SlideShare a Scribd company logo
1 of 70
Download to read offline
B. Waves
1. Linear wave theory
2. Wave transformation
3. Random waves and statistics
4. Wave loading on structures
Recommended Books
● Dean and Dalrymple, Water Wave Mechanics
For Engineers and Scientists
● Kamphuis, Introduction to coastal engineering
and management
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Linear Wave Theory
Single-frequency (“monochromatic”, “regular”) progressive wave on still water:
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Linear wave theory:
● aka Airy wave theory
● assume amplitude small (compared with depth and wavelength)
‒ neglect powers and products of wave perturbations
‒ sum of any such wave fields also a solution
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
Amplitude and Height
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
● Amplitude 𝐴 is the maximum displacement from still-water level (SWL)
● Wave height 𝐻 is the vertical distance between neighbouring crest and trough
● For sinusoidal waves, 𝑯 = 𝟐𝑨
● For regular waves, formulae more naturally expressed in terms of 𝐴
● For irregular waves, 𝐻 is the more measurable quantity
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Wavenumber and Wavelength
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
● 𝑘 is the wavenumber
● Wavelength 𝐿 is the horizontal distance over which wave form repeats:
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
𝐿 =
2π
𝑘
𝑘𝐿 = 2π 
Frequency and Period
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
● 𝜔 is the wave angular frequency
● Period 𝑇 is the time over which the wave form repeats:
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
𝑇 =
2π
𝜔
𝜔𝑇 = 2π 
● The actual frequency 𝑓 (cycles per second, or Hertz) is
𝑓 =
1
𝑇
=
𝜔
2𝜋
Wave Speed
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
● 𝑐 is the phase speed or celerity
● 𝑐 is the speed at which the wave form translates
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 = 𝐴 cos 𝑘 𝑥 −
𝜔
𝑘
𝑡 = 𝐴 cos 𝑘 𝑥 − c𝑡
𝑐 =
𝜔
𝑘
=
𝐿
𝑇
wavelength
period
= 𝑓𝐿 frequency × wavelength
Summary
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Surface elevation:
Wavenumber 𝑘, wavelength 𝐿: 𝐿 =
2π
𝑘
Angular frequency 𝜔, period 𝑇: 𝑇 =
2π
𝜔
Phase speed (celerity) 𝑐: 𝑐 =
𝜔
𝑘
=
𝐿
𝑇
Hyperbolic Functions
sinh 𝑥 ≡
e𝑥
− 𝑒−𝑥
2
cosh 𝑥 ≡
e𝑥 + 𝑒−𝑥
2
tanh 𝑥 ≡
sinh 𝑥
cosh 𝑥
Hyperbolic Functions
Trigonometric-like formulae:
cosh2 𝑥 − sinh2 𝑥 = 1
cosh 2𝑥 = cosh2
𝑥 + sinh2
𝑥 = 2 cosh2
𝑥 − 1
sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥
Derivatives:
d
d𝑥
sinh 𝑥 = cosh 𝑥
d
d𝑥
cosh 𝑥 = sinh 𝑥
d
d𝑥
tanh 𝑥 = sech2 𝑥
Asymptotic behaviour:
Small 𝑥:
sinh 𝑥 ~ tanh 𝑥 ~ 𝑥,
Large 𝑥:
sinh 𝑥 ~ cosh 𝑥 ~
1
2
e𝑥,
cosh 𝑥 → 1 as 𝑥 → 0
tanh 𝑥 → 1 as 𝑥 → ∞
Fluid-Flow Equations
Continuity:
Irrotationality:
Time-dependent Bernoulli equation:
𝜕𝑢
𝜕𝑥
+
𝜕𝑤
𝜕𝑧
= 0
𝜕𝑢
𝜕𝑧
−
𝜕𝑤
𝜕𝑥
= 0
or: 𝑢 =
𝜕𝜙
𝜕𝑥
, 𝑤 =
𝜕𝜙
𝜕𝑧
𝜙 is a velocity potential
𝜌
𝜕𝜙
𝜕𝑡
+ 𝑝 +
1
2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶 𝑡 , along a streamline
Continuity
𝑢𝑒Δ𝑧 − 𝑢𝑤Δ𝑧 + 𝑤𝑛Δ𝑥 − 𝑤𝑠Δ𝑥 = 0
Net volume outflow:
Divide by Δ𝑥Δ𝑧:
𝑢𝑒 − 𝑢𝑤
Δ𝑥
+
𝑤𝑛 − 𝑤𝑠
Δ𝑧
= 0
Δ𝑢
Δ𝑥
+
Δ𝑤
Δ𝑧
= 0
Δ𝑥, Δ𝑧 → 0:
𝜕𝑢
𝜕𝑥
+
𝜕𝑤
𝜕𝑧
= 0
ue
uw
wn
ws
z
x
Irrotationality
Circulation:
Divide by Δ𝑥Δ𝑧:
Δ𝑥, Δ𝑧 → 0:
we
ww
un
us
z
x
Pressure forces act normal to surfaces,
so can cause no rotation.
𝑢𝑛Δ𝑥 − 𝑤𝑒Δ𝑧 − 𝑢𝑠Δ𝑥 + 𝑤𝑤Δ𝑧 = 0
𝑢𝑛 − 𝑢𝑠
Δ𝑧
−
𝑤𝑒 − 𝑤𝑤
Δ𝑥
= 0
Δ𝑢
Δ𝑧
−
Δ𝑤
Δ𝑥
= 0
𝜕𝑢
𝜕𝑧
−
𝜕𝑤
𝜕𝑥
= 0
Velocity Potential
The no-circulation condition makes the following
well-defined:
For any 2-d function:
we
ww
un
us
z
x
d𝜙 = 𝑢 d𝑥 + 𝑤 d𝑧
d𝜙 =
𝜕𝜙
𝜕𝑥
d𝑥 +
𝜕𝜙
𝜕𝑧
d𝑧
The velocity components are the gradient of the velocity potential 𝜙:
𝑢 =
𝜕𝜙
𝜕𝑥
, 𝑤 =
𝜕𝜙
𝜕𝑧
Aim: solve a single scalar equation for 𝜙, then derive everything else from it.
Time-Dependent Bernoulli Equation

