-struktur
 
Kelompok 6(makalah batuan dn mineral)
Kelompok 6(makalah batuan dn mineral)Kelompok 6(makalah batuan dn mineral)
Kelompok 6(makalah batuan dn mineral)
 
Stabilitas lereng
Stabilitas lerengStabilitas lereng
Stabilitas lereng
 
Skripsi mikropastik 1 sasa new
Skripsi mikropastik 1 sasa newSkripsi mikropastik 1 sasa new
Skripsi mikropastik 1 sasa new
 

Similar to Pertemuan 03 front

Ch. 20 Notes
Ch. 20 NotesCh. 20 Notes
Ch. 20 Notesbasdsci
 
Weather and climate
Weather and climateWeather and climate
Weather and climateAra Lucas
 
fronts- their formation and kinds
fronts- their formation and kindsfronts- their formation and kinds
fronts- their formation and kindszubair mashal
 
Weather cells and weather systems of atmosphere
Weather cells and weather systems of atmosphereWeather cells and weather systems of atmosphere
Weather cells and weather systems of atmosphereSunil Kumar
 
GEOG 100 Lecture 08--Airmasses and Storms
GEOG 100 Lecture 08--Airmasses and StormsGEOG 100 Lecture 08--Airmasses and Storms
GEOG 100 Lecture 08--Airmasses and Stormsangelaorr
 
Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216
Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216
Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216angelaorr
 
Weather And Climate
Weather And ClimateWeather And Climate
Weather And ClimateMrs. Henley
 
Cyclone and anticyclone
Cyclone and anticycloneCyclone and anticyclone
Cyclone and anticycloneYenyen H
 
Notes - Air Masses, Fronts, Global Winds
Notes - Air Masses, Fronts, Global WindsNotes - Air Masses, Fronts, Global Winds
Notes - Air Masses, Fronts, Global WindsBantay's Oceanography
 
Natural Disasters Topic 9 (Inland Storms)
Natural Disasters Topic 9 (Inland Storms)Natural Disasters Topic 9 (Inland Storms)
Natural Disasters Topic 9 (Inland Storms)William W. Little
 
What Makes the Wind Blow
What Makes the Wind BlowWhat Makes the Wind Blow
What Makes the Wind Blowdumouchelle
 
Weather and climate- CSEC Geography
Weather and climate- CSEC Geography Weather and climate- CSEC Geography
Weather and climate- CSEC Geography Oral Johnson
 

Similar to Pertemuan 03 front (20)

Chapter seven
Chapter sevenChapter seven
Chapter seven
 
Fronts.pptx
Fronts.pptxFronts.pptx
Fronts.pptx
 
Ch. 20 Notes
Ch. 20 NotesCh. 20 Notes
Ch. 20 Notes
 
Weather and climate
Weather and climateWeather and climate
Weather and climate
 
Weather and Climate
Weather and ClimateWeather and Climate
Weather and Climate
 
fronts- their formation and kinds
fronts- their formation and kindsfronts- their formation and kinds
fronts- their formation and kinds
 
Weather
WeatherWeather
Weather
 
Weather cells and weather systems of atmosphere
Weather cells and weather systems of atmosphereWeather cells and weather systems of atmosphere
Weather cells and weather systems of atmosphere
 
GEOG 100 Lecture 08--Airmasses and Storms
GEOG 100 Lecture 08--Airmasses and StormsGEOG 100 Lecture 08--Airmasses and Storms
GEOG 100 Lecture 08--Airmasses and Storms
 
Weather
WeatherWeather
Weather
 
Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216
Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216
Physical Geography Lecture 08 - Precipitation, Air Masses, and Storms 110216
 
Weather And Climate
Weather And ClimateWeather And Climate
Weather And Climate
 
Understanding the Weather Map
Understanding the Weather MapUnderstanding the Weather Map
Understanding the Weather Map
 
Cyclone and anticyclone
Cyclone and anticycloneCyclone and anticyclone
Cyclone and anticyclone
 
