Estimation of numerical 
schemes  
in heat convection  
by OpenFOAM 
Osaka Univ. 
Dept.  
Takuya Yamamoto
Traps in solving diffusion-‐‑‒convection equation 
1. Conserva+veness 
2. Boundedness 
3. Transpor+veness 
Reference 
H. 
K. 
Versteeg 
and 
M. 
Malalasekera 
An 
introduc+on 
to 
computa+onal 
fluid 
dynamics 
translated 
Ver. 
in 
Japanese 
訳; 
松下洋介,斎藤泰洋,青木秀之,三浦隆利 
数値流体力学 
森北出版 
rela+ve 
ra+o 
of 
convec+on 
to 
diffusion 
non-­‐dimensional 
cell 
Peclet 
number 
Pe = 
F 
D 
= 
ρu 
Γ /δ x 
δ x ; 
cell 
width 
ρ ; 
density 
F 
D 
Γ 
; 
momentum 
flux 
(= 
ρu) 
; 
diffusion 
conductance 
(= 
Γ/δx) 
; 
diffusion 
coefficient
Indication of numerical schemes 
• Linear 
scheme 
• QUICK 
scheme 
Boundedness 
Boundedness 
Pe  2 Pe  
8 
3 
The 
other 
condi+ons 
References 
H. 
K. 
Versteeg 
and 
M. 
Malalasekera 
An 
introduc+on 
to 
computa+onal 
fluid 
dynamics 
translated 
Ver, 
in 
Japanese 
訳; 
松下洋介,斎藤泰洋,青木秀之,三浦隆利 
数値流体力学 
森北出版 
Genera+on 
of 
• Undershoot 
• Overshoot
Ex5.1 in Ref. Book 
x 
= 
0 x 
= 
L 
T 
= 
1 
T 
= 
0 
u 
[m/s] 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
Analy+cal 
solu+on 
T −T0 
TL −T0 
= 
exp(ρux /Γ )−1 
exp(ρuL /Γ )−1 
δ x ; 
ρ =1.0 kg/m3 
Γ = 0.1 kg/m・s 
cell 
width 
ρ ; 
density 
Γ ; 
diffusion 
coeff. 
(kg/m・s)
Numerical method 
• Solver 
scalarTransportFoam 
 
• Numerical scheme 
linear (spatial) 
steadyState (time) 
• Governing 
Equa+on 
d 
dx 
(ρuT) = 
d 
dx 
Γ 
dT 
dx 
! 
 # 
$ 
%
Ex5.1 in Ref. Book 
T 
= 
1 
Condi+on 
1 
Condi+on 
2 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
Linear 
scheme
T 
= 
1 
Ex5.1 in Ref. Book 
Condi+on 
2 
Condi+on 
3 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
Linear 
scheme
Numerical method 
• Solver 
scalarTransportFoam 
 
• Numerical scheme 
QUICK (spatial) 
steadyState (time) 
• Governing 
Equa+on 
d 
dx 
(ρuT) = 
d 
dx 
Γ 
dT 
dx 
! 
 # 
$ 
%
T 
= 
1 
Ex5.4 in Ref. Book 
Condi+on 
1 
Condi+on 
2 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
QUICK 
scheme
T 
= 
1 
Ex5.4 in Ref. Book 
Condi+on 
2 
Condi+on 
3 
condi+on 
u 
[m/s] 
δx 
[m] 
L 
[m] 
Pe 
[-­‐] 
1 
0.1 
0.2 
1 
0.2 
2 
2.5 
0.2 
1 
5 
3 
2.5 
0.05 
1 
1.25 
T 
= 
0 
x 
= 
0 
u 
[m/s] x 
= 
L 
over-­‐ 
and 
under-­‐shoot 
QUICK 
scheme
Summary 
• Be carful for local cell Pe number when we 
solve diffusion-‐‑‒advection equation. 
• Be careful especially in high Pr and Sc number, 
because cell Pe number becomes large.  
• We should use stabilized numerical schemes to 
solve difficult problems. 
Ex) 
molten 
metal  
air 
water 
Pr ≈ O(0.01) 
Pr ≈ O(1) 
Pr ≈ 7
References 
• H. K. Versteeg and M. Malalasekera, “An 
introduction to computational fluid 
dynamics”  
translated Ver. in Japanese 
数値流流体⼒力力学, 訳; 松下洋介,斎藤泰洋,⻘青⽊木秀 
之,三浦隆利利 森北北出版

