SlideShare a Scribd company logo
Dr Patrick Geoghegan
Book: H. Versteeg and W. Malalasekera An Introduction to
Computational Fluid Dynamics: The Finite Volume Method
FEA/CFD for
Biomedical
Engineering
Week 11: CFD
RANS
• Reynolds-averaged Navier-Stokes Equations (RANS)
– Mean flow is resolved, the effect of turbulence on the mean flow
incorporated without resolving the turbulence
Alternatives for modelling turbulence? RANS!
u′
u
time, t
velocity,
u
Velocity fluctuation
Mean Velocity
• Solve for mean flow
• Effect of turbulence on
mean flow taken into
account
• Derivation of Reynolds-averaged Navier-Stokes Equations (RANS)
– Split the velocity into mean and fluctuating components, plug into Navier-
Stokes Equations and then apply time averaging to the resultant
equations
Alternatives for modelling turbulence? RANS!
u
u
t
u ′
+
=
)
(
u′
u
time, t
velocity,
u
𝑢𝑢𝑢 2 =
1
∆𝑡𝑡
�
0
∆𝑡𝑡
𝑢𝑢𝑢 2
𝑑𝑑𝑑𝑑
• Conservation of Mass (Continuity Equation)
• Conservation of Momentum
• Conservation of internal energy
• State Equations
Original Navier – Stokes equations
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝛻𝛻 � 𝜌𝜌𝐮𝐮 = 0
𝜕𝜕 𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐮𝐮 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑆𝑆𝐸𝐸
𝑝𝑝 = 𝑝𝑝 𝜌𝜌, 𝑇𝑇 𝑖𝑖 = 𝑖𝑖 𝜌𝜌, 𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0
or
We won derive this here
• Conservation of Mass
• Reynolds Equations
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜕𝜕 𝜌𝜌�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌�
𝑢𝑢𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑢𝑢 + −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌 ̅
𝑣𝑣𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ̅
𝑣𝑣 + −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌�
𝑤𝑤𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0
Viscous Stresses Convective transfer of momentum due
to turbulence
Reynolds Stresses = Normal Stresses + Shear Stresses
In turbulent flow, Reynolds stresses dominate viscous stresses except very close to walls where turbulent
fluctuations go to zero
• Original Scalar Transport Equation for an arbitrary scalar Φ (energy,
mass fraction, etc)
• RANS Scalar Transport Equation for an arbitrary scalar Φ (energy,
mass fraction, etc)
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜕𝜕 𝜌𝜌𝛷𝛷
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤
𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + −
𝜕𝜕𝜌𝜌𝑢𝑢′Φ
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′Φ
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′Φ
𝜕𝜕𝜕𝜕
+ 𝑆𝑆Φ
Convective transfer of Φ due to
turbulent eddies
𝜕𝜕 𝜌𝜌𝛷𝛷
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤
𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + 𝑆𝑆Φ
Rate of
accum. of
Φ in fluid
element
Net rate of
flow of Φ
into fluid
element
(Convection)
Rate of change
of Φ due to
diffusion
Rate of change
of Φ due to
sources
+ +
=
Model effect of turbulent fluctuations Reynolds Stresses
on mean flow
We are solving for U, V, W, and P
• For reference the expanded form of the RANS equations
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜌𝜌
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
τxx τxy τxz
τyy τyz
τzz
• Solve equations for mean properties of flow (u, v, w, F)
• By applying time averaging, we lose details of the turbulent fluctuations
• But for engineering purposes, we usually only interested in mean
properties of the flow anyway
• With the Navier-Stokes Equations, we had 5 equations (4 transport
equations and one state-equation) and 5 unknowns (u, v, w, ρ, p)
• With the Reynolds-averaged Navier-Stokes Equations are now 6 extra
unknowns (the Reynolds stresses)
• Turbulence modelling is about developing equations to model the
Reynolds stresses
Reynolds-averaged Navier-Stokes Equations (RANS)
• Turbulent kinetic energy is a measure of the energy in the fluctuations
of the flow, not the mean flow
• Procedure for deriving the transport equation for turbulent kinetic
energy