Notes - Air Masses, Fronts, Global Winds
Notes - Air Masses, Fronts, Global WindsNotes - Air Masses, Fronts, Global Winds
Notes - Air Masses, Fronts, Global Winds
 
Natural Disasters Topic 9 (Inland Storms)
Natural Disasters Topic 9 (Inland Storms)Natural Disasters Topic 9 (Inland Storms)
Natural Disasters Topic 9 (Inland Storms)
 
Wind [autosaved]
Wind [autosaved]Wind [autosaved]
Wind [autosaved]
 
What Makes the Wind Blow
What Makes the Wind BlowWhat Makes the Wind Blow
What Makes the Wind Blow
 
Weather and climate- CSEC Geography
Weather and climate- CSEC Geography Weather and climate- CSEC Geography
Weather and climate- CSEC Geography
 
Martinescu Cristina Adriana
Martinescu Cristina AdrianaMartinescu Cristina Adriana
Martinescu Cristina Adriana
 

More from Eko Efendi

05 mekanisme adaptasi
05 mekanisme adaptasi05 mekanisme adaptasi
05 mekanisme adaptasiEko Efendi
 
Sistem karbonat
Sistem karbonatSistem karbonat
Sistem karbonatEko Efendi
 
Co2 di air laut
Co2 di air lautCo2 di air laut
Co2 di air lautEko Efendi
 
Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6Eko Efendi
 
Kimia Air Laut_Pertemuan 5
Kimia Air Laut_Pertemuan 5Kimia Air Laut_Pertemuan 5
Kimia Air Laut_Pertemuan 5Eko Efendi
 
Pertemuan 06 el nino climate change
Pertemuan 06 el nino climate changePertemuan 06 el nino climate change
Pertemuan 06 el nino climate changeEko Efendi
 
Pertemuan 04 eddies dan biogeokimia
Pertemuan 04 eddies dan biogeokimiaPertemuan 04 eddies dan biogeokimia
Pertemuan 04 eddies dan biogeokimiaEko Efendi
 
Modul perkuliahan
Modul perkuliahanModul perkuliahan
Modul perkuliahanEko Efendi
 
Panduan praktikum ekowisata bahari2019
Panduan praktikum ekowisata bahari2019Panduan praktikum ekowisata bahari2019
Panduan praktikum ekowisata bahari2019Eko Efendi
 
Kontrak kuliah
Kontrak kuliahKontrak kuliah
Kontrak kuliahEko Efendi
 
6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat
6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat
6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakatEko Efendi
 
05 pengembangan pariwisata bahari
05 pengembangan pariwisata bahari05 pengembangan pariwisata bahari
05 pengembangan pariwisata bahariEko Efendi
 
03 perkembangan parisata kelautan indonesia
03 perkembangan parisata kelautan indonesia03 perkembangan parisata kelautan indonesia
03 perkembangan parisata kelautan indonesiaEko Efendi
 
02 konsep kepariwisataan
02 konsep kepariwisataan02 konsep kepariwisataan
02 konsep kepariwisataanEko Efendi
 
FISIKA DASAR_06 momentum
FISIKA DASAR_06 momentumFISIKA DASAR_06 momentum
FISIKA DASAR_06 momentumEko Efendi
 
FISIKA DASAR_05 energi
FISIKA DASAR_05 energiFISIKA DASAR_05 energi
FISIKA DASAR_05 energiEko Efendi
 
FISIKA DASAR_04 hukum newton
FISIKA DASAR_04 hukum newtonFISIKA DASAR_04 hukum newton
FISIKA DASAR_04 hukum newtonEko Efendi
 
FISIKA DASAR_03 dinamika
FISIKA DASAR_03 dinamikaFISIKA DASAR_03 dinamika
FISIKA DASAR_03 dinamikaEko Efendi
 

More from Eko Efendi (20)

05 mekanisme adaptasi
05 mekanisme adaptasi05 mekanisme adaptasi
05 mekanisme adaptasi
 