U
s
𝜌
𝜕𝑈
𝜕𝑡
+ 𝑈
𝜕𝑈
𝜕𝑠
= −
𝜕𝑝
𝜕𝑠
− 𝜌𝑔 sin 𝜃
mass  acceleration = force
sin 𝜃 = Τ
𝜕𝑧 𝜕𝑠
𝑈 =
𝜕𝜙
𝜕𝑠
𝜌
𝜕2𝜙
𝜕𝑡 𝜕𝑠
+
𝜕
𝜕𝑠
(1
2𝑈2
) = −
𝜕𝑝
𝜕𝑠
− 𝜌𝑔
𝜕𝑧
𝜕𝑠
𝜕
𝜕𝑠
𝜌
𝜕𝜙
𝜕𝑡
+
1
2
𝜌𝑈2
+ 𝑝 + 𝜌𝑔𝑧 = 0
𝜌
𝜕𝜙
𝜕𝑡
+ 𝑝 +
1
2
𝜌𝑈2
+ 𝜌𝑔𝑧 = 𝐶(𝑡), along a streamline
Special case: if steady-state then
𝑝 +
1
2
𝜌𝑈2
+ 𝜌𝑔𝑧 = 𝐶, along a streamline
Recap of Fluid-Flow Equations
Continuity
Velocity potential
Bernoulli equation
𝜕𝑢
𝜕𝑥
+
𝜕𝑤
𝜕𝑧
= 0
𝑢 =
𝜕𝜙
𝜕𝑥
, 𝑤 =
𝜕𝜙
𝜕𝑧
Laplace’s equation
𝜌
𝜕𝜙
𝜕𝑡
+ 𝑝 +
1
2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡)
𝜕2
𝜙
𝜕𝑥2
+
𝜕2
𝜙
𝜕𝑧2
= 0
Boundary Conditions
● Kinematic boundary condition: no net flow through boundary
● Dynamic boundary condition: stress continuous at interface
𝑧 = 𝑧surf 𝑥, 𝑡
D
D𝑡
𝑧 − 𝑧surf = 0 on surface
KBC
D
D𝑡
≡
𝜕
𝜕𝑡
+ 𝑢
𝜕
𝜕𝑥
+ 𝑤
𝜕
𝜕𝑧
𝑤 −
𝜕𝑧surf
𝜕𝑡
− 𝑢
𝜕𝑧surf
𝜕𝑥
= 0 on the surface
𝑤 =
𝜕𝑧surf
𝜕𝑡
+ 𝑢
𝜕𝑧surf
𝜕𝑥
on 𝑧 = 𝑧surf 𝑥, 𝑡
Boundary Conditions
KBBC – Kinematic Bed Boundary Condition
𝑤 = 0 on 𝑧 = −ℎ
KFSBC – Kinematic Free-Surface Boundary Condition
𝑤 =
𝜕𝜂
𝜕𝑡
+ 𝑢
𝜕𝜂
𝜕𝑥
on 𝑧 = 𝜂 𝑥, 𝑡
DFSBC – Dynamic Free-Surface Boundary Condition
𝑝 = 0 on 𝑧 = 𝜂 𝑥, 𝑡
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
𝑤 =
𝜕𝑧surf
𝜕𝑡
+ 𝑢
𝜕𝑧surf
𝜕𝑥
on 𝑧 = 𝑧surf
Linearised Equations
𝑦 = 𝑎 + 𝑏𝜀 + 𝑐𝜀2
+ ⋯
● If 𝜀 is small, ignore quadratic and higher powers:
𝑦 = 𝑎 + 𝑏𝜀 + ⋯
● Boundary conditions on 𝑧 = 𝜂(𝑥, 𝑡) can be applied on 𝑧 = 0
Boundary Conditions
KBBC – Kinematic Bed Boundary Condition
𝑤 = 0 on 𝑧 = −ℎ
KBBC – Kinematic Free-Surface Boundary Condition
𝑤 =
𝜕𝜂
𝜕𝑡
+ 𝑢
𝜕𝜂
𝜕𝑥
on 𝑧 = 𝜂 𝑥, 𝑡
DFSBC – Dynamic Free-Surface Boundary Condition
𝑝 = 0 on 𝑧 = 𝜂 𝑥, 𝑡
L
h
A
H
(x,t)
SWL (z=0)
x
z
trough
crest c
bed (z= -h)
𝑤 =
𝜕𝑧surf
𝜕𝑡
+ 𝑢
𝜕𝑧surf
𝜕𝑥
on 𝑧 = 𝑧surf
𝜕𝜙
𝜕𝑧
= 0 on 𝑧 = −ℎ
𝜕𝜙
𝜕𝑧
=
𝜕𝜂
𝜕𝑡
on 𝑧 = 0
𝜕𝜙
𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0
𝜌
𝜕𝜙
𝜕𝑡
+ 𝑝 +
1
2
𝜌𝑈2
+ 𝜌𝑔𝑧 = 𝐶(𝑡)
Summary of Equations and BCs
Laplace’s equation
𝜕2𝜙
𝜕𝑥2
+
𝜕2𝜙
𝜕𝑧2
= 0
KBBC
KFSBC
DFSBC
𝜕𝜙
𝜕𝑧
= 0 on 𝑧 = −ℎ
𝜕𝜙
𝜕𝑧
=
𝜕𝜂
𝜕𝑡
on 𝑧 = 0
𝜕𝜙
𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0
Solution For Velocity Potential, 𝝓
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Surface displacement:
Look for solution by separation of variables: 𝜙 = 𝑋 𝑥, 𝑡 𝑍 𝑧
KFSBC:
𝜕𝜙
𝜕𝑧
=
𝜕𝜂
𝜕𝑡
on 𝑧 = 0 𝑋 ቤ
d𝑍
d𝑧 𝑧=0
= 𝐴𝜔 sin 𝑘𝑥 − 𝜔𝑡
Hence: 𝑋 ∝ sin 𝑘𝑥 − 𝜔𝑡
WLOG: 𝑋 = sin 𝑘𝑥 − 𝜔𝑡 ቤ
d𝑍
d𝑧 𝑧=0
= 𝐴𝜔
Laplace’s equation:
𝜕2𝜙
𝜕𝑥2
+
𝜕2𝜙
𝜕𝑧2
= 0 −𝑘2𝑋𝑍 + 𝑋
d2𝑍
d𝑧2 = 0
d2𝑍
d𝑧2
= 𝑘2𝑍
𝑍 = 𝛼e𝑘𝑧
+ 𝛽e−𝑘𝑧
General solution:
Solution For Velocity Potential, 𝝓
𝑍 = 𝛼e𝑘𝑧
+ 𝛽e−𝑘𝑧
So far: 𝜙 = 𝑍 𝑧 sin 𝑘𝑥 − 𝜔𝑡
KFSBC:
d𝑍
d𝑧
= 𝐴𝜔 on 𝑧 = 0
KBBC:
d𝑍
d𝑧
= 0 on 𝑧 = −ℎ
𝑍 =
𝐴𝜔
𝑘
cosh 𝑘 ℎ + 𝑧
sinh 𝑘ℎ
Solution:
𝜙 =
𝐴𝜔
𝑘
cosh 𝑘 ℎ + 𝑧
sinh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
Dispersion Relationship
𝜙 =
𝐴𝜔
𝑘
cosh 𝑘 ℎ + 𝑧
sinh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
How is wavenumber (𝑘) related to wave angular frequency (𝜔)?
𝜕𝜙
𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0
DFSBC:
−
𝐴𝜔2
𝑘
cosh 𝑘ℎ
sinh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡 + 𝐴𝑔 cos 𝑘𝑥 − 𝜔𝑡 = 𝐶(𝑡)
LHS has zero space average ... so 𝐶(𝑡) must be zero
−
𝜔2
𝑘
cosh 𝑘ℎ
sinh 𝑘ℎ
+ 𝑔 = 0
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝜔
𝑘
=
𝑔
𝜔
sinh 𝑘ℎ
cosh 𝑘ℎ
𝜙 =
𝐴𝑔
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
Summary of Solution
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝜙 =
𝐴𝑔
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
Velocity potential:
Dispersion relation:
This is all we need!!!
𝑢 ≡
𝜕𝜙
𝜕𝑥
𝑤 ≡
𝜕𝜙
𝜕𝑧
𝑝 = −𝜌𝑔𝑧 − 𝜌
𝜕𝜙
𝜕𝑡
Velocity:
Pressure:
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Surface displacement:
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Dispersion Relationship
𝜔2
= 𝑔𝑘 tanh 𝑘ℎ
𝜔2ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ
or
𝐿 =
2π
𝑘
𝑇 =
2π
𝜔
𝑐 ≡
𝜔
𝑘
=
𝑔
𝑘
tanh 𝑘ℎ
Variation of Phase Speed With Depth
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
When waves propagate into shallower water:
Period 𝑇 - and hence 𝜔 - are unchanged
Depth ℎ decreases … so wavenumber 𝑘 increases
Wavelength 𝐿 decreases
Speed 𝑐 decreases This is VERY important !
Solving the Dispersion Relationship
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
1. Know wavelength (𝑳) … find period (𝑻)
𝑘 =
2π
𝐿
𝑇 =
2π
𝜔
Substitute: gives 𝜔
Solving the Dispersion Relationship
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
2. Know period (𝑻) … find wavelength (𝑳)
𝐿 =
2π
𝑘
Rewrite as
𝜔 =
2π
𝑇
𝜔2
ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ 𝑌 = 𝑋 tanh 𝑋
𝑋 =
𝑌
tanh 𝑋
Iterate or 𝑋 =
1
2
𝑋 +
𝑌
tanh 𝑋
Gives 𝑋 = 𝑘ℎ and hence 𝑘
Example
Find, in still water of depth 15 m:
(a) the period of a wave with wavelength 45 m;
(b) the wavelength of a wave with period 8 s.
In each case write down the phase speed (celerity).
Find, in still water of depth 15 m:
(a) the period of a wave with wavelength 45 m;
(b) the wavelength of a wave with period 8 s.
In each case write down the phase speed (celerity).
ℎ = 15 m
𝐿 = 45 m
𝑘 =
2π
𝐿
= 0.1396 m−1
𝜔 = 1.153 rad s−1
𝑇 =
2π
𝜔
𝑐 =
𝜔
𝑘
wavelength:
wavenumber:
angular frequency:
period:
phase speed (celerity):
or
𝐿
𝑇
= 𝟖. 𝟐𝟓𝟗 𝐦 𝐬−𝟏
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
= 𝟓. 𝟒𝟒𝟗 𝐬
Find, in still water of depth 15 m:
(a) the period of a wave with wavelength 45 m;
(b) the wavelength of a wave with period 8 s.
In each case write down the phase speed (celerity).
ℎ = 15 m
= 𝟖𝟏. 𝟖𝟏 𝐦
𝐿 =
2π
𝑘
𝑘 = 0.0768 m−1
= 0.7854 rad s−1
𝜔 =
2π
𝑇
𝑐 =
𝜔
𝑘
wavelength:
wavenumber:
angular frequency:
period:
phase speed (celerity): = 𝟏𝟎. 𝟐𝟑 𝐦 𝐬−𝟏
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝑇 = 8 s
𝜔2ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ
𝑘ℎ tanh 𝑘ℎ = 0.9432
𝑘ℎ =
0.9432
tanh 𝑘ℎ
or 𝑘ℎ =
1
2
𝑘ℎ +
0.9432
tanh 𝑘ℎ
𝑘ℎ = 1.152
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Velocity
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Surface displacement:
Velocity potential: 𝜙 =
𝐴𝑔
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
𝑢 ≡
𝜕𝜙
𝜕𝑥
=
𝐴𝑔𝑘
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡
𝑤 ≡
𝜕𝜙
𝜕𝑧
=
𝐴𝑔𝑘
𝜔
sinh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
Pressure
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Surface displacement:
Velocity potential: 𝜙 =
𝐴𝑔
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
Bernoulli equation:
𝑝 = −𝜌𝑔𝑧 − 𝜌
𝜕𝜙
𝜕𝑡
𝑝 = −𝜌𝑔𝑧
hydrostatic
+ 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡
)
hydrodynamic (i.e. wave
𝜌
𝜕𝜙
𝜕𝑡
+ 𝑝 + 𝜌𝑔𝑧 = 0
= −𝜌𝑔𝑧 + 𝜌𝑔𝜂 ×
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
Example
A pressure sensor is located 0.6 m above the sea bed
in a water depth ℎ = 12 m. The pressure fluctuates
with period 15 s. A maximum gauge pressure of
124 kPa is recorded.
(a) What is the wave height?
(b) What are the maximum horizontal and vertical
velocities at the surface?
A pressure sensor is located 0.6 m above the sea bed in a water depth ℎ = 12 m. The
pressure fluctuates with period 15 s. A maximum gauge pressure of 124 kPa is recorded.
(a) What is the wave height?
𝑝 = −𝜌𝑔𝑧 + 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)
ℎ = 12 m
𝑧 = −11.4 m
𝑇 = 15 s
𝑝max = 124000 Pa 124000 = 114630 + 10060𝐴
cosh(𝑘 × 0.6)
cosh 𝑘ℎ
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝑘 = 0.04005 m−1
= 0.4189 rad s−1
𝜔 =
2π
𝑇
𝜔2ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ
𝑘ℎ tanh 𝑘ℎ = 0.2147
𝑘ℎ =
0.2147
tanh 𝑘ℎ or 𝑘ℎ =
1
2
𝑘ℎ +
0.2147
tanh 𝑘ℎ
𝑘ℎ = 0.4806
124000 = 114630 + 10060𝐴 × 0.8949
𝐴 = 1.041 m
𝐻 = 2𝐴 = 𝟐. 𝟎𝟖𝟐 𝐦
(b) What are the maximum horizontal and vertical velocities at the surface?
𝑧 = 0
𝑘 = 0.04005 m−1
𝜔 = 0.4189 rad s−1
𝑘ℎ = 0.4806
𝑢 =
𝐴𝑔𝑘
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡
𝑤 =
𝐴𝑔𝑘
𝜔
sinh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡
𝐴 = 1.041 m
𝑢max =
𝐴𝑔𝑘
𝜔
𝑤max =
𝐴𝑔𝑘
𝜔
tanh 𝑘ℎ
= 𝟎. 𝟗𝟕𝟔𝟒 𝐦 𝐬−𝟏
= 𝟎. 𝟒𝟑𝟔𝟐 𝐦 𝐬−𝟏
(surface)
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Wave Energy
● Wave energy density 𝐸 is average energy per unit horizontal area.
● Found by integrating over the water column, and averaging over a wave cycle.
● Kinetic energy:
● Potential energy:
● (Under linear theory) average wave-related KE and PE are the same.
● Total energy:
𝐸 =
1
2
𝜌𝑔𝐴2 =
1
8
𝜌𝑔𝐻2
KE = න
𝑧=−ℎ
𝜂
1
2
𝜌 𝑢2 + 𝑤2 d𝑧 =
1
4
𝜌𝑔𝐴2
PE = න
𝑧=−ℎ
𝜂
𝜌𝑔𝑧 d𝑧 =
1
4
𝜌𝑔𝐴2
+ constant
Kinetic Energy (Appendix A4)
KE =
1
2
𝜌 න
𝑧=−ℎ
𝜂
𝑢2
+ 𝑤2
d𝑧
𝑢2
+ 𝑤2
=
𝐴𝑔𝑘
𝜔 cosh 𝑘ℎ
2
cosh2
𝑘 ℎ + 𝑧 cos2
𝑘𝑥 − 𝜔𝑡 + sinh2
𝑘 ℎ + 𝑧 sin2
𝑘𝑥 − 𝜔𝑡
KE =
1
2
𝜌 න
𝑧=−ℎ
0
𝑢2 + 𝑤2 d𝑧
=
1
2
𝜌
𝐴𝑔𝑘
𝜔 cosh 𝑘ℎ
2
×
1
2
න
−ℎ
0
cosh 2𝑘 ℎ + 𝑧 d𝑧
=
1
2
𝜌
𝐴𝑔𝑘