1) Multiply the momentum equations of the Navier-Stokes equations by the
appropriate fluctuating velocity component (x-component momentum
equation multiplied by u’ etc)
2) Add the three resultant equations to form one equation
3) Repeat 1) and 2) for the Reynolds-averaged Navier-Stokes equations
4) Subtract the two resultant equations
Turbulent Kinetic Energy Equation, k
𝑘𝑘 =
1
2
𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2
Turbulent Kinetic Energy Equation, k
𝑘𝑘 =
3
2
𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
2
Units =
𝑚𝑚2
𝑠𝑠2
𝑘𝑘 =
1
2
𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2 Or
𝐼𝐼 =
𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
𝑢𝑢
× 100%
Remember
It is often assumed the fluctuations are the same in all directions so often
𝑘𝑘 =
1
2
𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
2
+ 𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
2
+ 𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟
2
This can all be used to calculate the turbulence kinetic energy
Turbulent Kinetic Energy Equation, k
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌
1
2
𝑢𝑢𝑖𝑖
′
. 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
Rate of
Change of
turbulent
kinetic
energy (k)
Rate of
Change of k
by
convection
Transport
of k by
pressure
Transport
of k by
viscous
stresses
Transport
of k by
Reynolds
Stresses
Rate of
dissipation
of k
Rate of
production
of k
• Rate of dissipation of k or viscous dissipation
• Work done by smallest eddies against viscous
stresses
• Always negative, destroys turbulent kinetic energy
• Divide by density to get dissipation rate (ε) (m2/s3)
Turbulent Kinetic Energy Equation, k
Rate of
dissipation
of k
𝜀𝜀 = 2𝜈𝜈𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌
1
2
𝑢𝑢𝑖𝑖
′
. 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
• Rate of production of k
• Represents conversion of kinetic energy from the
mean flow into turbulent kinetic energy (that is
production of turbulent kinetic energy)
• Always positive
Turbulent Kinetic Energy Equation, k
Rate of
production
of k
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌
1
2
𝑢𝑢𝑖𝑖
′
. 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
• Terms in the equation mathematically
represent phenomena observed to occur
in nature energy cascade
(1)Largest eddies extract energy from the
mean flow by a mechanism of vortex
stretching
(2)This energy is passed down to smaller
eddies existing within the larger eddies,
also by a mechanism of vortex
stretching, and so onwards to smaller
and smaller eddies
(3)At the smallest eddy-scales, energy is
finally dissipated as heat by friction
Turbulent Kinetic Energy Equation, k
• Lets revisit this
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜌𝜌
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
τxx τxy τxz
τyy τyz
τzz
Reynolds Stresses
• Basis for most turbulence models is Boussinesq’s eddy viscosity
concept
– By analogy to the viscous stresses in original NS equations, the turbulent
stresses are proportional to mean-velocity gradients
Eddy viscosity (𝜇𝜇𝑡𝑡) is the proportionality “constant”
Turbulence Modelling 𝑘𝑘 =
1
2
𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2
𝜏𝜏𝑥𝑥𝑥𝑥 = −𝑝𝑝′𝑢𝑢′𝑢𝑢′ = 2𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
−
2
3
𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮
𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑣𝑣′𝑣𝑣′ = 2𝜇𝜇𝑡𝑡
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
−
2
3
𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮
𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑤𝑤′𝑤𝑤′ = 2𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
−
2
3
𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮
?
𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑢𝑢′𝑣𝑣′ = 𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑢𝑢′𝑤𝑤′ = 𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑣𝑣′𝑤𝑤′ = 𝜇𝜇𝑡𝑡
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
Added to ensure
consistency in definitions

More Related Content

What's hot

Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
abrish shewa
 
Applications of fluid mechanics
Applications of fluid mechanicsApplications of fluid mechanics
Applications of fluid mechanics
Vishu Sharma
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
preet yadav
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
Mohammad Jadidi
 
Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)
Khusro Kamaluddin
 
01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling
Mohammad Jadidi
 
Computational fluid dynamics
Computational fluid dynamicsComputational fluid dynamics
Computational fluid dynamics
Zeeshan Inamdar
 
01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging 01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging
Mohammad Jadidi
 
Turbulent flow
Turbulent flowTurbulent flow
Turbulent flow
Darshit Panchal
 
Mechanical Vibration- An introduction
Mechanical Vibration- An introductionMechanical Vibration- An introduction
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
YOGESH AHIRE
 
01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions
Mohammad Jadidi
 
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid FlowCFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
Luis Ram Rojas-Sol
 
Bernoulli Equation
Bernoulli EquationBernoulli Equation
Bernoulli Equation
GLA UNIVERSITY MATHURA
 
Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)
Hashim Hasnain Hadi
 
p-k-nag-solution thermodynamics by sk mondal
 p-k-nag-solution thermodynamics by sk mondal p-k-nag-solution thermodynamics by sk mondal
p-k-nag-solution thermodynamics by sk mondal
Er Deepak Sharma
 
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and  simulation ,Pouriya Niknam , UNIFImultiphase flow modeling and  simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
Pouriya Niknam
 
Turbulence
TurbulenceTurbulence
Turbulence
bealberith
 

What's hot (20)

Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 
Applications of fluid mechanics
Applications of fluid mechanicsApplications of fluid mechanics
Applications of fluid mechanics
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
 
Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)
 
01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling
 
Computational fluid dynamics
Computational fluid dynamicsComputational fluid dynamics
Computational fluid dynamics
 
01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging 01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging
 
Introduction to cfd
Introduction to cfdIntroduction to cfd
Introduction to cfd
 
Turbulent flow
Turbulent flowTurbulent flow
Turbulent flow
 
10 rans
10 rans10 rans
10 rans
 
Mechanical Vibration- An introduction
Mechanical Vibration- An introductionMechanical Vibration- An introduction
Mechanical Vibration- An introduction
 
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
FLUID MECHANICS - COMPUTATIONAL FLUID DYNAMICS (CFD)
 
01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions
 
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid FlowCFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
CFD Modeling of Multiphase Flow. Focus on Liquid-Solid Flow
 
Bernoulli Equation
Bernoulli EquationBernoulli Equation
Bernoulli Equation
 
Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)
 
p-k-nag-solution thermodynamics by sk mondal
 p-k-nag-solution thermodynamics by sk mondal p-k-nag-solution thermodynamics by sk mondal
p-k-nag-solution thermodynamics by sk mondal
 
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and  simulation ,Pouriya Niknam , UNIFImultiphase flow modeling and  simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
 
Turbulence
TurbulenceTurbulence
Turbulence
 

Similar to Part 2 RANS.pdf

slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
cfisicaster
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptx
rabeamatouk
 
Intro totransportphenomenanew
Intro totransportphenomenanewIntro totransportphenomenanew
Intro totransportphenomenanewilovepurin
 
WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
cfisicaster
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
ChintanModi26
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptx
NamLe218588
 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Muhammad Dzaky Fawwaz
 
8015082
80150828015082
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Tony Yen
 
Study of turbulent flow downstream from a
Study of turbulent flow downstream from aStudy of turbulent flow downstream from a
Study of turbulent flow downstream from aIAEME Publication
 
Study of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heatStudy of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heatIAEME Publication
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
Keith Vaugh
 
heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinder
RabiaMalik723138
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
Dr. Bilal Siddiqui, C.Eng., MIMechE, FRAeS
 
Linear non linear
Linear non linearLinear non linear
Linear non linear
VARANASI RAMA RAO
 
Hyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdfHyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdf
Narayana Swamy G
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
MichaPremkumarT
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
RitikChaturvedi8
 
WavesStatistics.pdf
WavesStatistics.pdfWavesStatistics.pdf
WavesStatistics.pdf
cfisicaster
 

Similar to Part 2 RANS.pdf (20)

slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptx
 
Intro totransportphenomenanew
Intro totransportphenomenanewIntro totransportphenomenanew
Intro totransportphenomenanew
 
WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptx
 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
 
8015082
80150828015082
8015082
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
Study of turbulent flow downstream from a
Study of turbulent flow downstream from aStudy of turbulent flow downstream from a
Study of turbulent flow downstream from a
 
Study of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heatStudy of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heat
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinder
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 
Linear non linear
Linear non linearLinear non linear
Linear non linear
 
Hyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdfHyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdf
 
Vortex Modeling
Vortex ModelingVortex Modeling
Vortex Modeling
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
 
WavesStatistics.pdf
WavesStatistics.pdfWavesStatistics.pdf
WavesStatistics.pdf
 

More from SajawalNawaz5

What is FEA and CFD(2).pdf
What is FEA and CFD(2).pdfWhat is FEA and CFD(2).pdf
What is FEA and CFD(2).pdf
SajawalNawaz5
 
Part 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdfPart 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdf
SajawalNawaz5
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdf
SajawalNawaz5
 
Part 3 Beams(1).pdf
Part 3 Beams(1).pdfPart 3 Beams(1).pdf
Part 3 Beams(1).pdf
SajawalNawaz5
 
Part 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdfPart 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdf
SajawalNawaz5
 
Part 2 Revision.pdf
Part 2 Revision.pdfPart 2 Revision.pdf
Part 2 Revision.pdf
SajawalNawaz5
 
Part 1_Recap and background.pdf
Part 1_Recap and background.pdfPart 1_Recap and background.pdf
Part 1_Recap and background.pdf
SajawalNawaz5
 
Part 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdfPart 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdf
SajawalNawaz5
 
Part 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdfPart 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdf
SajawalNawaz5
 
FEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdfFEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdf
SajawalNawaz5
 
Part 1_Blood.pdf
Part 1_Blood.pdfPart 1_Blood.pdf
Part 1_Blood.pdf
SajawalNawaz5
 
Part 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdfPart 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdf
SajawalNawaz5
 
Part 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdfPart 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdf
SajawalNawaz5
 
Part 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdfPart 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdf
SajawalNawaz5
 
Part 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdfPart 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdf
SajawalNawaz5
 
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdfPart 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
SajawalNawaz5
 
Part 2 CFD basics Pt 2(1).pdf
Part 2  CFD basics Pt 2(1).pdfPart 2  CFD basics Pt 2(1).pdf
Part 2 CFD basics Pt 2(1).pdf
SajawalNawaz5
 
Part 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdfPart 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdf
SajawalNawaz5
 
Part 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdfPart 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdf
SajawalNawaz5
 

More from SajawalNawaz5 (19)

What is FEA and CFD(2).pdf
What is FEA and CFD(2).pdfWhat is FEA and CFD(2).pdf
What is FEA and CFD(2).pdf
 
Part 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdfPart 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdf
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdf
 
Part 3 Beams(1).pdf
Part 3 Beams(1).pdfPart 3 Beams(1).pdf
Part 3 Beams(1).pdf
 
Part 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdfPart 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdf
 
Part 2 Revision.pdf
Part 2 Revision.pdfPart 2 Revision.pdf
Part 2 Revision.pdf
 
Part 1_Recap and background.pdf
Part 1_Recap and background.pdfPart 1_Recap and background.pdf
Part 1_Recap and background.pdf
 
Part 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdfPart 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdf
 
Part 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdfPart 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdf
 
FEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdfFEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdf
 
Part 1_Blood.pdf
Part 1_Blood.pdfPart 1_Blood.pdf
Part 1_Blood.pdf
 
Part 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdfPart 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdf
 
Part 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdfPart 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdf
 
Part 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdfPart 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdf
 
Part 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdfPart 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdf
 
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdfPart 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
 
Part 2 CFD basics Pt 2(1).pdf
Part 2  CFD basics Pt 2(1).pdfPart 2  CFD basics Pt 2(1).pdf
Part 2 CFD basics Pt 2(1).pdf
 
Part 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdfPart 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdf
 
Part 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdfPart 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdf
 

Recently uploaded

Sundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menangSundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Situs Slot gacor dan terpercaya
 
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, BesCLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
aditiyad2020
 
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
iraqartsandculture
 
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
taqyed
 
一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单
zvaywau
 
2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories
luforfor
 
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
luforfor
 
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
beduwt
 
ashokathegreat project class 12 presentation
ashokathegreat project class 12 presentationashokathegreat project class 12 presentation
ashokathegreat project class 12 presentation
aditiyad2020
 
Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)
SuryaKalyan3
 
Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)
SuryaKalyan3
 
IrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptxIrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptx
Aine Greaney Ellrott
 
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERSART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
Sandhya J.Nair
 
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives ProjectthGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
Marc Dusseiller Dusjagr
 
Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)
CristianMestre
 
The Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance LindallThe Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance Lindall
BBaez1
 
Codes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new newCodes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new new
ZackSpencer3
 
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
zvaywau
 
Caffeinated Pitch Bible- developed by Claire Wilson
Caffeinated Pitch Bible- developed by Claire WilsonCaffeinated Pitch Bible- developed by Claire Wilson
Caffeinated Pitch Bible- developed by Claire Wilson
ClaireWilson398082
 

Recently uploaded (20)

Sundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menangSundabet | Slot gacor dan terpercaya mudah menang
Sundabet | Slot gacor dan terpercaya mudah menang
 
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, BesCLASS XII- HISTORY-THEME 4-Thinkers, Bes
CLASS XII- HISTORY-THEME 4-Thinkers, Bes
 
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
The Last Polymath: Muntadher Saleh‎‎‎‎‎‎‎‎‎‎‎‎
 
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
一比一原版(qut毕业证)昆士兰科技大学毕业证如何办理
 
一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单一比一原版(DU毕业证)迪肯大学毕业证成绩单
一比一原版(DU毕业证)迪肯大学毕业证成绩单
 
2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories2137ad - Characters that live in Merindol and are at the center of main stories
2137ad - Characters that live in Merindol and are at the center of main stories
 
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...2137ad  Merindol Colony Interiors where refugee try to build a seemengly norm...
2137ad Merindol Colony Interiors where refugee try to build a seemengly norm...
 
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
一比一原版UPenn毕业证宾夕法尼亚大学毕业证成绩单如何办理
 
ashokathegreat project class 12 presentation
ashokathegreat project class 12 presentationashokathegreat project class 12 presentation
ashokathegreat project class 12 presentation
 
Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)Memory Rental Store - The Ending(Storyboard)
Memory Rental Store - The Ending(Storyboard)
 
Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)Memory Rental Store - The Chase (Storyboard)
Memory Rental Store - The Chase (Storyboard)
 
IrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptxIrishWritersCtrsPersonalEssaysMay29.pptx
IrishWritersCtrsPersonalEssaysMay29.pptx
 
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERSART FORMS OF KERALA: TRADITIONAL AND OTHERS
ART FORMS OF KERALA: TRADITIONAL AND OTHERS
 
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives ProjectthGAP - BAbyss in Moderno!!  Transgenic Human Germline Alternatives Project
thGAP - BAbyss in Moderno!! Transgenic Human Germline Alternatives Project
 
Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)Inter-Dimensional Girl Boards Segment (Act 3)
Inter-Dimensional Girl Boards Segment (Act 3)
 
European Cybersecurity Skills Framework Role Profiles.pdf
European Cybersecurity Skills Framework Role Profiles.pdfEuropean Cybersecurity Skills Framework Role Profiles.pdf
European Cybersecurity Skills Framework Role Profiles.pdf
 
The Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance LindallThe Legacy of Breton In A New Age by Master Terrance Lindall
The Legacy of Breton In A New Age by Master Terrance Lindall
 
Codes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new newCodes n Conventionss copy (2).pptx new new
Codes n Conventionss copy (2).pptx new new
 
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
一比一原版(GU毕业证)格里菲斯大学毕业证成绩单
 
Caffeinated Pitch Bible- developed by Claire Wilson
Caffeinated Pitch Bible- developed by Claire WilsonCaffeinated Pitch Bible- developed by Claire Wilson
Caffeinated Pitch Bible- developed by Claire Wilson
 

Part 2 RANS.pdf

  • 1. Dr Patrick Geoghegan Book: H. Versteeg and W. Malalasekera An Introduction to Computational Fluid Dynamics: The Finite Volume Method FEA/CFD for Biomedical Engineering Week 11: CFD
  • 3. • Reynolds-averaged Navier-Stokes Equations (RANS) – Mean flow is resolved, the effect of turbulence on the mean flow incorporated without resolving the turbulence Alternatives for modelling turbulence? RANS! u′ u time, t velocity, u Velocity fluctuation Mean Velocity • Solve for mean flow • Effect of turbulence on mean flow taken into account
  • 4. • Derivation of Reynolds-averaged Navier-Stokes Equations (RANS) – Split the velocity into mean and fluctuating components, plug into Navier- Stokes Equations and then apply time averaging to the resultant equations Alternatives for modelling turbulence? RANS! u u t u ′ + = ) ( u′ u time, t velocity, u 𝑢𝑢𝑢 2 = 1 ∆𝑡𝑡 � 0 ∆𝑡𝑡 𝑢𝑢𝑢 2 𝑑𝑑𝑑𝑑
  • 5. • Conservation of Mass (Continuity Equation) • Conservation of Momentum • Conservation of internal energy • State Equations Original Navier – Stokes equations 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝛻𝛻 � 𝜌𝜌𝐮𝐮 = 0 𝜕𝜕 𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐮𝐮 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑆𝑆𝐸𝐸 𝑝𝑝 = 𝑝𝑝 𝜌𝜌, 𝑇𝑇 𝑖𝑖 = 𝑖𝑖 𝜌𝜌, 𝑇𝑇 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0 or We won derive this here
  • 6. • Conservation of Mass • Reynolds Equations Reynolds-averaged Navier-Stokes Equations (RANS) 𝜕𝜕 𝜌𝜌� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌� 𝑢𝑢𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� 𝑢𝑢 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌 ̅ 𝑣𝑣𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ̅ 𝑣𝑣 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌� 𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌� 𝑤𝑤𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0 Viscous Stresses Convective transfer of momentum due to turbulence Reynolds Stresses = Normal Stresses + Shear Stresses In turbulent flow, Reynolds stresses dominate viscous stresses except very close to walls where turbulent fluctuations go to zero
  • 7. • Original Scalar Transport Equation for an arbitrary scalar Φ (energy, mass fraction, etc) • RANS Scalar Transport Equation for an arbitrary scalar Φ (energy, mass fraction, etc) Reynolds-averaged Navier-Stokes Equations (RANS) 𝜕𝜕 𝜌𝜌𝛷𝛷 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤 𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + − 𝜕𝜕𝜌𝜌𝑢𝑢′Φ 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′Φ 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′Φ 𝜕𝜕𝜕𝜕 + 𝑆𝑆Φ Convective transfer of Φ due to turbulent eddies 𝜕𝜕 𝜌𝜌𝛷𝛷 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤 𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + 𝑆𝑆Φ Rate of accum. of Φ in fluid element Net rate of flow of Φ into fluid element (Convection) Rate of change of Φ due to diffusion Rate of change of Φ due to sources + + =
  • 8. Model effect of turbulent fluctuations Reynolds Stresses on mean flow We are solving for U, V, W, and P • For reference the expanded form of the RANS equations Reynolds-averaged Navier-Stokes Equations (RANS) 𝜌𝜌 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 τxx τxy τxz τyy τyz τzz
  • 9. • Solve equations for mean properties of flow (u, v, w, F) • By applying time averaging, we lose details of the turbulent fluctuations • But for engineering purposes, we usually only interested in mean properties of the flow anyway • With the Navier-Stokes Equations, we had 5 equations (4 transport equations and one state-equation) and 5 unknowns (u, v, w, ρ, p) • With the Reynolds-averaged Navier-Stokes Equations are now 6 extra unknowns (the Reynolds stresses) • Turbulence modelling is about developing equations to model the Reynolds stresses Reynolds-averaged Navier-Stokes Equations (RANS)
  • 10. • Turbulent kinetic energy is a measure of the energy in the fluctuations of the flow, not the mean flow • Procedure for deriving the transport equation for turbulent kinetic energy 1) Multiply the momentum equations of the Navier-Stokes equations by the appropriate fluctuating velocity component (x-component momentum equation multiplied by u’ etc) 2) Add the three resultant equations to form one equation 3) Repeat 1) and 2) for the Reynolds-averaged Navier-Stokes equations 4) Subtract the two resultant equations Turbulent Kinetic Energy Equation, k 𝑘𝑘 = 1 2 𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2
  • 11. Turbulent Kinetic Energy Equation, k 𝑘𝑘 = 3 2 𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 2 Units = 𝑚𝑚2 𝑠𝑠2 𝑘𝑘 = 1 2 𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2 Or 𝐼𝐼 = 𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢 × 100% Remember It is often assumed the fluctuations are the same in all directions so often 𝑘𝑘 = 1 2 𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 2 + 𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 2 + 𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 2 This can all be used to calculate the turbulence kinetic energy
  • 12. Turbulent Kinetic Energy Equation, k 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌 1 2 𝑢𝑢𝑖𝑖 ′ . 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖 Rate of Change of turbulent kinetic energy (k) Rate of Change of k by convection Transport of k by pressure Transport of k by viscous stresses Transport of k by Reynolds Stresses Rate of dissipation of k Rate of production of k
  • 13. • Rate of dissipation of k or viscous dissipation • Work done by smallest eddies against viscous stresses • Always negative, destroys turbulent kinetic energy • Divide by density to get dissipation rate (ε) (m2/s3) Turbulent Kinetic Energy Equation, k Rate of dissipation of k 𝜀𝜀 = 2𝜈𝜈𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌 1 2 𝑢𝑢𝑖𝑖 ′ . 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
  • 14. • Rate of production of k • Represents conversion of kinetic energy from the mean flow into turbulent kinetic energy (that is production of turbulent kinetic energy) • Always positive Turbulent Kinetic Energy Equation, k Rate of production of k 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌 1 2 𝑢𝑢𝑖𝑖 ′ . 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
  • 15. • Terms in the equation mathematically represent phenomena observed to occur in nature energy cascade (1)Largest eddies extract energy from the mean flow by a mechanism of vortex stretching (2)This energy is passed down to smaller eddies existing within the larger eddies, also by a mechanism of vortex stretching, and so onwards to smaller and smaller eddies (3)At the smallest eddy-scales, energy is finally dissipated as heat by friction Turbulent Kinetic Energy Equation, k
  • 16. • Lets revisit this Reynolds-averaged Navier-Stokes Equations (RANS) 𝜌𝜌 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 τxx τxy τxz τyy τyz τzz Reynolds Stresses
  • 17. • Basis for most turbulence models is Boussinesq’s eddy viscosity concept – By analogy to the viscous stresses in original NS equations, the turbulent stresses are proportional to mean-velocity gradients Eddy viscosity (𝜇𝜇𝑡𝑡) is the proportionality “constant” Turbulence Modelling 𝑘𝑘 = 1 2 𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2 𝜏𝜏𝑥𝑥𝑥𝑥 = −𝑝𝑝′𝑢𝑢′𝑢𝑢′ = 2𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 − 2 3 𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑣𝑣′𝑣𝑣′ = 2𝜇𝜇𝑡𝑡 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 − 2 3 𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑤𝑤′𝑤𝑤′ = 2𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 − 2 3 𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮 ? 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑢𝑢′𝑣𝑣′ = 𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑢𝑢′𝑤𝑤′ = 𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑣𝑣′𝑤𝑤′ = 𝜇𝜇𝑡𝑡 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 Added to ensure consistency in definitions