Alkalinitas
AlkalinitasAlkalinitas
Alkalinitas
 
Sistem karbonat
Sistem karbonatSistem karbonat
Sistem karbonat
 
Co2 di air laut
Co2 di air lautCo2 di air laut
Co2 di air laut
 
Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6
 
Kimia Air Laut_Pertemuan 5
Kimia Air Laut_Pertemuan 5Kimia Air Laut_Pertemuan 5
Kimia Air Laut_Pertemuan 5
 
Pertemuan 06 el nino climate change
Pertemuan 06 el nino climate changePertemuan 06 el nino climate change
Pertemuan 06 el nino climate change
 
Pertemuan 04 eddies dan biogeokimia
Pertemuan 04 eddies dan biogeokimiaPertemuan 04 eddies dan biogeokimia
Pertemuan 04 eddies dan biogeokimia
 
Modul perkuliahan
Modul perkuliahanModul perkuliahan
Modul perkuliahan
 
Panduan praktikum ekowisata bahari2019
Panduan praktikum ekowisata bahari2019Panduan praktikum ekowisata bahari2019
Panduan praktikum ekowisata bahari2019
 
Kontrak kuliah
Kontrak kuliahKontrak kuliah
Kontrak kuliah
 
6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat
6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat
6 7 8_merencanakan pariwisata berkelanjutan berbasis masyarakat
 
05 pengembangan pariwisata bahari
05 pengembangan pariwisata bahari05 pengembangan pariwisata bahari
05 pengembangan pariwisata bahari
 
04 ecotourism
04 ecotourism04 ecotourism
04 ecotourism
 
03 perkembangan parisata kelautan indonesia
03 perkembangan parisata kelautan indonesia03 perkembangan parisata kelautan indonesia
03 perkembangan parisata kelautan indonesia
 
02 konsep kepariwisataan
02 konsep kepariwisataan02 konsep kepariwisataan
02 konsep kepariwisataan
 
FISIKA DASAR_06 momentum
FISIKA DASAR_06 momentumFISIKA DASAR_06 momentum
FISIKA DASAR_06 momentum
 
FISIKA DASAR_05 energi
FISIKA DASAR_05 energiFISIKA DASAR_05 energi
FISIKA DASAR_05 energi
 
FISIKA DASAR_04 hukum newton
FISIKA DASAR_04 hukum newtonFISIKA DASAR_04 hukum newton
FISIKA DASAR_04 hukum newton
 
FISIKA DASAR_03 dinamika
FISIKA DASAR_03 dinamikaFISIKA DASAR_03 dinamika
FISIKA DASAR_03 dinamika
 

Recently uploaded

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Recently uploaded (20)