𝜔 cosh 𝑘ℎ
2
×
1
2
sinh 2𝑘 ℎ + 𝑧
2𝑘 −ℎ
0
=
1
2
𝜌
𝐴𝑔𝑘
𝜔 cosh 𝑘ℎ
2
×
1
2
×
sinh 2𝑘ℎ
2𝑘
=
1
2
𝜌
𝐴𝑔𝑘
𝜔 cosh 𝑘ℎ
2
×
1
2
×
2 sinh 𝑘ℎ cosh 𝑘ℎ
2𝑘
=
1
4
𝜌𝐴2
𝑔2
𝑘 tanh 𝑘ℎ
𝜔2
𝜔2
= 𝑔𝑘 tanh 𝑘ℎ
KE =
1
4
𝜌𝑔𝐴2
=
1
2
𝜌
𝐴𝑔𝑘
𝜔 cosh 𝑘ℎ
2
×
1
2
න
−ℎ
0
cosh2
𝑘 ℎ + 𝑧 + sinh2
𝑘(ℎ + 𝑧) d𝑧
Potential Energy (Appendix A4)
PE = න
𝑧=−ℎ
𝜂
𝜌𝑔𝑧 d𝑧
=
1
2
𝜌𝑔 𝑧2
−ℎ
𝜂
PE =
1
4
𝜌𝑔𝐴2
=
1
2
𝜌𝑔(𝜂2
− ℎ2
)
PE =
1
2
𝜌𝑔 ×
1
2
𝐴2
Only the wave component is needed
=
1
2
𝜌𝑔(𝐴2
cos2
𝑘𝑥 − 𝜔𝑡 + constant)
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Phase and Group Velocities
Phase velocity 𝑐 ≡
𝜔
𝑘
– velocity at which the waveform translates
– really only meaningful for a regular wave, or single
frequency component
Group velocity 𝑐𝑔 ≡
d𝜔
d𝑘
– velocity at which energy propagates
– more appropriate for a wave packet comprised of
multiple frequency components
Combination of Frequency Components
𝜂 = 𝑎 cos (𝑘 + Δ𝑘)𝑥 − (𝜔 + Δ𝜔)𝑡
component 1
+ 𝑎 cos (𝑘 − Δ𝑘)𝑥 − (𝜔 − Δ𝜔)𝑡
component 2
Amplitude modulation:
𝜂 = 2𝑎 cos 𝑘𝑥 − 𝜔𝑡 cos Δ𝑘. 𝑥 − Δ𝜔. 𝑡
Two components: frequencies ω ± Δω and wavenumbers 𝑘 ± Δ𝑘
𝐴 𝑡 = 2𝑎 cos Δ𝑘 𝑥 − Δ𝜔 𝑡
Speed of amplitude envelope:
Δ𝜔
Δ𝑘
Group velocity 𝑐𝑔 ≡
d𝜔
d𝑘
cos 𝛼 + cos 𝛽 = 2 cos
𝛼 + 𝛽
2
cos
𝛼 − 𝛽
2
Group Velocity (Appendix A5)
Group velocity 𝑐𝑔 ≡
d𝜔
d𝑘
Dispersion relation 𝜔2
= 𝑔𝑘 tanh 𝑘ℎ
2𝜔
d𝜔
d𝑘
= 𝑔 tanh 𝑘ℎ + 𝑔𝑘ℎ sech2
𝑘ℎ
=
𝜔2
𝑘
+
𝜔2
tanh 𝑘ℎ
ℎ
cosh2 𝑘ℎ
=
𝜔2
𝑘
1 +
𝑘ℎ
sinh 𝑘ℎ cosh 𝑘ℎ
d𝜔
d𝑘
=
1
2
1 +
2𝑘ℎ
sinh 2𝑘ℎ
𝜔
𝑘
𝑐𝑔 = 𝑛𝑐 𝑐 ≡
𝜔
𝑘
𝑛 =
1
2
1 +
2𝑘ℎ
sinh 2𝑘ℎ
1
2 < 𝑛 < 1 group velocity < phase velocity
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Wave Power
𝑃 = 𝐸𝑐𝑔
𝐸 =
1
2
𝜌𝑔𝐴2
𝑐𝑔 = 𝑛𝑐
(energy density)
Power
(group velocity)
Wave power 𝑃 is the (average) rate of energy transfer per unit length of wave crest.
It can be calculated from the rate of working of pressure forces.
Wave Power (Appendix A6)
Wave power = (time-averaged) rate of working of pressure forces (pressure  area  velocity)
Per unit length of wave crest: power = න
𝑧=−ℎ
𝜂
𝑝𝑢 d𝑧
𝑝𝑢 = 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡 ×
𝐴𝑔𝑘
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡
=
𝜌𝑔2
𝐴2
𝑘
𝜔
cosh2
𝑘 ℎ + 𝑧
cosh2 𝑘ℎ
cos2
𝑘𝑥 − 𝜔𝑡
power =
𝜌𝑔2
𝐴2
𝑘
𝜔 cosh2 𝑘ℎ
× න
−ℎ
0
cosh2
𝑘 ℎ + 𝑧 d𝑧 ×
1
2
1
2
න
−ℎ
0
cosh 2𝑘 ℎ + 𝑧 + 1 d𝑧
=
1
2
sinh 2𝑘 ℎ + 𝑧
2𝑘
+ 𝑧
−ℎ
0
=
1
2
sinh 2𝑘ℎ
2𝑘
+ ℎ
pressure (𝑝)  area (1 × 𝑑𝑧)  velocity (𝑢)
Wave Power
power =
𝜌𝑔2
𝐴2
𝑘
𝜔 cosh2 𝑘ℎ
×
1
2
sinh 2𝑘ℎ
2𝑘
+ ℎ ×
1
2
=
1
2
𝜌𝑔𝐴2
×
𝑔𝑘
𝜔 cosh2 𝑘ℎ
×
sinh 2𝑘ℎ
2𝑘
1 +
2𝑘ℎ
sinh 2𝑘ℎ
×
1
2
=
1
2
𝜌𝑔𝐴2
×
𝑔𝑘
𝜔 cosh2 𝑘ℎ
×
2 sinh 𝑘ℎ cosh 𝑘ℎ
2𝑘
1 +
2𝑘ℎ
sinh 2𝑘ℎ
×
1
2
=
1
2
𝜌𝑔𝐴2
×
𝑔𝑘 tanh 𝑘ℎ
𝜔2
×
1
2
1 +
2𝑘ℎ
sinh 2𝑘ℎ
×
𝜔
𝑘
𝐸 1 𝑛 𝑐
𝑃 = 𝐸𝑐𝑔 𝐸 =
1
2
𝜌𝑔𝐴2 𝑐𝑔 = 𝑛𝑐
energy density
power group velocity
Example
A sea-bed pressure transducer in 9 m of water
records a sinusoidal signal with amplitude
5.9 kPa and period 7.5 s.
Find the wave height, energy density and wave
power per metre of crest.
A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude
5.9 kPa and period 7.5 s.
Find the wave height, energy density and wave power per metre of crest.
𝑝wave = 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)
ℎ = 9 m
𝑧 = −ℎ
𝑇 = 7.5 s
Δ𝑝wave = 5900 Pa
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝑘 = 0.09993 m−1
= 0.8378 rad s−1
𝜔 =
2π
𝑇
𝜔2ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ
𝑘ℎ tanh 𝑘ℎ = 0.6440
𝑘ℎ =
0.6440
tanh 𝑘ℎ
or 𝑘ℎ =
1
2
𝑘ℎ +
0.6440
tanh 𝑘ℎ
𝑘ℎ = 0.8994
(sea bed)
𝐸 =
1
2
𝜌𝑔𝐴2
𝑃 = 𝐸𝑐𝑔 𝑐𝑔 = 𝑛𝑐 𝑛 =
1
2
1 +
2𝑘ℎ
sinh 2𝑘ℎ
(amplitude)
A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude
5.9 kPa and period 7.5 s.
Find the wave height, energy density and wave power per metre of crest.
ℎ = 9 m
𝑧 = −ℎ
𝑇 = 7.5 s
Δ𝑝wave = 5900 Pa
5900 = 10055𝐴 ×
1
cosh 0.8994
𝑘 = 0.09993 m−1
𝜔 = 0.8378 rad s−1
𝑘ℎ = 0.8994
𝐻 = 2𝐴 = 𝟏. 𝟔𝟖𝟏 𝐦
(sea bed)
𝐸 =
1
2
𝜌𝑔𝐴2
𝑃 = 𝐸𝑐𝑔 𝑐𝑔 = 𝑛𝑐 𝑛 =
1
2
1 +
2𝑘ℎ
sinh 2𝑘ℎ
𝑝wave = 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)
𝐴 = 0.8405 m
𝐸 =
1
2
𝜌𝑔𝐴2 = 𝟑𝟓𝟓𝟐 𝐉 𝐦−𝟐
𝑐 =
𝜔
𝑘
= 8.384 m s−1
𝑛 =
1
2
1 +
2𝑘ℎ
sinh 2𝑘ℎ
= 0.8061
𝑐𝑔 = 𝑛𝑐 = 6.758 m s−1
𝑃 = 𝐸𝑐𝑔 = 𝟐𝟒𝟎𝟎𝟎 𝐖 𝐦−𝟏
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Particle Motion
= 𝜔𝐴
cosh 𝑘 ℎ + 𝑧
sinh 𝑘ℎ
cos 𝑘𝑥 − ω𝑡
Velocity:
𝑤 = 𝐴
𝑔𝑘
𝜔
sinh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
sin 𝑘𝑥 − ω𝑡
Dispersion relation: 𝜔2
= 𝑔𝑘 tanh 𝑘ℎ →
𝜔
sinh 𝑘ℎ
=
𝑔𝑘
𝜔 cosh 𝑘ℎ
d𝑋
d𝑡
= 𝑢
d𝑍
d𝑡
= 𝑤
𝑎 = 𝐴
cosh 𝑘 ℎ + 𝑍0
sinh 𝑘ℎ
𝑏 = 𝐴
sinh 𝑘 ℎ + 𝑍0
sinh 𝑘ℎ
𝑋 = 𝑋0 − 𝑎 sin 𝑘𝑋0 − 𝜔𝑡
𝑍 = 𝑍0 + 𝑏 cos 𝑘𝑋0 − 𝜔𝑡
sin2
𝜃 + cos2
𝜃 = 1
𝑋 − 𝑋0
𝑎
= − sin 𝑘𝑋0 − 𝜔𝑡
𝑍 − 𝑍0
𝑏
= cos 𝑘𝑋0 − 𝜔𝑡
= 𝑎𝜔 cos 𝑘𝑋0 − ω𝑡
= 𝑏𝜔 sin 𝑘𝑋0 − ω𝑡
𝑢 = 𝐴
𝑔𝑘
𝜔
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
cos 𝑘𝑥 − ω𝑡
= 𝜔𝐴
sinh 𝑘 ℎ + 𝑧
sinh 𝑘ℎ
sin 𝑘𝑥 − ω𝑡
Particle Motion
𝑎 = 𝐴
cosh 𝑘 ℎ + 𝑍0
sinh 𝑘ℎ
𝑏 = 𝐴
sinh 𝑘 ℎ + 𝑍0
sinh 𝑘ℎ
𝑋 − 𝑋0
2
𝑎2
+
𝑍 − 𝑍0
2
𝑏2
= 1
Ellipse, centre (𝑋0, 𝑍0) and semi-axes 𝑎 and 𝑏
intermediate depth shallow water
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Shallow-Water / Deep-Water Limits
Dispersion relationship: 𝜔2
= 𝑔𝑘 tanh 𝑘ℎ
Asymptotic behaviour: )
tanh 𝑘ℎ ~𝑘ℎ (as 𝑘ℎ → 0
)
tanh 𝑘ℎ → 1 (as 𝑘ℎ → ∞
Shallow water (or long waves): 𝑘ℎ ≪ 1
𝜔2 ≈ 𝑘2𝑔ℎ
𝑐 = 𝑐𝑔 = 𝑔ℎ (non-dispersive)
Deep water (or short waves): 𝑘ℎ ≫ 1
𝜔2
≈ 𝑔𝑘
𝐿 =
𝑔𝑇2
2π
𝑐 =
𝐿
𝑇
=
𝑔𝑇
2π
, 𝑛 =
1
2
, 𝑐𝑔 =
1
2
𝑐 (dispersive)
𝑛 = 1
𝑘ℎ = 2π
ℎ
𝐿
𝜔 ≈ 𝑘 𝑔ℎ
or
Shallow / Deep Limits
Deep:
𝑘ℎ <
𝜋
10
ℎ <
1
20
𝐿
Shallow:
𝑘ℎ > π ℎ >
1
2
𝐿
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝜔2ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ
Shallow / Deep Particle Motions
𝑎 = 𝐴
cosh 𝑘 ℎ + 𝑍0
sinh 𝑘ℎ
, 𝑏 = 𝐴
sinh 𝑘 ℎ + 𝑍0
sinh 𝑘ℎ
Ellipses:
deep water intermediate depth shallow water
Deep:
Shallow:
𝑘ℎ ≫ 1
𝑎 = 𝑏 ≈ 𝐴e−𝑘 𝑍0 Circles diminishing in size over half
a wavelength
𝑘ℎ ≪ 1
𝑎 ≈
𝐴
𝑘ℎ
,
𝑏
𝑎
≪ 1
Highly-flattened ellipses; horizontal
excursion almost independent of depth
Shallow / Deep Pressure
Deep:
Shallow:
𝑘ℎ ≫ 1
Perturbation decays over half a wavelength
𝑘ℎ ≪ 1
𝑝 = −𝜌𝑔𝑧 − 𝜌
𝜕𝜙
𝜕𝑡
= −𝜌𝑔𝑧
hydrostatic
+ 𝜌𝑔𝜂
cosh 𝑘 ℎ + 𝑧
cosh 𝑘ℎ
hydrodynamic
𝑝 ≈ −𝜌𝑔𝑧 + 𝜌𝑔𝜂e−𝑘 𝑧
)
𝑝 ≈ 𝜌𝑔(𝜂 − 𝑧 Hydrostatic
Example
(a) Find the deep-water speed and wavelength of a
wave of period 12 s.
(b) Find the speed and wavelength of a wave of
period 12 s in water of depth 3 m. Compare with
the shallow-water approximation.
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
Deep water:
𝑘𝒉 → ∞
tanh 𝑘ℎ → 1
𝜔2
= 𝑔𝑘 2π
𝑇
2
= 𝑔
2π
𝐿
𝐿 =
𝑔𝑇2
2π
𝑐 =
𝑔𝑇
2π
Shallow water:
𝑘𝒉 → 𝟎
tanh 𝑘ℎ ~𝑘ℎ
𝜔2
= 𝑔𝑘2
ℎ
𝜔
𝑘
2
= 𝑔ℎ
𝐿 = 𝑐𝑇
𝑐 = 𝑔ℎ
Reminder of Deep and Shallow Limits
(a) Find the deep-water speed and wavelength of a wave of period 12 s.
(b) Find the speed and wavelength of a wave of period 12 s in water of depth 3 m. Compare
with the shallow-water approximation.
Deep:
𝑇 = 12 s
𝑐 =
𝑔𝑇
2π
= 𝟏𝟖. 𝟕𝟒 𝐦 𝐬−𝟏
𝐿 =
𝑔𝑇2
2π
= 𝟐𝟐𝟒. 𝟖 𝐦
Exact, with ℎ = 3 m:
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ
𝑐 =
𝜔
𝑘
= 0.5236 rad s−1
𝜔 =
2π
𝑇
𝜔2
ℎ
𝑔
= 𝑘ℎ tanh 𝑘ℎ
𝑘ℎ tanh 𝑘ℎ = 0.08384
𝑘ℎ =
0.08384
tanh 𝑘ℎ
or 𝑘ℎ =
1
2
𝑘ℎ +
0.08384
tanh 𝑘ℎ
𝑘ℎ = 0.2937
𝑘 = 0.09790 m−1 = 𝟓. 𝟑𝟒𝟖 𝐦 𝐬−𝟏 𝐿 =
2π
𝑘
= 𝟔𝟒. 𝟏𝟖 𝐦
Shallow: 𝑐 = 𝑔ℎ = 𝟓. 𝟒𝟐𝟓 𝐦 𝐬−𝟏
𝐿 = 𝑐𝑇 = 𝟔𝟓. 𝟏𝟎 𝐦
1. LINEAR WAVE THEORY
1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents
Linear Wave Theory
Waves on Currents
● Waves co-exist with background current 𝑈
● Formulae hold in relative frame moving with the current:
𝑥𝑟 = 𝑥 − 𝑈𝑡
𝜂 = 𝐴 cos 𝑘𝑥𝑟 − 𝜔𝑟𝑡
= 𝐴 cos 𝑘𝑥 − 𝜔𝑟 + 𝑘𝑈 𝑡
= 𝑐𝑟 + 𝑈
𝜔𝑎 = 𝜔𝑟 + 𝑘𝑈
● Dispersion relationship: 𝜔𝑎 − 𝑘𝑈 2 = 𝜔𝑟
2 = 𝑔𝑘 tanh 𝑘ℎ
𝑐𝑎 =
𝜔𝑎
𝑘
= 𝐴 cos 𝑘𝑥 − 𝜔𝑎𝑡
Example
An acoustic depth sounder indicates regular surface waves with
apparent period 8 s in water of depth 12 m. Find the wavelength
and absolute phase speed of the waves when there is:
(a) no mean current;
(b) a current of 3 m s–1 in the same direction as the waves;
(c) a current of 3 m s–1 in the opposite direction to the waves.
An acoustic depth sounder indicates regular surface waves with apparent period 8 s in water
of depth 12 m. Find the wavelength and absolute phase speed of the waves when there is:
(a) no mean current;
(b) a current of 3 m s–1 in the same direction as the waves;
(c) a current of 3 m s–1 in the opposite direction to the waves.
ℎ = 12 m
𝑇𝑎 = 8 s (absolute)
𝜔𝑎 =
2π
𝑇𝑎
𝜔𝑎 − 𝑘𝑈 2 = 𝜔𝑟
2 = 𝑔𝑘 tanh 𝑘ℎ
𝑘 =
0.7854 − 𝑘𝑈 2
9.81 tanh 12𝑘
𝑘 =
1
2
𝑘 +
0.7854 − 𝑘𝑈 2
9.81 tanh 12𝑘
or
𝑈 = 0
0.08284
=
𝜔𝑎
𝑘
=
2π
𝑘
𝟕𝟓. 𝟖𝟓
𝟗. 𝟒𝟖𝟏
𝑈 = +3 m s−1
0.06024
𝟏𝟎𝟒. 𝟑
𝟏𝟑. 𝟎𝟒
𝑈 = −3 m s−1
0.1951
𝟑𝟐. 𝟐𝟎
𝟒. 𝟎𝟐𝟔
= 0.7854 rad s−1
𝑘 (m−1
)
𝐿 (m)
𝑐𝑎 (m s−1
)
𝑘 =
1
2
𝑘 +
0.78542
9.81 tanh 12𝑘
𝑘 =
1
2
𝑘 +
0.7854 − 3𝑘 2
9.81 tanh 12𝑘
𝑘 =
1
2
𝑘 +
0.7854 + 3𝑘 2
9.81 tanh 12𝑘
Iteration:

More Related Content

What's hot

Air and Sea Interactions Notes
Air and Sea Interactions NotesAir and Sea Interactions Notes
Air and Sea Interactions Notesmgitterm
 
Moisture and Atmospheric Stability
Moisture and Atmospheric StabilityMoisture and Atmospheric Stability
Moisture and Atmospheric StabilityZBTHS
 
Air masses and its types
Air masses and its typesAir masses and its types
Air masses and its typesSummer Sam
 
Geography fluvial landforms
Geography fluvial landformsGeography fluvial landforms
Geography fluvial landformsvusumuzingwane1
 
Waves and their significance
Waves and their significanceWaves and their significance
Waves and their significancePramoda Raj
 
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...George Dumitrache
 
4. Ocean Current Notes
4. Ocean Current Notes4. Ocean Current Notes
4. Ocean Current Notesmgitterm
 
Sediment Cells And Sources
Sediment Cells And SourcesSediment Cells And Sources
Sediment Cells And SourcesJames Foster
 
Climate changes impact on coastal regions
Climate changes impact on coastal regionsClimate changes impact on coastal regions
Climate changes impact on coastal regionsMakeOil Green
 
Stability & Instability
Stability & InstabilityStability & Instability
Stability & InstabilityMalia Damit
 
Climate change & its impact on our water resources_ Schools India Water Porta...
Climate change & its impact on our water resources_ Schools India Water Porta...Climate change & its impact on our water resources_ Schools India Water Porta...
Climate change & its impact on our water resources_ Schools India Water Porta...India Water Portal
 
El Nino Theory
El Nino TheoryEl Nino Theory
El Nino Theorymissm
 
Hydrograph explanation and animation
Hydrograph explanation and animationHydrograph explanation and animation
Hydrograph explanation and animationDuncanAshton
 
Turbulent flows and equations
Turbulent flows and equationsTurbulent flows and equations
Turbulent flows and equationsOm Prakash Singh
 
17.3 ocean waves and tides
17.3 ocean waves and tides17.3 ocean waves and tides
17.3 ocean waves and tidesTamara
 
Lecture4(hydro)
Lecture4(hydro)Lecture4(hydro)
Lecture4(hydro)mltan4
 

What's hot (20)

Air and Sea Interactions Notes
Air and Sea Interactions NotesAir and Sea Interactions Notes
Air and Sea Interactions Notes
 
Moisture and Atmospheric Stability
Moisture and Atmospheric StabilityMoisture and Atmospheric Stability
Moisture and Atmospheric Stability
 
Air-Sea Interaction
Air-Sea InteractionAir-Sea Interaction
Air-Sea Interaction
 
Ocean waves lecture
Ocean waves lectureOcean waves lecture
Ocean waves lecture
 
Atmospheric Turbulence
Atmospheric TurbulenceAtmospheric Turbulence
Atmospheric Turbulence
 
Air masses and its types
Air masses and its typesAir masses and its types
Air masses and its types
 
Geography fluvial landforms
Geography fluvial landformsGeography fluvial landforms
Geography fluvial landforms
 
Waves and their significance
Waves and their significanceWaves and their significance
Waves and their significance
 
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
CAMBRIDGE GEOGRAPHY A2 REVISION - COASTAL ENVIRONMENTS: 8.2 COASTAL LANDFORMS...
 
4. Ocean Current Notes
4. Ocean Current Notes4. Ocean Current Notes
4. Ocean Current Notes
 
Sediment Cells And Sources
Sediment Cells And SourcesSediment Cells And Sources
Sediment Cells And Sources
 
Climate changes impact on coastal regions
Climate changes impact on coastal regionsClimate changes impact on coastal regions
Climate changes impact on coastal regions
 
Open channel Flow
Open channel FlowOpen channel Flow
Open channel Flow
 
Stability & Instability
Stability & InstabilityStability & Instability
Stability & Instability
 
Climate change & its impact on our water resources_ Schools India Water Porta...
Climate change & its impact on our water resources_ Schools India Water Porta...Climate change & its impact on our water resources_ Schools India Water Porta...
Climate change & its impact on our water resources_ Schools India Water Porta...
 