Estimation of numerical schemes in heat convection by OpenFOAM

  • 1.
    Estimation of numerical schemes in heat convection by OpenFOAM Osaka Univ. Dept. Takuya Yamamoto
  • 2.
    Traps in solvingdiffusion-‐‑‒convection equation 1. Conserva+veness 2. Boundedness 3. Transpor+veness Reference H. K. Versteeg and M. Malalasekera An introduc+on to computa+onal fluid dynamics translated Ver. in Japanese 訳; 松下洋介,斎藤泰洋,青木秀之,三浦隆利 数値流体力学 森北出版 rela+ve ra+o of convec+on to diffusion non-­‐dimensional cell Peclet number Pe = F D = ρu Γ /δ x δ x ; cell width ρ ; density F D Γ ; momentum flux (= ρu) ; diffusion conductance (= Γ/δx) ; diffusion coefficient
  • 3.
    Indication of numericalschemes • Linear scheme • QUICK scheme Boundedness Boundedness Pe 2 Pe 8 3 The other condi+ons References H. K. Versteeg and M. Malalasekera An introduc+on to computa+onal fluid dynamics translated Ver, in Japanese 訳; 松下洋介,斎藤泰洋,青木秀之,三浦隆利 数値流体力学 森北出版 Genera+on of • Undershoot • Overshoot
  • 4.
    Ex5.1 in Ref.Book x = 0 x = L T = 1 T = 0 u [m/s] condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 Analy+cal solu+on T −T0 TL −T0 = exp(ρux /Γ )−1 exp(ρuL /Γ )−1 δ x ; ρ =1.0 kg/m3 Γ = 0.1 kg/m・s cell width ρ ; density Γ ; diffusion coeff. (kg/m・s)
  • 5.
    Numerical method •Solver scalarTransportFoam • Numerical scheme linear (spatial) steadyState (time) • Governing Equa+on d dx (ρuT) = d dx Γ dT dx ! # $ %
  • 6.
    Ex5.1 in Ref.Book T = 1 Condi+on 1 Condi+on 2 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot Linear scheme
  • 7.
    T = 1 Ex5.1 in Ref. Book Condi+on 2 Condi+on 3 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot Linear scheme
  • 8.
    Numerical method •Solver scalarTransportFoam • Numerical scheme QUICK (spatial) steadyState (time) • Governing Equa+on d dx (ρuT) = d dx Γ dT dx ! # $ %
  • 9.
    T = 1 Ex5.4 in Ref. Book Condi+on 1 Condi+on 2 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot QUICK scheme
  • 10.
    T = 1 Ex5.4 in Ref. Book Condi+on 2 Condi+on 3 condi+on u [m/s] δx [m] L [m] Pe [-­‐] 1 0.1 0.2 1 0.2 2 2.5 0.2 1 5 3 2.5 0.05 1 1.25 T = 0 x = 0 u [m/s] x = L over-­‐ and under-­‐shoot QUICK scheme
  • 11.
    Summary • Becarful for local cell Pe number when we solve diffusion-‐‑‒advection equation. • Be careful especially in high Pr and Sc number, because cell Pe number becomes large. • We should use stabilized numerical schemes to solve difficult problems. Ex) molten metal  air water Pr ≈ O(0.01) Pr ≈ O(1) Pr ≈ 7
  • 12.
    References • H.K. Versteeg and M. Malalasekera, “An introduction to computational fluid dynamics” translated Ver. in Japanese 数値流流体⼒力力学, 訳; 松下洋介,斎藤泰洋,⻘青⽊木秀 之,三浦隆利利 森北北出版