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

Pertemuan 03 front

  • 1. 1
  • 2. IMPACT OF AIR-SEA INTERACTION ON THE OCEAN AND ATMOSPHERE
  • 3. Air mass source regions and their paths
  • 4. ITCZ dan Front ITCZ merupakan singkatan dari Inter-Tropical Convergence Zones merupakan tempat bertemunya dua masssa udara yang memiliki sifat dan kekuatan yang sama.  Lokasi yang identik dengan terjadinya konvergensi (naiknya massa udara) lalu tekanan udara menjadi rendah dikenal dengan istilah siklon, pada akhirnya menjadi wilayah tempat semua angin akan bergerak.  Dampak yang terjadi adalah wilayah ITCZ menjadi wilayah yang bercuaca buruk akan terbentuk awan besar yang berkembang vertikal (Cumulonimbos, Cb).  Sehingga terjadi hujan badai besar dengan angin dan petir.
  • 5. ITCZ Posisi ITCZ bulan Januari dan Juli
  • 6.
  • 7. FRONT  Front didefinisikan sebagai wilayah transisi tempat bertemunya dua massa udara yang berbeda sifat fisik dan kekuatannya.  Lokasi kejadian lintang tinggi sekitar 66.5o lintang utara atau selatan.  Awal pembentukan, perkembangan hingga penguatan front dikenal dengan istilah FRONTOGENESIS
  • 8. What is an atmospheric front?  A front is a transition zone between two air masses of different densities.  The density contrast results from:  Difference in temperature;  Difference in humidity.  The frontal zone (surface) is the upward extension of the front.  Sometimes the frontal zones can be very sharp.  The intensity of the weather along the front depends on the contrast of the air mass properties.  The type of front depends on both the direction in which the air mass is moving and the characteristics of the air mass.
  • 9. FRONT Pada kondisi normal (a) dan tingkat pembentukan front (b)
  • 10. FRONT  Sedangkan fase akhir pelenyapan atau penghancuran front dikenal sebagai FRONTOLISIS.  Front sama halnya dengan ITCZ merupakan siklon (pusat tekanan rendah) sehingga cuaca buruk.  Gambar sebaran suhu ke arah tegak di dalam daerah front dapat dilihat pada Gambar merupakan indikator front adanya perbedaan suhu yang tajam sepanjang front.
  • 11. FRONT Distribusi suhu pada penampang melintang front
  • 12. JENIS-JENIS FRONTBerdasarkan hasil akhir dari pertempuran dua massa udara, mana yang menjadi dominan akan dijadikan nama dari front tersebut: (1). Front dingin: massa udara dingin menggilas massa udara panas (2). Front panas: massa udara panas mendesak massa udara dingin (3). Front campuran: front dingin dan front panas bertemu sehingga front dingin akan lebih cepat mengambil alih lokasi front panas. (4). Front quasi stasioner: apabila dua massa udara baik dingin mapun panas masing-masing tidak cukup kuat untuk saling mendesak, sehingga tidak jelas mana yang mendominasi. (5). Siklon frontal: adalah siklon ekstratropis yang mengandung sistem frontal.
  • 13.
  • 14.
  • 15.
  • 16. Cold Fronts  Associated with low pressure centers (low pressure troughs): follow the dashed line  The pressure is minimum as the front passes (first decreases as the front approaches and then increases behind the front)  Steep leading edge: the vertical slope of a cold front surface is 1:50 - 1:100 (ratio of vertical rise to horizontal distance). For comparison: warm fronts have ratios 1:200 – 1:300.  The steeper the edge, the faster the front (the effect of surface friction).  Cold fronts tend to move faster than all other types of fronts.  Cold fronts tend to be associated with the most violent weather among all types of fronts.  Cold fronts tend to move the farthest while maintaining their intensity.  Cirrus clouds well ahead of the front  Strong thunderstorms with heavy showers and gusty winds along and ahead of the front: squall lines  Broad area of cumulus clouds immediately behind the front (although fast moving fronts may be mostly clear behind the front).
  • 17.
  • 18.
  • 19.
  • 20. Characteristics of a Warm Front  The slope of a typical warm front is 1:200 (more gentle than cold fronts) -> warm fronts tend to advance more slowly.  Warm fronts are typically less violent than cold fronts.  Overrunning: warmer, less-dense air rides up and over the colder, more-dense surface air.  Frontal inversion: temperature inversion at the front -> stable atmosphere
  • 21. Warm Fronts: cloud and precipitation patterns  Although they can trigger thunderstorms, warm fronts are more likely to be associated with large regions of stratus clouds and light to moderate continuous rain.  Warm fronts are usually preceded by cirrus first, then altostratus or altocumulus, then stratus and possibly fog.  At the warm front, gradual transition.  Behind the warm front, skies are relatively clear.