El Nino Theory
El Nino TheoryEl Nino Theory
El Nino Theory
 
Hydrograph explanation and animation
Hydrograph explanation and animationHydrograph explanation and animation
Hydrograph explanation and animation
 
Turbulent flows and equations
Turbulent flows and equationsTurbulent flows and equations
Turbulent flows and equations
 
17.3 ocean waves and tides
17.3 ocean waves and tides17.3 ocean waves and tides
17.3 ocean waves and tides
 
Lecture4(hydro)
Lecture4(hydro)Lecture4(hydro)
Lecture4(hydro)
 

Similar to slidesWaveRegular.pdf

Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks9866560321sv
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System ModelsAIMST University
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdfcfisicaster
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbchettanagarwal
 
CZMAR_lecture L3A1_and Assignment for Class
CZMAR_lecture L3A1_and Assignment for ClassCZMAR_lecture L3A1_and Assignment for Class
CZMAR_lecture L3A1_and Assignment for ClassDoomDoctor
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةMohammedRazzaqSalman
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdfcfisicaster
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanicsSpencilian
 
SEA WAVES AND SHIP RESPONSE- MECHANICS.pptx
SEA WAVES AND SHIP RESPONSE- MECHANICS.pptxSEA WAVES AND SHIP RESPONSE- MECHANICS.pptx
SEA WAVES AND SHIP RESPONSE- MECHANICS.pptxSamirsinh Parmar
 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxMuhammad Dzaky Fawwaz
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationZahid Mehmood
 

Similar to slidesWaveRegular.pdf (20)

WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
 
CZMAR_lecture L3A1_and Assignment for Class
CZMAR_lecture L3A1_and Assignment for ClassCZMAR_lecture L3A1_and Assignment for Class
CZMAR_lecture L3A1_and Assignment for Class
 
Part 2 RANS.pdf
Part 2 RANS.pdfPart 2 RANS.pdf
Part 2 RANS.pdf
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
 
LC oscillations.pdf
LC oscillations.pdfLC oscillations.pdf
LC oscillations.pdf
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Wave mechanics
Wave mechanicsWave mechanics
Wave mechanics
 
SEA WAVES AND SHIP RESPONSE- MECHANICS.pptx
SEA WAVES AND SHIP RESPONSE- MECHANICS.pptxSEA WAVES AND SHIP RESPONSE- MECHANICS.pptx
SEA WAVES AND SHIP RESPONSE- MECHANICS.pptx
 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
 
Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)
 
Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...
Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...
Plumas beta lineales forzadas por el viento: aplicaciones a la Contracorrient...
 

More from cfisicaster

WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdfcfisicaster
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdfcfisicaster
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfcfisicaster
 
WavesStatistics.pdf
WavesStatistics.pdfWavesStatistics.pdf
WavesStatistics.pdfcfisicaster
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdfcfisicaster
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdfcfisicaster
 
slidesWaveStatistics.pdf
slidesWaveStatistics.pdfslidesWaveStatistics.pdf
slidesWaveStatistics.pdfcfisicaster
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdfcfisicaster
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...cfisicaster
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfcfisicaster
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...cfisicaster
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...cfisicaster
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...cfisicaster
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...cfisicaster
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfcfisicaster
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...cfisicaster
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdfcfisicaster
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...cfisicaster
 
TOC_4108_02_05.pdf
TOC_4108_02_05.pdfTOC_4108_02_05.pdf
TOC_4108_02_05.pdfcfisicaster
 

More from cfisicaster (20)

WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdf
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdf
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdf
 
WavesStatistics.pdf
WavesStatistics.pdfWavesStatistics.pdf
WavesStatistics.pdf
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdf
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdf
 
slidesWaveStatistics.pdf
slidesWaveStatistics.pdfslidesWaveStatistics.pdf
slidesWaveStatistics.pdf
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdf
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
 
Fisica2.pdf
Fisica2.pdfFisica2.pdf
Fisica2.pdf
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdf
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
 
TOC_4108_02_05.pdf
TOC_4108_02_05.pdfTOC_4108_02_05.pdf
TOC_4108_02_05.pdf
 

Recently uploaded

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 

Recently uploaded (20)