  • 22. 1. The weather during a WARM FRONT starts with cirrus clouds about 24-48 hours before the rain begins 2. As more warm air is pushed upward, more moisture condenses forming cirrostratus clouds 3. Warm front: rain or snow is steady over several hours or days
  • 23.
  • 24. Occluded fronts.  Cold fronts move faster than warm fronts. They can catch up and overtake their related warm front. When they do, an occluded front is formed.  Cold occlusion: very cold air behind, not so cold air ahead of, the warm front  The upper warm front follows the surface occluded front Cold occlusion
  • 25. Warm Occlusion  Very cold air ahead of, not so cold air behind, the warm front  The cooler air from the cold front cannot lift the very cold air ahead, rides “piggyback”  The warm front aloft precedes the surface occluded front
  • 26.
  • 27. Stationary Front  Stationary front- a front which does not move or barely moves.  Stationary fronts behave like warm fronts, but are more quiescent.  Many times the winds on both sides of a stationary front are parallel to the front and have opposite direction.  Typically stationary fronts form when polar air masses are modified significantly so as to lose their character (e.g., cold fronts which stall).  Typically there is no strong precipitation associated with stationary fronts (why? – no big contrast in the air mass properties, no air uplifting and condensation).
  • 28.
  • 29. Weakening/Strengthening of the Front  Frontogenesis:  The front intensifies.  Why? – The temperature (humidity) contrast across the front is increasing.  Example: cP air mass moves over warm ocean water. • Frontolysis: ♦ The front weakens and dissipates ♦ Why?-the air masses start losing their identities. ♦ The temperature (humidity) contrast across the front is decreasing. ♦ Typical for slow moving fronts
  • 30. Clouds and Fronts - Example
  • 31. Perbedaan Siklon & Antisiklon ANTI SIKLON SIKLON Pusat tekanan udara tinggi semi permanen, simbol HTerbentuk di suatu wilayah yang sedang berlangsung musim winter. Pola angin divergen (massa udara turun). Cuaca cerah, sulit terbentuk awan sehingga jarang hujan Pusat tekanan udara rendah semi permanen, simbol LTerbentuk di suatu wilayah yang sedang berlangsung musim summerPola angin konvergen (massa udara naik)Cuaca berkabut, Terbentuk awan- awan berpotensi sebagai hujan Bila terjadi polusi udara akan terperangkap di dekat permukaan contoh kejadian di Kota London Desember 1952, sebanyak 5.000 penduduk tewas karena polutan. Akibat gaya coriolis badai tropis dengan angin 60 km/jam, siklon trpois > 120 km/jam (Hurricane, Typhoon), dilaut kecepatan angin > 250 km/jam. Contoh di Banglades Nop 1970, sebanyak 20.000 penduduk tewas diterjang siklon tropis. Pusat antisiklon tetap: -23.5oLU/LS di darat pada wilayah gurun dan di laut pada lintang kuda -90oKU/KS dingin dan kering Pusat siklon tetap:-di equator 0o: ITCZ -di 66.5oLU/LS
  • 32. 32 Katrina, 2005 Dean, 2007 Felix, 2007
  • 33. In the back part of the cyclone propagating over the GS front, cold and dry Arctic air masses are advected over the relatively warm water (cold-air outbreak). In this case the largest sea-air temperature differences are observed exactly over the SST front due to much smoother spatial temperature gradients in the atmosphere in comparison to the ocean. South of the SST front thermodynamic adjustment works to decrease the air-sea temperature and humidity differences. In the forward part of cyclone the advection of the moist and warm air to the north (warm air outbreak) results in the local decrease of surface fluxes, associated with the advective fogs and strong vertical motions in the lower 100-200 m layer of the atmosphere. SST Tair cold warm
  • 34. SMMR
  • 35.  Generating electric power from wind energy at sea (floating wind farms)  Avoid hazard conditions in shipping  Ocean-atmosphere exchanges, in heat, water, and greenhouse gases Distribution of Wind Speed
  • 36. Center of cyclonic currents
  • 37. Center of cyclonic currents
  • 38. Center of cyclonic currents
  • 39. Center of cyclonic currents
  • 40. Center of cyclonic currents
  • 47. Water Balance over Global Ocean
  • 48. Ocean’s Influence on Water Balance of South America The approximate balance of dM/dt with ∫-R bolsters not only the credibity of the spacebased measurements, but supports the characterization of ocean’s influence on continental water balance. Liu et al., GRL 2006
  • 49.
  • 50. Filtered ENW (color) and SST (contour) Collocation of ENW magnitude with SST is inherent in the definition of ENW and turbulent mixing theory.
  • 51. Filtered precipitation (color) and SST (contour) Precipitation is in quadrature with SST and in phase with surface wind convergence.
  • 52.
  • 53. Major currents, gyres, rings, and eddies (basin scale)  Winds and wind-driven basin circulation  Meanders, rings, eddies and gyres  The thermohaline circulation
  • 54. Winds Unevenly heating by the sun Spinning sphere Winds and wind-driven basin circulation
  • 55. Subtropical gyre Strong and narrow western boundary current Subtropical gyre Subpolar gyre
  • 56. 1. The Coriolis force causes the moving water to be deflected to the right of the right of the wind (in NH). The net effect of winds in the upper ocean is a flow perpendicular to the wind (i.e. Ekman transport). 2. The strong western boundary currents are formed due to the variation of the Coriolis parameter with latitude.
  • 57. Meanders, rings, eddies and gyres gyre
  • 58. •Meanders: Jet stream develop large oscillations caused by its unstable. •Rings: Eddy pinched off from meander as it become too large. Anticlockwise and clockwise rotating rings are cold and warm rings, respectively. They contain water from the opposite side of the stream having the other side’s physical, chemical and biological properties. The interaction of meander and rings create significant vertical transports of nutrient and plankton which enhance biological activity
  • 59. •Eddies: The closed circulation with horizontal scale of 10-100km and time scale of 10-30 days. The upward and downward vertical velocities in cyclonic and anticyclonic will enhance biological productivity, respectively.
  • 60.
  • 62. •Gyres: A circular current that is confined by or associated with bathymetric features and covers a wide range of spatial scales.
  • 63. The Thermohaline Circulation (north-south vertical circulation Sinking of dense water due to cooling in mid to high latitude.
  • 64.
  • 65.
  • 66. •The global conveyor belt thermohaline circulation is driven primarily by the formation and sinking of deep water (from around 1500m to the Antarctic bottom water overlying the bottom of the ocean) in the Norwegian Sea.
  • 67. •This circulation is thought to be responsible for the large flow of upper ocean water from the tropical Pacific to the Indian Ocean through the Indonesian Archipelogo.
  • 68. •The two counteracting forcings operating in the North Atlantic control the conveyor belt circulation: (1) the thermal forcing (high-latitude cooling and the low-latitude heating) which drives a polar southward flow; and (2) haline forcing (net high-latitude freshwater gain and low-latitude evaporation) which moves in the opposite direction. In today's Atlantic the thermal forcing dominates, hence, the flow of upper current from south to north.
  • 69. What is an Eddy? Turbulent rings that trap cold or warm water in their centers and then separate from the main flow Eddies or "rings "can be detected from satellite infrared sensors 69
  • 70. How are they formed? Cold-core Warm-core  Forms from cold water trapped within the warmer Gulf Stream water  Cyclonic , Rotate counterclockwise  (N. Hemisphere)  Forms from warm Gulf Stream water meandering and causes a warm ring to break off  Anticyclonic ,Rotate clockwise  (N. Hemisphere) 70
  • 71. Where Eddies are formed?  You can find eddies in all parts of the ocean but highly energetic rings and eddies are commonly associated with faster flowing currents, western boundary currents (Gulf Stream, Kuroshio)  Eddy formation from water flowing around seamounts  Areas of convergent or divergent water masses 71
  • 72. Sargasso Sea 15-25 deg C “Slope water” Colder more nutrient-rich < 10 deg C 72
  • 74. 74
  • 75. Mesoscale Eddies  Diameter of an eddy can range from 10 to 1oos of kilometers  Formation time from the start of a meander and the separation of the eddy is on the order of 40 days  Eddies can last a month and up to a year- Average lifetime of a few months ex. Cold-core eddies can be tracked up to 2 yrs before it fully dissipates into the Sargasso Sea, Warm-core eddies can last up to 1 yr  They are maintained b/c of the strong density difference between the eddy and the surrounding water 75
  • 76. Why are Eddies Important?  Physical-They are an important mechanism for mixing in the surface ocean and transporting energy (ex. heat)  Chemical- Cold-core eddies bring nutrients (N, P, O) up to the surface for biological use  Biological- Cold-core eddies can fertilize the upper ocean to support phytoplankton blooms, Warm-core can trap and transport a variety of organisms (ecological importance ex. Larval dispersal) 76
  • 77. Research on Eddies  Biological- Ecological Perspective  Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy(2007)Bernard et al.  Cold eddies transporting Antarctic euphausiid (krill) species equatorward, contributing to the spatial diversity of the zooplankton community within the region  Chemical-Biogeochemical Perspective  On the role of eddies for coastal productivity and carbon export to the open- ocean (2007) Gruber et al.  Model study of the California Current that resulted in weakening coastal upwelling, reducing biological productivity and carbon export from the warm-core nutrient depleted eddies brought to the shore 77
  • 78. Role of Eddies Eddies are important to all aspects of oceanography (Biological, Chemical and Physical) and often involve the overlap of research areas (ex. Biogeochemical, Biophysical) 78
  • 80. Lohrenz and Castro Vol. 14A, THE SEA
  • 81. Western Ocean Boundaries • Complex circulation patterns, typified by eddies and current instabilities, are key to enhanced nutrient entrainment and high biological productivity. • Exchanges between offshore and coastal waters create a dynamic environment, in many cases stimulating high primary productivity. • Role of intrusions of subsurface waters in enhancing nutrient supply is important for extensive areas of continental shelves. • Linkages are evident within regions, and important linkages exist between western boundary current systems and other regions. Consequences and importance for ecosystem processes have only begun to be explored. • Lack of observations limits understanding of physics and associated ecosystem processes. Examples: linkages between primary production and higher trophic levels, and impact on recruitment of key fisheries species; biogeochemical rates critical for carbon and nitrogen budgets; microbial processing of terrigeneous organic matter; denitrification; and, nitrogen fixation.
  • 82. Eastern Boundaries Hill, Hickey, Shillington, Strub, Brink, Barton, Thomas,
  • 84. Eastern Ocean Boundaries • Mechanisms and rates of nutrient supply, and differences in these between macronutrients (N, P, Si) vs. micronutrients (Fe, Cu, . . .) • Within-region zonation of habitat utilization – ‘hotspots’ of high productivity and abundance, spawning centers, nursery grounds. • Strong variability at interannual to decadal time scales. Important between- and within-region contrasts in seasonal and event-scale timing and sequencing of key processes, especially relative phasing of nutrient supply, advection, mixing, and somatic and reproductive growth of biota. • Role of topographic complexity: islands, capes, canyons and shelf-edge irregularities produce important and recurrent perturbations of distribution fields. Important research issues and oceanographic mechanisms are important in all or most regions, including:
  • 88. Three types: i) nearly-enclosed with limited exchanges with the open ocean (e.g. Sea of Okhotsk, Bohai Sea, Japan Sea) ii) Partially-enclosed with moderate exchanges along 1 or 2 boundaries (e.g. Yellow Sea) iii) Peripheral seas extending along continental margins and having strong interactions (e.g. Outer SE China Sea, shelf seas around Australia) Semi-Enclosed Seas and Islands Church, Bethoux, Theocharis, Vol. 11, THE SEA; Oguz and Su, Vol. 14, THE SEA
  • 89. The effective management and protection of coastal ecosystems must be science-based. With this general purpose in mind, the COASTS Programme, sponsored by the Intergovernmental Oceanographic Commission of UNESCO and the Scientific Committee on Oceanic Research, was established to promote and facilitate research and applications in interdisciplinary coastal and shelf ocean sciences and technology on a global basis to increase scientific understanding of coastal ocean processes.
  • 90. Literature Sited  Bernard, A.T.F, Ansorger, I.J., Froneman,P.W., Lutjeharms, J.R.E. and Swart, N.C. 2007. Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy. Deep Sea Research Part I. 54.10.1841-1851  Gruber, N., Frenzel, H., Marchesiello, P., McWilliams, J.C., Nagai, T and Platter, G, -K. (2007). On the role of eddies for coastal productivity and carbon export to the open ocean. Geophysical Research Abstracts. 9.  Garrison, T. Oceanography An Invitation to Marine Science 4th Edition  Knass, J.A. Introduction to Physical Oceanography 2nd Edition  Pickart, G.L. and Emery, W.J. An Introduction: Descriptive Physical Oceanography 5th Edition 90