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 

slidesWaveRegular.pdf

  • 1. B. Waves 1. Linear wave theory 2. Wave transformation 3. Random waves and statistics 4. Wave loading on structures
  • 2. Recommended Books ● Dean and Dalrymple, Water Wave Mechanics For Engineers and Scientists ● Kamphuis, Introduction to coastal engineering and management
  • 3. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 4. Linear Wave Theory Single-frequency (“monochromatic”, “regular”) progressive wave on still water: 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 Linear wave theory: ● aka Airy wave theory ● assume amplitude small (compared with depth and wavelength) ‒ neglect powers and products of wave perturbations ‒ sum of any such wave fields also a solution L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h)
  • 5. Amplitude and Height L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) ● Amplitude 𝐴 is the maximum displacement from still-water level (SWL) ● Wave height 𝐻 is the vertical distance between neighbouring crest and trough ● For sinusoidal waves, 𝑯 = 𝟐𝑨 ● For regular waves, formulae more naturally expressed in terms of 𝐴 ● For irregular waves, 𝐻 is the more measurable quantity 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
  • 6. Wavenumber and Wavelength L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) ● 𝑘 is the wavenumber ● Wavelength 𝐿 is the horizontal distance over which wave form repeats: 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 𝐿 = 2π 𝑘 𝑘𝐿 = 2π 
  • 7. Frequency and Period L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) ● 𝜔 is the wave angular frequency ● Period 𝑇 is the time over which the wave form repeats: 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 𝑇 = 2π 𝜔 𝜔𝑇 = 2π  ● The actual frequency 𝑓 (cycles per second, or Hertz) is 𝑓 = 1 𝑇 = 𝜔 2𝜋
  • 8. Wave Speed L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) ● 𝑐 is the phase speed or celerity ● 𝑐 is the speed at which the wave form translates 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 = 𝐴 cos 𝑘 𝑥 − 𝜔 𝑘 𝑡 = 𝐴 cos 𝑘 𝑥 − c𝑡 𝑐 = 𝜔 𝑘 = 𝐿 𝑇 wavelength period = 𝑓𝐿 frequency × wavelength
  • 9. Summary L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 Surface elevation: Wavenumber 𝑘, wavelength 𝐿: 𝐿 = 2π 𝑘 Angular frequency 𝜔, period 𝑇: 𝑇 = 2π 𝜔 Phase speed (celerity) 𝑐: 𝑐 = 𝜔 𝑘 = 𝐿 𝑇
  • 10. Hyperbolic Functions sinh 𝑥 ≡ e𝑥 − 𝑒−𝑥 2 cosh 𝑥 ≡ e𝑥 + 𝑒−𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥
  • 11. Hyperbolic Functions Trigonometric-like formulae: cosh2 𝑥 − sinh2 𝑥 = 1 cosh 2𝑥 = cosh2 𝑥 + sinh2 𝑥 = 2 cosh2 𝑥 − 1 sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥 Derivatives: d d𝑥 sinh 𝑥 = cosh 𝑥 d d𝑥 cosh 𝑥 = sinh 𝑥 d d𝑥 tanh 𝑥 = sech2 𝑥 Asymptotic behaviour: Small 𝑥: sinh 𝑥 ~ tanh 𝑥 ~ 𝑥, Large 𝑥: sinh 𝑥 ~ cosh 𝑥 ~ 1 2 e𝑥, cosh 𝑥 → 1 as 𝑥 → 0 tanh 𝑥 → 1 as 𝑥 → ∞
  • 12. Fluid-Flow Equations Continuity: Irrotationality: Time-dependent Bernoulli equation: 𝜕𝑢 𝜕𝑥 + 𝜕𝑤 𝜕𝑧 = 0 𝜕𝑢 𝜕𝑧 − 𝜕𝑤 𝜕𝑥 = 0 or: 𝑢 = 𝜕𝜙 𝜕𝑥 , 𝑤 = 𝜕𝜙 𝜕𝑧 𝜙 is a velocity potential 𝜌 𝜕𝜙 𝜕𝑡 + 𝑝 + 1 2 𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶 𝑡 , along a streamline
  • 13. Continuity 𝑢𝑒Δ𝑧 − 𝑢𝑤Δ𝑧 + 𝑤𝑛Δ𝑥 − 𝑤𝑠Δ𝑥 = 0 Net volume outflow: Divide by Δ𝑥Δ𝑧: 𝑢𝑒 − 𝑢𝑤 Δ𝑥 + 𝑤𝑛 − 𝑤𝑠 Δ𝑧 = 0 Δ𝑢 Δ𝑥 + Δ𝑤 Δ𝑧 = 0 Δ𝑥, Δ𝑧 → 0: 𝜕𝑢 𝜕𝑥 + 𝜕𝑤 𝜕𝑧 = 0 ue uw wn ws z x
  • 14. Irrotationality Circulation: Divide by Δ𝑥Δ𝑧: Δ𝑥, Δ𝑧 → 0: we ww un us z x Pressure forces act normal to surfaces, so can cause no rotation. 𝑢𝑛Δ𝑥 − 𝑤𝑒Δ𝑧 − 𝑢𝑠Δ𝑥 + 𝑤𝑤Δ𝑧 = 0 𝑢𝑛 − 𝑢𝑠 Δ𝑧 − 𝑤𝑒 − 𝑤𝑤 Δ𝑥 = 0 Δ𝑢 Δ𝑧 − Δ𝑤 Δ𝑥 = 0 𝜕𝑢 𝜕𝑧 − 𝜕𝑤 𝜕𝑥 = 0
  • 15. Velocity Potential The no-circulation condition makes the following well-defined: For any 2-d function: we ww un us z x d𝜙 = 𝑢 d𝑥 + 𝑤 d𝑧 d𝜙 = 𝜕𝜙 𝜕𝑥 d𝑥 + 𝜕𝜙 𝜕𝑧 d𝑧 The velocity components are the gradient of the velocity potential 𝜙: 𝑢 = 𝜕𝜙 𝜕𝑥 , 𝑤 = 𝜕𝜙 𝜕𝑧 Aim: solve a single scalar equation for 𝜙, then derive everything else from it.
  • 16. Time-Dependent Bernoulli Equation  U s 𝜌 𝜕𝑈 𝜕𝑡 + 𝑈 𝜕𝑈 𝜕𝑠 = − 𝜕𝑝 𝜕𝑠 − 𝜌𝑔 sin 𝜃 mass  acceleration = force sin 𝜃 = Τ 𝜕𝑧 𝜕𝑠 𝑈 = 𝜕𝜙 𝜕𝑠 𝜌 𝜕2𝜙 𝜕𝑡 𝜕𝑠 + 𝜕 𝜕𝑠 (1 2𝑈2 ) = − 𝜕𝑝 𝜕𝑠 − 𝜌𝑔 𝜕𝑧 𝜕𝑠 𝜕 𝜕𝑠 𝜌 𝜕𝜙 𝜕𝑡 + 1 2 𝜌𝑈2 + 𝑝 + 𝜌𝑔𝑧 = 0 𝜌 𝜕𝜙 𝜕𝑡 + 𝑝 + 1 2 𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡), along a streamline Special case: if steady-state then 𝑝 + 1 2 𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶, along a streamline
  • 17. Recap of Fluid-Flow Equations Continuity Velocity potential Bernoulli equation 𝜕𝑢 𝜕𝑥 + 𝜕𝑤 𝜕𝑧 = 0 𝑢 = 𝜕𝜙 𝜕𝑥 , 𝑤 = 𝜕𝜙 𝜕𝑧 Laplace’s equation 𝜌 𝜕𝜙 𝜕𝑡 + 𝑝 + 1 2 𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡) 𝜕2 𝜙 𝜕𝑥2 + 𝜕2 𝜙 𝜕𝑧2 = 0
  • 18. Boundary Conditions ● Kinematic boundary condition: no net flow through boundary ● Dynamic boundary condition: stress continuous at interface 𝑧 = 𝑧surf 𝑥, 𝑡 D D𝑡 𝑧 − 𝑧surf = 0 on surface KBC D D𝑡 ≡ 𝜕 𝜕𝑡 + 𝑢 𝜕 𝜕𝑥 + 𝑤 𝜕 𝜕𝑧 𝑤 − 𝜕𝑧surf 𝜕𝑡 − 𝑢 𝜕𝑧surf 𝜕𝑥 = 0 on the surface 𝑤 = 𝜕𝑧surf 𝜕𝑡 + 𝑢 𝜕𝑧surf 𝜕𝑥 on 𝑧 = 𝑧surf 𝑥, 𝑡
  • 19. Boundary Conditions KBBC – Kinematic Bed Boundary Condition 𝑤 = 0 on 𝑧 = −ℎ KFSBC – Kinematic Free-Surface Boundary Condition 𝑤 = 𝜕𝜂 𝜕𝑡 + 𝑢 𝜕𝜂 𝜕𝑥 on 𝑧 = 𝜂 𝑥, 𝑡 DFSBC – Dynamic Free-Surface Boundary Condition 𝑝 = 0 on 𝑧 = 𝜂 𝑥, 𝑡 L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) 𝑤 = 𝜕𝑧surf 𝜕𝑡 + 𝑢 𝜕𝑧surf 𝜕𝑥 on 𝑧 = 𝑧surf
  • 20. Linearised Equations 𝑦 = 𝑎 + 𝑏𝜀 + 𝑐𝜀2 + ⋯ ● If 𝜀 is small, ignore quadratic and higher powers: 𝑦 = 𝑎 + 𝑏𝜀 + ⋯ ● Boundary conditions on 𝑧 = 𝜂(𝑥, 𝑡) can be applied on 𝑧 = 0
  • 21. Boundary Conditions KBBC – Kinematic Bed Boundary Condition 𝑤 = 0 on 𝑧 = −ℎ KBBC – Kinematic Free-Surface Boundary Condition 𝑤 = 𝜕𝜂 𝜕𝑡 + 𝑢 𝜕𝜂 𝜕𝑥 on 𝑧 = 𝜂 𝑥, 𝑡 DFSBC – Dynamic Free-Surface Boundary Condition 𝑝 = 0 on 𝑧 = 𝜂 𝑥, 𝑡 L h A H (x,t) SWL (z=0) x z trough crest c bed (z= -h) 𝑤 = 𝜕𝑧surf 𝜕𝑡 + 𝑢 𝜕𝑧surf 𝜕𝑥 on 𝑧 = 𝑧surf 𝜕𝜙 𝜕𝑧 = 0 on 𝑧 = −ℎ 𝜕𝜙 𝜕𝑧 = 𝜕𝜂 𝜕𝑡 on 𝑧 = 0 𝜕𝜙 𝜕𝑡 + 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0 𝜌 𝜕𝜙 𝜕𝑡 + 𝑝 + 1 2 𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡)
  • 22. Summary of Equations and BCs Laplace’s equation 𝜕2𝜙 𝜕𝑥2 + 𝜕2𝜙 𝜕𝑧2 = 0 KBBC KFSBC DFSBC 𝜕𝜙 𝜕𝑧 = 0 on 𝑧 = −ℎ 𝜕𝜙 𝜕𝑧 = 𝜕𝜂 𝜕𝑡 on 𝑧 = 0 𝜕𝜙 𝜕𝑡 + 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0
  • 23. Solution For Velocity Potential, 𝝓 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 Surface displacement: Look for solution by separation of variables: 𝜙 = 𝑋 𝑥, 𝑡 𝑍 𝑧 KFSBC: 𝜕𝜙 𝜕𝑧 = 𝜕𝜂 𝜕𝑡 on 𝑧 = 0 𝑋 ቤ d𝑍 d𝑧 𝑧=0 = 𝐴𝜔 sin 𝑘𝑥 − 𝜔𝑡 Hence: 𝑋 ∝ sin 𝑘𝑥 − 𝜔𝑡 WLOG: 𝑋 = sin 𝑘𝑥 − 𝜔𝑡 ቤ d𝑍 d𝑧 𝑧=0 = 𝐴𝜔 Laplace’s equation: 𝜕2𝜙 𝜕𝑥2 + 𝜕2𝜙 𝜕𝑧2 = 0 −𝑘2𝑋𝑍 + 𝑋 d2𝑍 d𝑧2 = 0 d2𝑍 d𝑧2 = 𝑘2𝑍 𝑍 = 𝛼e𝑘𝑧 + 𝛽e−𝑘𝑧 General solution:
  • 24. Solution For Velocity Potential, 𝝓 𝑍 = 𝛼e𝑘𝑧 + 𝛽e−𝑘𝑧 So far: 𝜙 = 𝑍 𝑧 sin 𝑘𝑥 − 𝜔𝑡 KFSBC: d𝑍 d𝑧 = 𝐴𝜔 on 𝑧 = 0 KBBC: d𝑍 d𝑧 = 0 on 𝑧 = −ℎ 𝑍 = 𝐴𝜔 𝑘 cosh 𝑘 ℎ + 𝑧 sinh 𝑘ℎ Solution: 𝜙 = 𝐴𝜔 𝑘 cosh 𝑘 ℎ + 𝑧 sinh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡
  • 25. Dispersion Relationship 𝜙 = 𝐴𝜔 𝑘 cosh 𝑘 ℎ + 𝑧 sinh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 How is wavenumber (𝑘) related to wave angular frequency (𝜔)? 𝜕𝜙 𝜕𝑡 + 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0 DFSBC: − 𝐴𝜔2 𝑘 cosh 𝑘ℎ sinh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 + 𝐴𝑔 cos 𝑘𝑥 − 𝜔𝑡 = 𝐶(𝑡) LHS has zero space average ... so 𝐶(𝑡) must be zero − 𝜔2 𝑘 cosh 𝑘ℎ sinh 𝑘ℎ + 𝑔 = 0 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝜔 𝑘 = 𝑔 𝜔 sinh 𝑘ℎ cosh 𝑘ℎ 𝜙 = 𝐴𝑔 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡
  • 26. Summary of Solution 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝜙 = 𝐴𝑔 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 Velocity potential: Dispersion relation: This is all we need!!! 𝑢 ≡ 𝜕𝜙 𝜕𝑥 𝑤 ≡ 𝜕𝜙 𝜕𝑧 𝑝 = −𝜌𝑔𝑧 − 𝜌 𝜕𝜙 𝜕𝑡 Velocity: Pressure: 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 Surface displacement:
  • 27. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 28. Dispersion Relationship 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝜔2ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ or 𝐿 = 2π 𝑘 𝑇 = 2π 𝜔 𝑐 ≡ 𝜔 𝑘 = 𝑔 𝑘 tanh 𝑘ℎ
  • 29. Variation of Phase Speed With Depth 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ When waves propagate into shallower water: Period 𝑇 - and hence 𝜔 - are unchanged Depth ℎ decreases … so wavenumber 𝑘 increases Wavelength 𝐿 decreases Speed 𝑐 decreases This is VERY important !
  • 30. Solving the Dispersion Relationship 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 1. Know wavelength (𝑳) … find period (𝑻) 𝑘 = 2π 𝐿 𝑇 = 2π 𝜔 Substitute: gives 𝜔
  • 31. Solving the Dispersion Relationship 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 2. Know period (𝑻) … find wavelength (𝑳) 𝐿 = 2π 𝑘 Rewrite as 𝜔 = 2π 𝑇 𝜔2 ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ 𝑌 = 𝑋 tanh 𝑋 𝑋 = 𝑌 tanh 𝑋 Iterate or 𝑋 = 1 2 𝑋 + 𝑌 tanh 𝑋 Gives 𝑋 = 𝑘ℎ and hence 𝑘
  • 32. Example Find, in still water of depth 15 m: (a) the period of a wave with wavelength 45 m; (b) the wavelength of a wave with period 8 s. In each case write down the phase speed (celerity).
  • 33. Find, in still water of depth 15 m: (a) the period of a wave with wavelength 45 m; (b) the wavelength of a wave with period 8 s. In each case write down the phase speed (celerity). ℎ = 15 m 𝐿 = 45 m 𝑘 = 2π 𝐿 = 0.1396 m−1 𝜔 = 1.153 rad s−1 𝑇 = 2π 𝜔 𝑐 = 𝜔 𝑘 wavelength: wavenumber: angular frequency: period: phase speed (celerity): or 𝐿 𝑇 = 𝟖. 𝟐𝟓𝟗 𝐦 𝐬−𝟏 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ = 𝟓. 𝟒𝟒𝟗 𝐬
  • 34. Find, in still water of depth 15 m: (a) the period of a wave with wavelength 45 m; (b) the wavelength of a wave with period 8 s. In each case write down the phase speed (celerity). ℎ = 15 m = 𝟖𝟏. 𝟖𝟏 𝐦 𝐿 = 2π 𝑘 𝑘 = 0.0768 m−1 = 0.7854 rad s−1 𝜔 = 2π 𝑇 𝑐 = 𝜔 𝑘 wavelength: wavenumber: angular frequency: period: phase speed (celerity): = 𝟏𝟎. 𝟐𝟑 𝐦 𝐬−𝟏 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝑇 = 8 s 𝜔2ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ 𝑘ℎ tanh 𝑘ℎ = 0.9432 𝑘ℎ = 0.9432 tanh 𝑘ℎ or 𝑘ℎ = 1 2 𝑘ℎ + 0.9432 tanh 𝑘ℎ 𝑘ℎ = 1.152
  • 35. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 36. Velocity 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 Surface displacement: Velocity potential: 𝜙 = 𝐴𝑔 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 𝑢 ≡ 𝜕𝜙 𝜕𝑥 = 𝐴𝑔𝑘 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 𝑤 ≡ 𝜕𝜙 𝜕𝑧 = 𝐴𝑔𝑘 𝜔 sinh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡
  • 37. Pressure 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 Surface displacement: Velocity potential: 𝜙 = 𝐴𝑔 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 Bernoulli equation: 𝑝 = −𝜌𝑔𝑧 − 𝜌 𝜕𝜙 𝜕𝑡 𝑝 = −𝜌𝑔𝑧 hydrostatic + 𝜌𝑔𝐴 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 ) hydrodynamic (i.e. wave 𝜌 𝜕𝜙 𝜕𝑡 + 𝑝 + 𝜌𝑔𝑧 = 0 = −𝜌𝑔𝑧 + 𝜌𝑔𝜂 × cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ
  • 38. Example A pressure sensor is located 0.6 m above the sea bed in a water depth ℎ = 12 m. The pressure fluctuates with period 15 s. A maximum gauge pressure of 124 kPa is recorded. (a) What is the wave height? (b) What are the maximum horizontal and vertical velocities at the surface?
  • 39. A pressure sensor is located 0.6 m above the sea bed in a water depth ℎ = 12 m. The pressure fluctuates with period 15 s. A maximum gauge pressure of 124 kPa is recorded. (a) What is the wave height? 𝑝 = −𝜌𝑔𝑧 + 𝜌𝑔𝐴 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos(𝑘𝑥 − 𝜔𝑡) ℎ = 12 m 𝑧 = −11.4 m 𝑇 = 15 s 𝑝max = 124000 Pa 124000 = 114630 + 10060𝐴 cosh(𝑘 × 0.6) cosh 𝑘ℎ 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝑘 = 0.04005 m−1 = 0.4189 rad s−1 𝜔 = 2π 𝑇 𝜔2ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ 𝑘ℎ tanh 𝑘ℎ = 0.2147 𝑘ℎ = 0.2147 tanh 𝑘ℎ or 𝑘ℎ = 1 2 𝑘ℎ + 0.2147 tanh 𝑘ℎ 𝑘ℎ = 0.4806 124000 = 114630 + 10060𝐴 × 0.8949 𝐴 = 1.041 m 𝐻 = 2𝐴 = 𝟐. 𝟎𝟖𝟐 𝐦
  • 40. (b) What are the maximum horizontal and vertical velocities at the surface? 𝑧 = 0 𝑘 = 0.04005 m−1 𝜔 = 0.4189 rad s−1 𝑘ℎ = 0.4806 𝑢 = 𝐴𝑔𝑘 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 𝑤 = 𝐴𝑔𝑘 𝜔 sinh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − 𝜔𝑡 𝐴 = 1.041 m 𝑢max = 𝐴𝑔𝑘 𝜔 𝑤max = 𝐴𝑔𝑘 𝜔 tanh 𝑘ℎ = 𝟎. 𝟗𝟕𝟔𝟒 𝐦 𝐬−𝟏 = 𝟎. 𝟒𝟑𝟔𝟐 𝐦 𝐬−𝟏 (surface)
  • 41. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 42. Wave Energy ● Wave energy density 𝐸 is average energy per unit horizontal area. ● Found by integrating over the water column, and averaging over a wave cycle. ● Kinetic energy: ● Potential energy: ● (Under linear theory) average wave-related KE and PE are the same. ● Total energy: 𝐸 = 1 2 𝜌𝑔𝐴2 = 1 8 𝜌𝑔𝐻2 KE = න 𝑧=−ℎ 𝜂 1 2 𝜌 𝑢2 + 𝑤2 d𝑧 = 1 4 𝜌𝑔𝐴2 PE = න 𝑧=−ℎ 𝜂 𝜌𝑔𝑧 d𝑧 = 1 4 𝜌𝑔𝐴2 + constant
  • 43. Kinetic Energy (Appendix A4) KE = 1 2 𝜌 න 𝑧=−ℎ 𝜂 𝑢2 + 𝑤2 d𝑧 𝑢2 + 𝑤2 = 𝐴𝑔𝑘 𝜔 cosh 𝑘ℎ 2 cosh2 𝑘 ℎ + 𝑧 cos2 𝑘𝑥 − 𝜔𝑡 + sinh2 𝑘 ℎ + 𝑧 sin2 𝑘𝑥 − 𝜔𝑡 KE = 1 2 𝜌 න 𝑧=−ℎ 0 𝑢2 + 𝑤2 d𝑧 = 1 2 𝜌 𝐴𝑔𝑘 𝜔 cosh 𝑘ℎ 2 × 1 2 න −ℎ 0 cosh 2𝑘 ℎ + 𝑧 d𝑧 = 1 2 𝜌 𝐴𝑔𝑘 𝜔 cosh 𝑘ℎ 2 × 1 2 sinh 2𝑘 ℎ + 𝑧 2𝑘 −ℎ 0 = 1 2 𝜌 𝐴𝑔𝑘 𝜔 cosh 𝑘ℎ 2 × 1 2 × sinh 2𝑘ℎ 2𝑘 = 1 2 𝜌 𝐴𝑔𝑘 𝜔 cosh 𝑘ℎ 2 × 1 2 × 2 sinh 𝑘ℎ cosh 𝑘ℎ 2𝑘 = 1 4 𝜌𝐴2 𝑔2 𝑘 tanh 𝑘ℎ 𝜔2 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ KE = 1 4 𝜌𝑔𝐴2 = 1 2 𝜌 𝐴𝑔𝑘 𝜔 cosh 𝑘ℎ 2 × 1 2 න −ℎ 0 cosh2 𝑘 ℎ + 𝑧 + sinh2 𝑘(ℎ + 𝑧) d𝑧
  • 44. Potential Energy (Appendix A4) PE = න 𝑧=−ℎ 𝜂 𝜌𝑔𝑧 d𝑧 = 1 2 𝜌𝑔 𝑧2 −ℎ 𝜂 PE = 1 4 𝜌𝑔𝐴2 = 1 2 𝜌𝑔(𝜂2 − ℎ2 ) PE = 1 2 𝜌𝑔 × 1 2 𝐴2 Only the wave component is needed = 1 2 𝜌𝑔(𝐴2 cos2 𝑘𝑥 − 𝜔𝑡 + constant)
  • 45. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 46. Phase and Group Velocities Phase velocity 𝑐 ≡ 𝜔 𝑘 – velocity at which the waveform translates – really only meaningful for a regular wave, or single frequency component Group velocity 𝑐𝑔 ≡ d𝜔 d𝑘 – velocity at which energy propagates – more appropriate for a wave packet comprised of multiple frequency components
  • 47. Combination of Frequency Components 𝜂 = 𝑎 cos (𝑘 + Δ𝑘)𝑥 − (𝜔 + Δ𝜔)𝑡 component 1 + 𝑎 cos (𝑘 − Δ𝑘)𝑥 − (𝜔 − Δ𝜔)𝑡 component 2 Amplitude modulation: 𝜂 = 2𝑎 cos 𝑘𝑥 − 𝜔𝑡 cos Δ𝑘. 𝑥 − Δ𝜔. 𝑡 Two components: frequencies ω ± Δω and wavenumbers 𝑘 ± Δ𝑘 𝐴 𝑡 = 2𝑎 cos Δ𝑘 𝑥 − Δ𝜔 𝑡 Speed of amplitude envelope: Δ𝜔 Δ𝑘 Group velocity 𝑐𝑔 ≡ d𝜔 d𝑘 cos 𝛼 + cos 𝛽 = 2 cos 𝛼 + 𝛽 2 cos 𝛼 − 𝛽 2
  • 48. Group Velocity (Appendix A5) Group velocity 𝑐𝑔 ≡ d𝜔 d𝑘 Dispersion relation 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 2𝜔 d𝜔 d𝑘 = 𝑔 tanh 𝑘ℎ + 𝑔𝑘ℎ sech2 𝑘ℎ = 𝜔2 𝑘 + 𝜔2 tanh 𝑘ℎ ℎ cosh2 𝑘ℎ = 𝜔2 𝑘 1 + 𝑘ℎ sinh 𝑘ℎ cosh 𝑘ℎ d𝜔 d𝑘 = 1 2 1 + 2𝑘ℎ sinh 2𝑘ℎ 𝜔 𝑘 𝑐𝑔 = 𝑛𝑐 𝑐 ≡ 𝜔 𝑘 𝑛 = 1 2 1 + 2𝑘ℎ sinh 2𝑘ℎ 1 2 < 𝑛 < 1 group velocity < phase velocity
  • 49. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 50. Wave Power 𝑃 = 𝐸𝑐𝑔 𝐸 = 1 2 𝜌𝑔𝐴2 𝑐𝑔 = 𝑛𝑐 (energy density) Power (group velocity) Wave power 𝑃 is the (average) rate of energy transfer per unit length of wave crest. It can be calculated from the rate of working of pressure forces.
  • 51. Wave Power (Appendix A6) Wave power = (time-averaged) rate of working of pressure forces (pressure  area  velocity) Per unit length of wave crest: power = න 𝑧=−ℎ 𝜂 𝑝𝑢 d𝑧 𝑝𝑢 = 𝜌𝑔𝐴 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 × 𝐴𝑔𝑘 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos 𝑘𝑥 − 𝜔𝑡 = 𝜌𝑔2 𝐴2 𝑘 𝜔 cosh2 𝑘 ℎ + 𝑧 cosh2 𝑘ℎ cos2 𝑘𝑥 − 𝜔𝑡 power = 𝜌𝑔2 𝐴2 𝑘 𝜔 cosh2 𝑘ℎ × න −ℎ 0 cosh2 𝑘 ℎ + 𝑧 d𝑧 × 1 2 1 2 න −ℎ 0 cosh 2𝑘 ℎ + 𝑧 + 1 d𝑧 = 1 2 sinh 2𝑘 ℎ + 𝑧 2𝑘 + 𝑧 −ℎ 0 = 1 2 sinh 2𝑘ℎ 2𝑘 + ℎ pressure (𝑝)  area (1 × 𝑑𝑧)  velocity (𝑢)
  • 52. Wave Power power = 𝜌𝑔2 𝐴2 𝑘 𝜔 cosh2 𝑘ℎ × 1 2 sinh 2𝑘ℎ 2𝑘 + ℎ × 1 2 = 1 2 𝜌𝑔𝐴2 × 𝑔𝑘 𝜔 cosh2 𝑘ℎ × sinh 2𝑘ℎ 2𝑘 1 + 2𝑘ℎ sinh 2𝑘ℎ × 1 2 = 1 2 𝜌𝑔𝐴2 × 𝑔𝑘 𝜔 cosh2 𝑘ℎ × 2 sinh 𝑘ℎ cosh 𝑘ℎ 2𝑘 1 + 2𝑘ℎ sinh 2𝑘ℎ × 1 2 = 1 2 𝜌𝑔𝐴2 × 𝑔𝑘 tanh 𝑘ℎ 𝜔2 × 1 2 1 + 2𝑘ℎ sinh 2𝑘ℎ × 𝜔 𝑘 𝐸 1 𝑛 𝑐 𝑃 = 𝐸𝑐𝑔 𝐸 = 1 2 𝜌𝑔𝐴2 𝑐𝑔 = 𝑛𝑐 energy density power group velocity
  • 53. Example A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude 5.9 kPa and period 7.5 s. Find the wave height, energy density and wave power per metre of crest.
  • 54. A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude 5.9 kPa and period 7.5 s. Find the wave height, energy density and wave power per metre of crest. 𝑝wave = 𝜌𝑔𝐴 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos(𝑘𝑥 − 𝜔𝑡) ℎ = 9 m 𝑧 = −ℎ 𝑇 = 7.5 s Δ𝑝wave = 5900 Pa 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝑘 = 0.09993 m−1 = 0.8378 rad s−1 𝜔 = 2π 𝑇 𝜔2ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ 𝑘ℎ tanh 𝑘ℎ = 0.6440 𝑘ℎ = 0.6440 tanh 𝑘ℎ or 𝑘ℎ = 1 2 𝑘ℎ + 0.6440 tanh 𝑘ℎ 𝑘ℎ = 0.8994 (sea bed) 𝐸 = 1 2 𝜌𝑔𝐴2 𝑃 = 𝐸𝑐𝑔 𝑐𝑔 = 𝑛𝑐 𝑛 = 1 2 1 + 2𝑘ℎ sinh 2𝑘ℎ (amplitude)
  • 55. A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude 5.9 kPa and period 7.5 s. Find the wave height, energy density and wave power per metre of crest. ℎ = 9 m 𝑧 = −ℎ 𝑇 = 7.5 s Δ𝑝wave = 5900 Pa 5900 = 10055𝐴 × 1 cosh 0.8994 𝑘 = 0.09993 m−1 𝜔 = 0.8378 rad s−1 𝑘ℎ = 0.8994 𝐻 = 2𝐴 = 𝟏. 𝟔𝟖𝟏 𝐦 (sea bed) 𝐸 = 1 2 𝜌𝑔𝐴2 𝑃 = 𝐸𝑐𝑔 𝑐𝑔 = 𝑛𝑐 𝑛 = 1 2 1 + 2𝑘ℎ sinh 2𝑘ℎ 𝑝wave = 𝜌𝑔𝐴 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos(𝑘𝑥 − 𝜔𝑡) 𝐴 = 0.8405 m 𝐸 = 1 2 𝜌𝑔𝐴2 = 𝟑𝟓𝟓𝟐 𝐉 𝐦−𝟐 𝑐 = 𝜔 𝑘 = 8.384 m s−1 𝑛 = 1 2 1 + 2𝑘ℎ sinh 2𝑘ℎ = 0.8061 𝑐𝑔 = 𝑛𝑐 = 6.758 m s−1 𝑃 = 𝐸𝑐𝑔 = 𝟐𝟒𝟎𝟎𝟎 𝐖 𝐦−𝟏
  • 56. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 57. Particle Motion = 𝜔𝐴 cosh 𝑘 ℎ + 𝑧 sinh 𝑘ℎ cos 𝑘𝑥 − ω𝑡 Velocity: 𝑤 = 𝐴 𝑔𝑘 𝜔 sinh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ sin 𝑘𝑥 − ω𝑡 Dispersion relation: 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ → 𝜔 sinh 𝑘ℎ = 𝑔𝑘 𝜔 cosh 𝑘ℎ d𝑋 d𝑡 = 𝑢 d𝑍 d𝑡 = 𝑤 𝑎 = 𝐴 cosh 𝑘 ℎ + 𝑍0 sinh 𝑘ℎ 𝑏 = 𝐴 sinh 𝑘 ℎ + 𝑍0 sinh 𝑘ℎ 𝑋 = 𝑋0 − 𝑎 sin 𝑘𝑋0 − 𝜔𝑡 𝑍 = 𝑍0 + 𝑏 cos 𝑘𝑋0 − 𝜔𝑡 sin2 𝜃 + cos2 𝜃 = 1 𝑋 − 𝑋0 𝑎 = − sin 𝑘𝑋0 − 𝜔𝑡 𝑍 − 𝑍0 𝑏 = cos 𝑘𝑋0 − 𝜔𝑡 = 𝑎𝜔 cos 𝑘𝑋0 − ω𝑡 = 𝑏𝜔 sin 𝑘𝑋0 − ω𝑡 𝑢 = 𝐴 𝑔𝑘 𝜔 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ cos 𝑘𝑥 − ω𝑡 = 𝜔𝐴 sinh 𝑘 ℎ + 𝑧 sinh 𝑘ℎ sin 𝑘𝑥 − ω𝑡
  • 58. Particle Motion 𝑎 = 𝐴 cosh 𝑘 ℎ + 𝑍0 sinh 𝑘ℎ 𝑏 = 𝐴 sinh 𝑘 ℎ + 𝑍0 sinh 𝑘ℎ 𝑋 − 𝑋0 2 𝑎2 + 𝑍 − 𝑍0 2 𝑏2 = 1 Ellipse, centre (𝑋0, 𝑍0) and semi-axes 𝑎 and 𝑏 intermediate depth shallow water
  • 59. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 60. Shallow-Water / Deep-Water Limits Dispersion relationship: 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ Asymptotic behaviour: ) tanh 𝑘ℎ ~𝑘ℎ (as 𝑘ℎ → 0 ) tanh 𝑘ℎ → 1 (as 𝑘ℎ → ∞ Shallow water (or long waves): 𝑘ℎ ≪ 1 𝜔2 ≈ 𝑘2𝑔ℎ 𝑐 = 𝑐𝑔 = 𝑔ℎ (non-dispersive) Deep water (or short waves): 𝑘ℎ ≫ 1 𝜔2 ≈ 𝑔𝑘 𝐿 = 𝑔𝑇2 2π 𝑐 = 𝐿 𝑇 = 𝑔𝑇 2π , 𝑛 = 1 2 , 𝑐𝑔 = 1 2 𝑐 (dispersive) 𝑛 = 1 𝑘ℎ = 2π ℎ 𝐿 𝜔 ≈ 𝑘 𝑔ℎ or
  • 61. Shallow / Deep Limits Deep: 𝑘ℎ < 𝜋 10 ℎ < 1 20 𝐿 Shallow: 𝑘ℎ > π ℎ > 1 2 𝐿 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝜔2ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ
  • 62. Shallow / Deep Particle Motions 𝑎 = 𝐴 cosh 𝑘 ℎ + 𝑍0 sinh 𝑘ℎ , 𝑏 = 𝐴 sinh 𝑘 ℎ + 𝑍0 sinh 𝑘ℎ Ellipses: deep water intermediate depth shallow water Deep: Shallow: 𝑘ℎ ≫ 1 𝑎 = 𝑏 ≈ 𝐴e−𝑘 𝑍0 Circles diminishing in size over half a wavelength 𝑘ℎ ≪ 1 𝑎 ≈ 𝐴 𝑘ℎ , 𝑏 𝑎 ≪ 1 Highly-flattened ellipses; horizontal excursion almost independent of depth
  • 63. Shallow / Deep Pressure Deep: Shallow: 𝑘ℎ ≫ 1 Perturbation decays over half a wavelength 𝑘ℎ ≪ 1 𝑝 = −𝜌𝑔𝑧 − 𝜌 𝜕𝜙 𝜕𝑡 = −𝜌𝑔𝑧 hydrostatic + 𝜌𝑔𝜂 cosh 𝑘 ℎ + 𝑧 cosh 𝑘ℎ hydrodynamic 𝑝 ≈ −𝜌𝑔𝑧 + 𝜌𝑔𝜂e−𝑘 𝑧 ) 𝑝 ≈ 𝜌𝑔(𝜂 − 𝑧 Hydrostatic
  • 64. Example (a) Find the deep-water speed and wavelength of a wave of period 12 s. (b) Find the speed and wavelength of a wave of period 12 s in water of depth 3 m. Compare with the shallow-water approximation.
  • 65. 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ Deep water: 𝑘𝒉 → ∞ tanh 𝑘ℎ → 1 𝜔2 = 𝑔𝑘 2π 𝑇 2 = 𝑔 2π 𝐿 𝐿 = 𝑔𝑇2 2π 𝑐 = 𝑔𝑇 2π Shallow water: 𝑘𝒉 → 𝟎 tanh 𝑘ℎ ~𝑘ℎ 𝜔2 = 𝑔𝑘2 ℎ 𝜔 𝑘 2 = 𝑔ℎ 𝐿 = 𝑐𝑇 𝑐 = 𝑔ℎ Reminder of Deep and Shallow Limits
  • 66. (a) Find the deep-water speed and wavelength of a wave of period 12 s. (b) Find the speed and wavelength of a wave of period 12 s in water of depth 3 m. Compare with the shallow-water approximation. Deep: 𝑇 = 12 s 𝑐 = 𝑔𝑇 2π = 𝟏𝟖. 𝟕𝟒 𝐦 𝐬−𝟏 𝐿 = 𝑔𝑇2 2π = 𝟐𝟐𝟒. 𝟖 𝐦 Exact, with ℎ = 3 m: 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ 𝑐 = 𝜔 𝑘 = 0.5236 rad s−1 𝜔 = 2π 𝑇 𝜔2 ℎ 𝑔 = 𝑘ℎ tanh 𝑘ℎ 𝑘ℎ tanh 𝑘ℎ = 0.08384 𝑘ℎ = 0.08384 tanh 𝑘ℎ or 𝑘ℎ = 1 2 𝑘ℎ + 0.08384 tanh 𝑘ℎ 𝑘ℎ = 0.2937 𝑘 = 0.09790 m−1 = 𝟓. 𝟑𝟒𝟖 𝐦 𝐬−𝟏 𝐿 = 2π 𝑘 = 𝟔𝟒. 𝟏𝟖 𝐦 Shallow: 𝑐 = 𝑔ℎ = 𝟓. 𝟒𝟐𝟓 𝐦 𝐬−𝟏 𝐿 = 𝑐𝑇 = 𝟔𝟓. 𝟏𝟎 𝐦
  • 67. 1. LINEAR WAVE THEORY 1.1 Main wave parameters 1.2 Dispersion relationship 1.3 Wave velocity and pressure 1.4 Wave energy 1.5 Group velocity 1.6 Energy transfer (wave power) 1.7 Particle motion 1.8 Shallow-water and deep-water behaviour 1.9 Waves on currents Linear Wave Theory
  • 68. Waves on Currents ● Waves co-exist with background current 𝑈 ● Formulae hold in relative frame moving with the current: 𝑥𝑟 = 𝑥 − 𝑈𝑡 𝜂 = 𝐴 cos 𝑘𝑥𝑟 − 𝜔𝑟𝑡 = 𝐴 cos 𝑘𝑥 − 𝜔𝑟 + 𝑘𝑈 𝑡 = 𝑐𝑟 + 𝑈 𝜔𝑎 = 𝜔𝑟 + 𝑘𝑈 ● Dispersion relationship: 𝜔𝑎 − 𝑘𝑈 2 = 𝜔𝑟 2 = 𝑔𝑘 tanh 𝑘ℎ 𝑐𝑎 = 𝜔𝑎 𝑘 = 𝐴 cos 𝑘𝑥 − 𝜔𝑎𝑡
  • 69. Example An acoustic depth sounder indicates regular surface waves with apparent period 8 s in water of depth 12 m. Find the wavelength and absolute phase speed of the waves when there is: (a) no mean current; (b) a current of 3 m s–1 in the same direction as the waves; (c) a current of 3 m s–1 in the opposite direction to the waves.
  • 70. An acoustic depth sounder indicates regular surface waves with apparent period 8 s in water of depth 12 m. Find the wavelength and absolute phase speed of the waves when there is: (a) no mean current; (b) a current of 3 m s–1 in the same direction as the waves; (c) a current of 3 m s–1 in the opposite direction to the waves. ℎ = 12 m 𝑇𝑎 = 8 s (absolute) 𝜔𝑎 = 2π 𝑇𝑎 𝜔𝑎 − 𝑘𝑈 2 = 𝜔𝑟 2 = 𝑔𝑘 tanh 𝑘ℎ 𝑘 = 0.7854 − 𝑘𝑈 2 9.81 tanh 12𝑘 𝑘 = 1 2 𝑘 + 0.7854 − 𝑘𝑈 2 9.81 tanh 12𝑘 or 𝑈 = 0 0.08284 = 𝜔𝑎 𝑘 = 2π 𝑘 𝟕𝟓. 𝟖𝟓 𝟗. 𝟒𝟖𝟏 𝑈 = +3 m s−1 0.06024 𝟏𝟎𝟒. 𝟑 𝟏𝟑. 𝟎𝟒 𝑈 = −3 m s−1 0.1951 𝟑𝟐. 𝟐𝟎 𝟒. 𝟎𝟐𝟔 = 0.7854 rad s−1 𝑘 (m−1 ) 𝐿 (m) 𝑐𝑎 (m s−1 ) 𝑘 = 1 2 𝑘 + 0.78542 9.81 tanh 12𝑘 𝑘 = 1 2 𝑘 + 0.7854 − 3𝑘 2 9.81 tanh 12𝑘 𝑘 = 1 2 𝑘 + 0.7854 + 3𝑘 2 9.81 tanh 12𝑘 Iteration: