SlideShare a Scribd company logo
1 of 63
Download to read offline
Optimal Debt-Maturity Management
Saki Bigio (UCLA)
Galo Nuño (Bank of Spain)
Juan Passadore (EIEF)
Toulouse, April 2018
Peru Example - Programmed Coupon Payments
Number of years in the future
5 10 15 20 25 30 35
%ofAnnualGDP
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Interests-2016 Q2
Peru Example - Programmed Principal Payments
Number of years in the future
5 10 15 20 25 30 35
%ofAnnualGDP
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Amortization-2016 Q2
Debt-Management
Large-Stake but highly complex problem
state-space: vector of bonds of different maturity
risks: income, interest-rate, default
forces: smoothing, risk management, incentives, liquidity
State of the art economics
Can handle many risks
Challenge:
use standard bond =⇒ ↑curse of dimensionality
forces use of consols
typically two
What we do...
Change of Focus
Limit nature of shocks....but
Continuum of Bonds
arbitrary cash-flow
analytic expressions, realistic debt structure, rich dynamics
Highlight role of liquidity
captures price impact
follows from OTC frictions
technically convenient
Environment
SOE, CT, incomplete markets, exogenous short rates
CT: elegance, speed and comp stats
Consumption-Savings Problem:
shocks: income, short rates, default value
liquidity cost
State Variable:
mass of debt/assets f (τ, t)
Agenda
Deterministic Transitions:
closed-form steady state
transitional dynamics
MIT shocks: output or short rate
force: liquidity smoothing vs. consumption smoothing
Risky Steady State
asymptotics when waiting for shock
one-time shocks: output, short rate
force: risk management
Default Shock
transitions: if date of decision is known
risky-steady state: if date of decision is unknown
force: incentives
Literature
Sovereign Debt: Eaton Gersovitz (1981), Bulow Rogoff (1988), Arellano
(2008), Chattarjee Eiyungor (2012), Arellano Ramayanan (2012), Bianchi
Hatchondo Martinez (2014), Debortoli, Nunes, Yared (2017), Fernández
Martin (2014), Aguiar Amador Hopenhayn Werning (2017)
Preferred Habit Models: Modigliani and Stutch (1966), Greenwood
Vayanos (2010), Vayanos and Vila (2010)
Debt Management w/ Distortionary Taxes: Lucas Stokey (1983),
Angeletos (2002), Buera Nicolini (2004), Bhandari Evans Golosov Sargent
(2017)
Continuous Time - Heterogeneous Agents: Kredler (2014), Nuno Moll
(2017), Nuno Thomas (2017),
Environment: shocks, preference and state
Random paths: income y(t), short rate ¯r(t)
later: default
Preferences:
V0 = E[
∞
0
e−ρt
u(c(t))dt] and u(x) ≡
c1−σ − 1
1 − σ
State: debt f (τ, t), expiration τ ∈ [0, T]
Environment: constraint set
Resource Constraint:
c (t) = y (t) +
T
0
q (τ, t, ι) ι (τ, t)dτ
issuance
− f (0, t)
principal
−δ
T
0
f (τ, t) dτ
coupons
.
Bond price:
q (τ, t, ι) = ψ(τ, t)
bond price
−
1
2
ψ(τ, t)λ(ι)
liquidity cost
PDE constraint: Derivation
∂f (τ, t)
∂t
= ι (τ, t) +
∂f (τ, t)
∂τ
; f (τ, 0) = f0(τ)
Environment: bond price
Bond Price ψ(τ, t):
short rate ¯r(t) path and no-arbitrage:
ψ(τ, t) = E[e
−
τ
0
¯r(t+s)ds
+ δ
τ
0
e
−
s
0
¯r(t+z)dz
ds]
In HJB form:
¯r(t)ψ(τ, t) = δ +
∂ψ
∂t
−
∂ψ
∂τ
; ψ(0, t) = 1
Environment: liquidity cost
WholesaleRetail bond market
Walrasian wholesale auction of ι (τ, t)
investment banks only
price cash-flow at ¯r (t) + η
OTC retail market
µ flow of clients match with banks
client valuation ψ(τ, t)
Auction price:
q(τ, t, ι) ψ(τ, t) −
1
2
ψ(τ, t) ¯λι
λ(ι)
,
and
¯λ ≡
η
µyss
.
General Problem
Perfect Foresight
V [f (·, 0)] = max
{ι(τ,t)}t∈[0,∞),τ∈[0,T]
Et
∞
t
e−ρ(s−t)
u(c(s))ds s.t.
c (t) = y (t) − f (0, t) +
T
0
[q (τ, t, ι) ι (τ, t) − δf (τ, t)] dτ
∂f
∂t
= ι (τ, t) +
∂f
∂τ
; f (τ, 0) = f0(τ)
Dual: Dual
Deterministic Dynamics
Theory
Deterministic Paths
no default, known paths, f0 given
Next...
derive steady-state distribution f ∗(τ)
path for transitional dynamics: f0 → f ∗(τ)
comparative statistics: f ∗(τ, X) → f ∗(τ, X )
Solving it
Step 1. Lagrangian
L (ι, f ) =
∞
0
e−ρt
u (c(t)) dt
+
∞
0
T
0
e−ρt
j (τ, t) −
∂f
∂t
+ ι (τ, t) +
∂f
∂τ
dτdt,
c(t) = y (t) − f (0, t) +
T
0
[q (t, τ, ι) ι (τ, t) − δf (τ, t)] dτ.
Step 2. First-Order Condition and Envelope
Marginal Value
u (c) q (τ, t, ι) +
∂q
∂ι
ι (τ, t) =
Marginal Cost
−j (τ, t)
ρj (τ, t) = −δu (c (t)) +
∂j
∂t
−
∂j
∂τ
, if τ ∈ (0, T]
and j (0, t) = −u (c (t)) .
Solving it
Step 1. Lagrangian
L (ι, f ) =
∞
0
e−ρt
u (c(t)) dt
+
∞
0
T
0
e−ρt
j (τ, t) −
∂f
∂t
+ ι (τ, t) +
∂f
∂τ
dτdt,
c(t) = y (t) − f (0, t) +
T
0
[q (t, τ, ι) ι (τ, t) − δf (τ, t)] dτ.
Step 2. First-Order Condition and Envelope
Marginal Value
u (c) ψ (τ, t) − ¯λψ (τ, t) ι =
Marginal Cost
−j (τ, t)
ρj (τ, t) = −δu (c (t)) +
∂j
∂t
−
∂j
∂τ
, if τ ∈ (0, T]
and j (0, t) = −u (c (t)) .
Optimal Path
Proposition:
1) v(τ, t) ≡ − j(τ,t)
u (c(t)) solves "individual trader” price-PDE:
r(t)
ρ+σ
.
c(t)/c(t)
v (τ, t) = δ +
∂v
∂t
−
∂v
∂τ
, if τ ∈ (0, T]
v (0, t) = 1
2) issuances ι(τ, t):
ψ (τ, t) − ¯λψ (τ, t) ι
marginal income
= v (τ, t)
discounted payouts
3) PDE given f0, c(t) given by BC
Optimal Path
Proposition:
1) v(τ, t) ≡ − j(τ,t)
u (c(t)) solves ‘"ndividual trader” price-PDE:
r(t)
ρ+σ
.
c(t)/c(t)
v (τ, t) = δ +
∂v
∂t
−
∂v
∂τ
, if τ ∈ (0, T]
v (0, t) = 1
2) issuances ι(τ, t):
ι =
ψ (τ, t) − v (τ, t)
¯λψ (τ, t)
3) PDE given f0, c(t) given by BC
Asymptotic Properties (t −→ ∞)
1. market and internal valuations:
ψ(τ) = δ
1 − e−¯rss τ
¯rss
+ e−¯rss τ
and v∗
(τ) = δ
1 − e−rss (¯λ)τ
rss(¯λ)
+ e−rss (¯λ)τ
2. issuance:
ι∗
(τ) =
ψ(τ) − v∗(τ)
¯λψ(τ)
.
Asymptotic Properties (t −→ ∞)
If ¯λ ≥ ¯λo
rss(λ) = ρ
Steady State c(t) = css > 0
If¯λ < ¯λo
limt→∞C(t) = 0
rss(λ) ∈ [¯rss, ρ)
Asymptotic Values - varying ¯λ
Liquidity, 76
0 0.5 1 1.5 2
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
6o
c1
Liquidity, 76
0 0.5 1 1.5 2
0.04
0.045
0.05
0.055
0.06
6o
r1
Maturity, =
0 5 10 15 20
0
0.05
0.1
0.15
0.2
41
Maturity, =
0 5 10 15 20
0
0.5
1
1.5
2
2.5
f1
Steady State (when λ ≥ ¯λo)
Assumption ρ > ¯r
Maturity, =
0 5 10 15 20
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Outstanding Debt f(=)
Maturity, =
0 5 10 15 20
#10-3
0
1
2
3
4
5
6
Issuances 4(=)
Maturity, =
0 5 10 15 20
#10-3
0
1
2
3
4
5
6
7
Maturity Distribution
Maturity, =
0 5 10 15 20
0.75
0.8
0.85
0.9
0.95
1
A(=) vs. !v(=)
A(=)
!v(=)
Frictionless Benchmark ¯λ = 0
If ψ arbitrage free:
r(t) = ¯r(t),
ψ(τ, t) = v(τ, t)
Discount Factor pins consumption:
.
c(t)
c(t)
= −
ρ − ¯r(t)
σ
Indeterminate maturity!
Frictionless Limit ¯λ −→ 0
If ψ arbitrage free
r(t) = ¯r(t),
ψ(τ, t) = v(τ, t)
Discount Factor pins consumption:
.
c(t)
c(t)
= −
ρ − ¯r(t)
σ
Determinate Maturity!
Transitional Dynamics - Fixed Point
Input: c(t)
Discount Factor:
r(t) = ρ + σ
.
c(t)
c(t)
Valuations:
r(t)
Value of Debt
v (τ, t) =
Coupon
δ +
dv(τ,t)
dt
∂v
∂t
−
∂v
∂τ
Optimal Issuance:
ι (τ, t) =
ψ(τ, t) − v(τ, t)
¯λψ(τ, t)
Output: c(t) (follows from KFE+BC)
Deterministic Dynamics
Application: Transitions
Application 1 - Transitions
Transitions reveal two novel features:
1. Income path for y(t)
liquidity cost + finite maturity produce issuance cycle
2. Path for short rate ¯r(t)
show consumption vs. liquidity smoothing
Transition after MIT shock to y(t)
Shock %5 output, T = 20
Time, t
0 50 100 150 200
%
5.9
6
6.1
6.2
6.3
6.4
6.5
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.85
0.9
0.95
1
c(t) vs. y(t)
c(t) y(t)
Time, t
0 50 100 150 200
%yss
0
0.01
0.02
0.03
0.04
Issuances Rate, 4(t)
Time, t
0 50 100 150 200
%yss
0
0.2
0.4
0.6
0.8
Debt Outstanding, f(t)
0-5 (years) 5-10 10-15 T-5 to T
Longer Maturity
Shock %5 output, from T = 20 to T = 30
Time, t
0 50 100 150 200
%
5.9
6
6.1
6.2
6.3
6.4
6.5
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.85
0.9
0.95
1
c(t) vs. y(t)
c(t) y(t)
Time, t
0 50 100 150 200
%yss
0
0.01
0.02
0.03
0.04
Issuances Rate, 4(t)
Time, t
0 50 100 150 200
%yss
0
0.2
0.4
0.6
0.8
Debt Outstanding, f(t)
0-5 (years) 5-10 10-15 T-5 to T
Transitions after AR(1) MIT shock to ¯r(t)
Rates
Transitions after AR(1) MIT shock to ¯r(t)
Optimal Policy
Time, t
0 50 100 150 200
%
4
5
6
7
8
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.9
0.95
1
1.05
1.1
1.15
c(t) vs. y(t)
c(t) y(t)
Time, t
0 50 100 150 200
%yss
0
0.02
0.04
0.06
0.08
Issuances Rate, 4(t)
Time, t
0 50 100 150 200
%yss
0
0.2
0.4
0.6
0.8
Debt Outstanding, f(t)
0-5 (years) 5-10 10-15 T-5 to T
Transitions after AR(1) MIT shock to ¯r(t)
Infinite IES - when σ=0
Time, t
0 50 100 150 200
%
4
5
6
7
8
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.9
0.95
1
1.05
1.1
1.15
c(t) vs. y(t)
c(t) y(t)
Time, t
0 50 100 150 200
%yss
0
0.02
0.04
0.06
0.08
Issuances Rate, 4(t)
Time, t
0 50 100 150 200
%yss
0
0.2
0.4
0.6
0.8
Debt Outstanding, f(t)
0-5 (years) 5-10 10-15 T-5 to T
Dynamics under Risk
Theory
Risk
What about Risk?
Complication: fixed point in sets of functions
Risky Steady State:
allows analysis with risk
Role of Uncertainty - Risky Steady State
Next...
Before shock: yss and ¯rss at steady state
Poisson event with arrival rate θ
After shock:
draw {y (0) ,¯r(0)} ∼ F
{y(t),¯r(t)} → {yss,¯rss}
RSS:
shock expected
t → ∞ before realization
opposite of MIT shock
After Shocks - Risky Steady State
Fixed point in {crss} ∪ {c(t)}t≥0
Jump crss to c(0)
Post-shock:
same as before but f (τ,0)=f rss
(τ)
Issuance rule:
ι (τ, t) =
ψ(τ, t) − v(τ, t)
¯λψ(τ, t)
Before Shock - Risky Steady State
Risk Adjusted Valuation:
ρvrss (τ) = δ +
∂vrss(τ)
∂τ
+ θ E v (τ, 0)
u (c(0))
u (crss)
− vrss(τ)
HJB solution is:
vrss(τ) =
τ
0
e−(ρ+θ)s
θE v (τ, 0)
u (c(0))
u (crss)
+ δ ds + e−(ρ+θ)τ
Intuition:
One value per shock: v (τ, 0) and c(0)
marginal utility ratio: “exchange-rate” between states
Frictionless Limit - Pre-shock Transition
ˆψ (τ, t) = ˆv (τ, t)
Price Equation:
¯r (t) ˆψ (τ, t) = δ +
∂ ˆψ
∂t
−
∂ ˆψ
∂τ
+ θ E [ψ (τ, t)] − ˆψ (τ, t)
HJB and ˆψ (τ, t) = ˆv (τ, t)
r(t) ˆψ (τ, t) = δ +
∂ ˆψ
∂t
−
∂ ˆψ
∂τ
+ θ E
U (c (t))
U (ˆc (t))
ψ (τ, t) − ˆψ (τ, t)
both equations must be consistent
Frictionless Limit - Two Polar Cases
Lack of Insurance:
If only y(t) jumps
ψ (τ, t) = ˆψ (τ, t) = 1
r(t) = ¯r(t) + θ E
U (c (t))
U (ˆc (t))
− 1
And an RSS always exists
Complete Insurance:
requires ability to construct portfolio:
such that ˆc (t) = c (t) for all shocks
r(t) = ¯r(t)
Asymptotic Limit, but no RSS
Dynamics under Risk
Application 1: SS vs. RSS
AR(1) MIT shock to y(t) - RSS vs. SS
Expecting a 5% y(t) drop
Maturity, =
0 5 10 15 20
0
0.01
0.02
0.03
0.04
0.05
0.06
Outstanding Debt f(=)
Maturity, =
0 5 10 15 20
#10-3
0
1
2
3
4
5
Issuances 4(=)
Maturity, =
0 5 10 15 20
#10-3
0
1
2
3
4
5
6
7
Maturity Distribution
Maturity, =
0 5 10 15 20
0.75
0.8
0.85
0.9
0.95
1
A(=) vs. !v(=)
A(=; ss)
A(=; rss)
!v(=; ss)
!v(=; rss)
!v(=; 0)
AR(1) MIT shock to y(t) - Transition from RSS
5% Output Shock
Time, t
0 50 100 150 200
%
5.8
5.85
5.9
5.95
6
6.05
6.1
6.15
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.94
0.95
0.96
0.97
0.98
0.99
1
c(t) vs. y(t)
c(t)
y(t)
Time, t
0 50 100 150 200
%yss
0
0.005
0.01
0.015
0.02
0.025
Issuances Rate, 4(t)
Time, t
0 50 100 150 200
%yss
0
0.05
0.1
0.15
0.2
0.25
0.3
Debt Outstanding, f(t)
0-5 (years) 5-10 10-15 T-5 to T
AR(1) MIT shock to ¯r(t) - RSS vs. SS
Shock 4% to 8% on impact, ρ = 6%
Maturity, =
0 5 10 15 20
-0.01
0
0.01
0.02
0.03
0.04
0.05
0.06
Outstanding Debt f(=)
Maturity, =
0 5 10 15 20
#10-3
-1
0
1
2
3
4
5
Issuances 4(=)
Maturity, =
0 5 10 15 20
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
Maturity Distribution
Maturity, =
0 5 10 15 20
0.7
0.75
0.8
0.85
0.9
0.95
1
A(=) vs. !v(=)
A(=; ss)
A(=; rss)
!v(=; ss)
!v(=; rss)
!v(=; 0)
AR(1) MIT shock to ¯r(t) - RSS vs. SS
Shock 4% to 8% on impact, ρ = 6%
Time, t
0 50 100 150 200
%
5.6
5.8
6
6.2
6.4
6.6
6.8
7
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.96
0.97
0.98
0.99
1
1.01
c(t) vs. y(t)
c(t)
y(t)
Time, t
0 50 100 150 200
%yss
-0.005
0
0.005
0.01
0.015
0.02
0.025
Issuances Rate, 4(t)
Time, t
0 50 100 150 200
%yss
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
Debt Outstanding, f(t)
0-5 (years) 5-10 10-15 T-5 to T
Application 1: Lessons
optimal risk management
long-term debt, short-term assets
Conclusion
New approach to study maturity
liquidity
continuum of bonds of any class
Can only analyze RSS
Forces at play
liquidity cost vs. consumption smoothing
risk-aversion vs. incentives
Next: default
Future: recent developments to study aggregate shocks
Steady State - Comp Stats
Higher differentials ρ − ¯r
amplifies issuances, for higher maturity
Lower λ
scales ι(τ) and f (τ)
Role of T
dilutes adjustment cost
Dual
Given {c(t)}t≥0, then planner’s discount:
r(t) = ρ + σ
˙c(t)
c(t)
Dual Problem
D [f (·, 0)] = min
{ι(τ,t)}t=τ∈[0,∞),τ∈[0,T]
∞
0
e−
t
0
r(s)ds
ytdt s.t.
∂f
∂t
= ι (τ, t) +
∂f
∂τ
, f (T, t) = 0; f (τ, 0) = f0(τ)
y (t) = c (t) + f (0, t) −
T
0
[q (τ, t, ι) ι (τ, t) − δf (τ, t)] dτ
back
Dual (button)
Given {c(t)}t≥0, then planner’s discount:
r(t) = ρ − σ
˙c(t)
c(t)
Dual:
D [f (·, 0)] = min
{ι(τ,t)}t=τ∈[0,∞),τ∈[0,T]
∞
0
e−
t
0
r(s)ds
(f (0, t)−
T
0
(ψ(τ, t) − λ
∂f
∂t
= ι (τ, t) +
∂f
∂τ
, f (τ, 0) = f0(τ)
back
Two Definitions (button)
Yield curve Ψ(τ, t):
Implicit constant rate Ψ(τ, t) that solves:
ψ(τ, t) = e−Ψ(τ,t)τ
+ δ
τ
0
e−Ψ(τ,t)s
ds
Portfolio Weights (maturity distribution):
(τ,t) ≡
f (τ, t)
T
0 f (s, t)ds
Two Definitions (button)
Yield curve Ψ(τ, t):
Implicit constant rate Ψ(τ, t) that solves:
ψ(τ, t) = e−Ψ(τ,t)τ
+ δ
τ
0
e−Ψ(τ,t)s
ds
Portfolio Weights (maturity distribution):
(τ,t) ≡
f (τ, t)
T
0 f (s, t)ds
Appendix - Debt Evolution
From Discrete time
f (τ, t + dt)
τ−debt tomorrow
= ι(τ, t)dt
new inflow
+ f (τ + dt, t)
becoming τ−debt
Note that dt = −dτ:
f (τ, t + dt) − f (τ, t)
dt
= ι(τ, t) +
f (τ + dt, t) − f (τ, t)
dt
= ι(τ, t) +
f (τ − dτ, t) − f (τ, t)
(−dτ)
Take limit dt → 0
∂f (τ, t)
∂t
= ι (τ, t) +
∂f (τ, t)
∂τ
Back
Appendix - Debt Evolution
From Discrete time
f (τ, t + dt)
τ−debt tomorrow
= ι(τ, t)dt
new inflow
+ f (τ + dt, t)
becoming τ−debt
Note that dt = −dτ:
f (τ, t + dt) − f (τ, t)
dt
= ι(τ, t) +
f (τ + dt, t) − f (τ, t)
dt
= ι(τ, t) +
f (τ − dτ, t) − f (τ, t)
(−dτ)
Take limit dt → 0
∂f (τ, t)
∂t
= ι (τ, t) +
∂f (τ, t)
∂τ
Back
Appendix - Debt Evolution
From Discrete time
f (τ, t + dt)
τ−debt tomorrow
= ι(τ, t)dt
new inflow
+ f (τ + dt, t)
becoming τ−debt
Note that dt = −dτ:
f (τ, t + dt) − f (τ, t)
dt
= ι(τ, t) +
f (τ + dt, t) − f (τ, t)
dt
= ι(τ, t) +
f (τ − dτ, t) − f (τ, t)
(−dτ)
Take limit dt → 0
∂f (τ, t)
∂t
= ι (τ, t) +
∂f (τ, t)
∂τ
Back
Appendix - Debt Evolution
From Discrete time
f (τ, t + dt)
τ−debt tomorrow
= ι(τ, t)dt
new inflow
+ f (τ + dt, t)
becoming τ−debt
Note that dt = −dτ:
f (τ, t + dt) − f (τ, t)
dt
= ι(τ, t) +
f (τ + dt, t) − f (τ, t)
dt
= ι(τ, t) +
f (τ − dτ, t) − f (τ, t)
(−dτ)
Take limit dt → 0
∂f (τ, t)
∂t
= ι (τ, t) +
∂f (τ, t)
∂τ
Back
Transitions from an arbitrary f (τ, 0)
Transitional Dynamics from f (τ, 0)=0
Time, t
0 50 100 150 200
%
5.5
5.6
5.7
5.8
5.9
6
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.94
0.96
0.98
1
1.02
1.04
1.06
c(t) vs. y(t)
c(t)
y(t)
Time, t
0 50 100 150 200
Issuances
0
0.005
0.01
0.015
0.02
0.025
0.03
Issuances Rate, 4(t)
0-5 year
5-10 years
10-15 years
T-5 to T years
Time, t
0 50 100 150 200
Deviationsfromsteadystate(in%)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
Outstanding amounts, f(t)
0-5 year
5-10 years
10-15 years
T-5 to T years
λ smooths adjustment, bullwhip effect, expiration limits debt
accumulation
AR(1) MIT shock to y(t) - Risk Neutrality (button)
10% Output Shock
Time, t
0 50 100 150 200
%
6
6.001
6.002
6.003
6.004
6.005
6.006
6.007
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.85
0.9
0.95
1
c(t) vs. y(t)
c(t)
y(t)
Time, t
0 50 100 150 200
Outstandingamounts
0.005
0.01
0.015
0.02
0.025
0.03
Issuances Rate, 4(t)
0-5 year
5-10 years
10-15 years
15 6 years
Time, t
0 50 100 150 200
Outstandingamounts
0.05
0.1
0.15
0.2
0.25
0.3
0.35
Issuances Rate, 4(t)
0-5 year
5-10 years
10-15 years
15 6 years
AR(1) MIT shock to y(t) - Less Persistence (button)
Same but less persistence
Maturity, =
0 5 10 15 20
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Outstanding Debt f(=)
Maturity, =
0 5 10 15 20
#10-3
-1
0
1
2
3
4
5
6
Issuances 4(=)
Maturity, =
0 5 10 15 20
#10-3
0
1
2
3
4
5
6
7
Maturity Distribution
Maturity, =
0 5 10 15 20
0.75
0.8
0.85
0.9
0.95
1
1.05
A(=) vs. !v(=)
A(=; ss)
A(=; rss)
!v(=; ss)
!v(=; rss)
Dynamic Hedging - A Combined Shock
A ¯r(t) and y(t) shock combined
Maturity, =
0 5 10 15 20
-0.04
-0.02
0
0.02
0.04
0.06
0.08
Outstanding Debt f(=)
Maturity, =
0 5 10 15 20
#10-3
-2
-1
0
1
2
3
4
5
6
Issuances 4(=)
Maturity, =
0 5 10 15 20
-0.01
-0.005
0
0.005
0.01
Maturity Distribution
Maturity, =
0 5 10 15 20
0.75
0.8
0.85
0.9
0.95
1
A(=) vs. !v(=)
A(=; ss)
A(=; rss)
!v(=; ss)
!v(=; rss)
Dynamic Hedging - A Combined Shock
A ¯r(t) and y(t) shock combined
Time, t
0 50 100 150 200
%
5.5
6
6.5
7
7.5
Time Discount r(t) (bps)
Time, t
0 50 100 150 200
0.95
0.96
0.97
0.98
0.99
1
1.01
1.02
c(t) vs. y(t)
c(t)
y(t)
Time, t
0 50 100 150 200
Outstandingamounts
-0.01
-0.005
0
0.005
0.01
0.015
0.02
0.025
0.03
Issuances Rate, 4(t)
0-5 year
5-10 years
10-15 years
15 6 years
Time, t
0 50 100 150 200
Outstandingamounts
-0.2
-0.1
0
0.1
0.2
0.3
0.4
Issuances Rate, 4(t)
0-5 year
5-10 years
10-15 years
15 6 years
Transitional Dynamics - Fixed Point Algorithm in r(t)
1. Build:
r(t) = ρ − σ
˙c(t)
c(t)
2. Plug r(t) into value PDE:
r(t)v (τ, t) = −δ +
∂v
∂t
−
∂v
∂τ
3. Build issuances:
ι (τ, t) =
ψ(τ, t) + v(τ, t)
¯λ
4. Obtain f (t, τ):
f (τ, t) =
min{T,τ+t}
τ
ι(t + τ − s, s)ds + I[T > t + τ] · f (τ + t, 0)
5. c(t) given by
cout
(t) = y (t) − f (0, t) +
T
0
[q (τ, t, ι) ι (τ, t) − δf (τ, t)] dτ
Gateaux Derivative of V
dV
df
= lim
α→0
V (f + αh(τ,t)) − V (f )
α
where
h(τ,t)(˜τ,˜t) = Dirac function at (τ, t)
Back

More Related Content

What's hot

Hedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear FrictionsHedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear Frictionsguasoni
 
Power Market and Models Convergence ?
Power Market and Models Convergence ?Power Market and Models Convergence ?
Power Market and Models Convergence ?NicolasRR
 
Fin 533 module5 binomial step by step (corrected)
Fin 533 module5 binomial step by step (corrected)Fin 533 module5 binomial step by step (corrected)
Fin 533 module5 binomial step by step (corrected)Nivine Richie, CFA
 
Volatility derivatives and default risk
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default riskVolatility
 
Bayesian Inference on a Stochastic Volatility model Using PMCMC methods
Bayesian Inference on a Stochastic Volatility model Using PMCMC methodsBayesian Inference on a Stochastic Volatility model Using PMCMC methods
Bayesian Inference on a Stochastic Volatility model Using PMCMC methodspaperbags
 
4.first moment of area11
4.first moment of area114.first moment of area11
4.first moment of area11Chhay Teng
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wedVin Voro
 
Options pricing using Lattice models
Options pricing using Lattice modelsOptions pricing using Lattice models
Options pricing using Lattice modelsQuasar Chunawala
 

What's hot (19)

Hedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear FrictionsHedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear Frictions
 
Power Market and Models Convergence ?
Power Market and Models Convergence ?Power Market and Models Convergence ?
Power Market and Models Convergence ?
 
CME Deliverable Interest Rate Swap Future
CME Deliverable Interest Rate Swap FutureCME Deliverable Interest Rate Swap Future
CME Deliverable Interest Rate Swap Future
 
Slides lyon-anr
Slides lyon-anrSlides lyon-anr
Slides lyon-anr
 
Fin 533 module5 binomial step by step (corrected)
Fin 533 module5 binomial step by step (corrected)Fin 533 module5 binomial step by step (corrected)
Fin 533 module5 binomial step by step (corrected)
 
Ism et chapter_2
Ism et chapter_2Ism et chapter_2
Ism et chapter_2
 
Chapter4 tf
Chapter4 tfChapter4 tf
Chapter4 tf
 
8. terapan hk1 n
8. terapan hk1 n8. terapan hk1 n
8. terapan hk1 n
 
6 truyen nhiet
6   truyen nhiet6   truyen nhiet
6 truyen nhiet
 
Volatility derivatives and default risk
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default risk
 
501 lecture8
501 lecture8501 lecture8
501 lecture8
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
 
Bayesian Inference on a Stochastic Volatility model Using PMCMC methods
Bayesian Inference on a Stochastic Volatility model Using PMCMC methodsBayesian Inference on a Stochastic Volatility model Using PMCMC methods
Bayesian Inference on a Stochastic Volatility model Using PMCMC methods
 
4.first moment of area11
4.first moment of area114.first moment of area11
4.first moment of area11
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
HdR
HdRHdR
HdR
 
Options pricing using Lattice models
Options pricing using Lattice modelsOptions pricing using Lattice models
Options pricing using Lattice models
 
0509 ch 5 day 9
0509 ch 5 day 90509 ch 5 day 9
0509 ch 5 day 9
 

Similar to Optimal debt management strategies for mitigating income, interest rate, and liquidity risks

Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...Eesti Pank
 
Stochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and ImplementationStochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and ImplementationVolatility
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentationStephan Chang
 
Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...Bowei Chen
 
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Métodos computacionales para el estudio de modelos  epidemiológicos con incer...Métodos computacionales para el estudio de modelos  epidemiológicos con incer...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...Facultad de Informática UCM
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectCemal Ardil
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxandreecapon
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster Samuel Gbari
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
Derivatives pricing
Derivatives pricingDerivatives pricing
Derivatives pricingIlya Gikhman
 
Option local and volatility 2 25 2014
Option local and volatility 2 25 2014Option local and volatility 2 25 2014
Option local and volatility 2 25 2014Ilya Gikhman
 
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING. CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING. Ilya Gikhman
 
Remark on variance swaps pricing new
Remark on variance swaps pricing newRemark on variance swaps pricing new
Remark on variance swaps pricing newIlya Gikhman
 
Remark on variance swaps pricing
Remark on variance swaps pricingRemark on variance swaps pricing
Remark on variance swaps pricingIlya Gikhman
 

Similar to Optimal debt management strategies for mitigating income, interest rate, and liquidity risks (20)

Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
Boris Blagov. Financial Crises and Time-Varying Risk Premia in a Small Open E...
 
Cambridge
CambridgeCambridge
Cambridge
 
Stochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and ImplementationStochastic Local Volatility Models: Theory and Implementation
Stochastic Local Volatility Models: Theory and Implementation
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentation
 
Semi markov process
Semi markov processSemi markov process
Semi markov process
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...Pricing average price advertising options when underlying spot market prices ...
Pricing average price advertising options when underlying spot market prices ...
 
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
Métodos computacionales para el estudio de modelos  epidemiológicos con incer...Métodos computacionales para el estudio de modelos  epidemiológicos con incer...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
 
MUMS Undergraduate Workshop - A Biased Introduction to Global Sensitivity Ana...
MUMS Undergraduate Workshop - A Biased Introduction to Global Sensitivity Ana...MUMS Undergraduate Workshop - A Biased Introduction to Global Sensitivity Ana...
MUMS Undergraduate Workshop - A Biased Introduction to Global Sensitivity Ana...
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
diff equation
diff equationdiff equation
diff equation
 
22nd BSS meeting poster
22nd BSS meeting poster 22nd BSS meeting poster
22nd BSS meeting poster
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Derivatives pricing
Derivatives pricingDerivatives pricing
Derivatives pricing
 
Option local and volatility 2 25 2014
Option local and volatility 2 25 2014Option local and volatility 2 25 2014
Option local and volatility 2 25 2014
 
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING. CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
 
Remark on variance swaps pricing new
Remark on variance swaps pricing newRemark on variance swaps pricing new
Remark on variance swaps pricing new
 
Remark on variance swaps pricing
Remark on variance swaps pricingRemark on variance swaps pricing
Remark on variance swaps pricing
 

More from ADEMU_Project

Discussion of fiscal policies in the euro area: revisiting the size of spillo...
Discussion of fiscal policies in the euro area: revisiting the size of spillo...Discussion of fiscal policies in the euro area: revisiting the size of spillo...
Discussion of fiscal policies in the euro area: revisiting the size of spillo...ADEMU_Project
 
Fiscal rules and independent fiscal councils
Fiscal rules and independent fiscal councilsFiscal rules and independent fiscal councils
Fiscal rules and independent fiscal councilsADEMU_Project
 
Discussion paper: The welfare and distributional effects of fiscal volatility...
Discussion paper: The welfare and distributional effects of fiscal volatility...Discussion paper: The welfare and distributional effects of fiscal volatility...
Discussion paper: The welfare and distributional effects of fiscal volatility...ADEMU_Project
 
A minimal moral hazard central stabilization capacity for the EMU based on wo...
A minimal moral hazard central stabilization capacity for the EMU based on wo...A minimal moral hazard central stabilization capacity for the EMU based on wo...
A minimal moral hazard central stabilization capacity for the EMU based on wo...ADEMU_Project
 
Fiscal multipliers and foreign holdings of public debt - working paper
Fiscal multipliers and foreign holdings of public debt - working paperFiscal multipliers and foreign holdings of public debt - working paper
Fiscal multipliers and foreign holdings of public debt - working paperADEMU_Project
 
Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...ADEMU_Project
 
Hanging off a cliff: fiscal consolidations and default risk
Hanging off a cliff: fiscal consolidations and default riskHanging off a cliff: fiscal consolidations and default risk
Hanging off a cliff: fiscal consolidations and default riskADEMU_Project
 
Fiscal rules and the sovereign default premium
Fiscal rules and the sovereign default premiumFiscal rules and the sovereign default premium
Fiscal rules and the sovereign default premiumADEMU_Project
 
Limited participation and local currency sovereign debt
Limited participation and local currency sovereign debtLimited participation and local currency sovereign debt
Limited participation and local currency sovereign debtADEMU_Project
 
Sovereign default in a monetary union
Sovereign default in a monetary unionSovereign default in a monetary union
Sovereign default in a monetary unionADEMU_Project
 
Pre-emptive sovereign debt restructuring and holdout litigation
Pre-emptive sovereign debt restructuring and holdout litigationPre-emptive sovereign debt restructuring and holdout litigation
Pre-emptive sovereign debt restructuring and holdout litigationADEMU_Project
 
Debt, defaults and dogma
Debt, defaults and dogmaDebt, defaults and dogma
Debt, defaults and dogmaADEMU_Project
 
Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...ADEMU_Project
 
Debt seniority and self-fulfilling debt crises
Debt seniority and self-fulfilling debt crisesDebt seniority and self-fulfilling debt crises
Debt seniority and self-fulfilling debt crisesADEMU_Project
 
Sovereign default and information frictions
Sovereign default and information frictionsSovereign default and information frictions
Sovereign default and information frictionsADEMU_Project
 
Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...
Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...
Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...ADEMU_Project
 
Costs of sovereign default: restructuring strategies, bank distress and the c...
Costs of sovereign default: restructuring strategies, bank distress and the c...Costs of sovereign default: restructuring strategies, bank distress and the c...
Costs of sovereign default: restructuring strategies, bank distress and the c...ADEMU_Project
 
Ademu at the European Parliament, 27 March 2018
Ademu at the European Parliament, 27 March 2018Ademu at the European Parliament, 27 March 2018
Ademu at the European Parliament, 27 March 2018ADEMU_Project
 
Revisiting tax on top income - discussion by Johannes Fleck
Revisiting tax on top income - discussion by Johannes FleckRevisiting tax on top income - discussion by Johannes Fleck
Revisiting tax on top income - discussion by Johannes FleckADEMU_Project
 
Should robots be taxed? Discussion by Lukas Mayr
Should robots be taxed? Discussion by Lukas MayrShould robots be taxed? Discussion by Lukas Mayr
Should robots be taxed? Discussion by Lukas MayrADEMU_Project
 

More from ADEMU_Project (20)

Discussion of fiscal policies in the euro area: revisiting the size of spillo...
Discussion of fiscal policies in the euro area: revisiting the size of spillo...Discussion of fiscal policies in the euro area: revisiting the size of spillo...
Discussion of fiscal policies in the euro area: revisiting the size of spillo...
 
Fiscal rules and independent fiscal councils
Fiscal rules and independent fiscal councilsFiscal rules and independent fiscal councils
Fiscal rules and independent fiscal councils
 
Discussion paper: The welfare and distributional effects of fiscal volatility...
Discussion paper: The welfare and distributional effects of fiscal volatility...Discussion paper: The welfare and distributional effects of fiscal volatility...
Discussion paper: The welfare and distributional effects of fiscal volatility...
 
A minimal moral hazard central stabilization capacity for the EMU based on wo...
A minimal moral hazard central stabilization capacity for the EMU based on wo...A minimal moral hazard central stabilization capacity for the EMU based on wo...
A minimal moral hazard central stabilization capacity for the EMU based on wo...
 
Fiscal multipliers and foreign holdings of public debt - working paper
Fiscal multipliers and foreign holdings of public debt - working paperFiscal multipliers and foreign holdings of public debt - working paper
Fiscal multipliers and foreign holdings of public debt - working paper
 
Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...
 
Hanging off a cliff: fiscal consolidations and default risk
Hanging off a cliff: fiscal consolidations and default riskHanging off a cliff: fiscal consolidations and default risk
Hanging off a cliff: fiscal consolidations and default risk
 
Fiscal rules and the sovereign default premium
Fiscal rules and the sovereign default premiumFiscal rules and the sovereign default premium
Fiscal rules and the sovereign default premium
 
Limited participation and local currency sovereign debt
Limited participation and local currency sovereign debtLimited participation and local currency sovereign debt
Limited participation and local currency sovereign debt
 
Sovereign default in a monetary union
Sovereign default in a monetary unionSovereign default in a monetary union
Sovereign default in a monetary union
 
Pre-emptive sovereign debt restructuring and holdout litigation
Pre-emptive sovereign debt restructuring and holdout litigationPre-emptive sovereign debt restructuring and holdout litigation
Pre-emptive sovereign debt restructuring and holdout litigation
 
Debt, defaults and dogma
Debt, defaults and dogmaDebt, defaults and dogma
Debt, defaults and dogma
 
Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...Sovereign risk and fiscal information: a look at the US state of default in t...
Sovereign risk and fiscal information: a look at the US state of default in t...
 
Debt seniority and self-fulfilling debt crises
Debt seniority and self-fulfilling debt crisesDebt seniority and self-fulfilling debt crises
Debt seniority and self-fulfilling debt crises
 
Sovereign default and information frictions
Sovereign default and information frictionsSovereign default and information frictions
Sovereign default and information frictions
 
Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...
Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...
Breaking the feedback loop: macroprudential regulation of banks' sovereign ex...
 
Costs of sovereign default: restructuring strategies, bank distress and the c...
Costs of sovereign default: restructuring strategies, bank distress and the c...Costs of sovereign default: restructuring strategies, bank distress and the c...
Costs of sovereign default: restructuring strategies, bank distress and the c...
 
Ademu at the European Parliament, 27 March 2018
Ademu at the European Parliament, 27 March 2018Ademu at the European Parliament, 27 March 2018
Ademu at the European Parliament, 27 March 2018
 
Revisiting tax on top income - discussion by Johannes Fleck
Revisiting tax on top income - discussion by Johannes FleckRevisiting tax on top income - discussion by Johannes Fleck
Revisiting tax on top income - discussion by Johannes Fleck
 
Should robots be taxed? Discussion by Lukas Mayr
Should robots be taxed? Discussion by Lukas MayrShould robots be taxed? Discussion by Lukas Mayr
Should robots be taxed? Discussion by Lukas Mayr
 

Recently uploaded

Andheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot ModelsAndheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot Modelshematsharma006
 
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Servicesnajka9823
 
Unveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net WorthUnveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net WorthShaheen Kumar
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130Suhani Kapoor
 
Vp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppVp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppmiss dipika
 
House of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview documentHouse of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview documentHenry Tapper
 
Attachment Of Assets......................
Attachment Of Assets......................Attachment Of Assets......................
Attachment Of Assets......................AmanBajaj36
 
The Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh KumarThe Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh KumarHarsh Kumar
 
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...yordanosyohannes2
 
Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111Sapana Sha
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...shivangimorya083
 
(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办
(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办
(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办fqiuho152
 
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证rjrjkk
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawlmakika9823
 
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfBPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfHenry Tapper
 
Bladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results PresentationBladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results PresentationBladex
 
government_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdfgovernment_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdfshaunmashale756
 
VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingAggregage
 

Recently uploaded (20)

Andheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot ModelsAndheri Call Girls In 9825968104 Mumbai Hot Models
Andheri Call Girls In 9825968104 Mumbai Hot Models
 
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mulki Call Girls 7001305949 WhatsApp Number 24x7 Best Services
 
Unveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net WorthUnveiling the Top Chartered Accountants in India and Their Staggering Net Worth
Unveiling the Top Chartered Accountants in India and Their Staggering Net Worth
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
 
Vp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsAppVp Girls near me Delhi Call Now or WhatsApp
Vp Girls near me Delhi Call Now or WhatsApp
 
Monthly Economic Monitoring of Ukraine No 231, April 2024
Monthly Economic Monitoring of Ukraine No 231, April 2024Monthly Economic Monitoring of Ukraine No 231, April 2024
Monthly Economic Monitoring of Ukraine No 231, April 2024
 
House of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview documentHouse of Commons ; CDC schemes overview document
House of Commons ; CDC schemes overview document
 
Attachment Of Assets......................
Attachment Of Assets......................Attachment Of Assets......................
Attachment Of Assets......................
 
The Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh KumarThe Triple Threat | Article on Global Resession | Harsh Kumar
The Triple Threat | Article on Global Resession | Harsh Kumar
 
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
AfRESFullPaper22018EmpiricalPerformanceofRealEstateInvestmentTrustsandShareho...
 
Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111Call Girls In Yusuf Sarai Women Seeking Men 9654467111
Call Girls In Yusuf Sarai Women Seeking Men 9654467111
 
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
Russian Call Girls In Gtb Nagar (Delhi) 9711199012 💋✔💕😘 Naughty Call Girls Se...
 
(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办
(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办
(办理原版一样)QUT毕业证昆士兰科技大学毕业证学位证留信学历认证成绩单补办
 
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
原版1:1复刻温哥华岛大学毕业证Vancouver毕业证留信学历认证
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
 
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdfBPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
BPPG response - Options for Defined Benefit schemes - 19Apr24.pdf
 
Bladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results PresentationBladex 1Q24 Earning Results Presentation
Bladex 1Q24 Earning Results Presentation
 
government_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdfgovernment_intervention_in_business_ownership[1].pdf
government_intervention_in_business_ownership[1].pdf
 
VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Saharanpur Anushka 8250192130 Independent Escort Se...
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of Reporting
 

Optimal debt management strategies for mitigating income, interest rate, and liquidity risks

  • 1. Optimal Debt-Maturity Management Saki Bigio (UCLA) Galo Nuño (Bank of Spain) Juan Passadore (EIEF) Toulouse, April 2018
  • 2. Peru Example - Programmed Coupon Payments Number of years in the future 5 10 15 20 25 30 35 %ofAnnualGDP 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Interests-2016 Q2
  • 3. Peru Example - Programmed Principal Payments Number of years in the future 5 10 15 20 25 30 35 %ofAnnualGDP 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Amortization-2016 Q2
  • 4. Debt-Management Large-Stake but highly complex problem state-space: vector of bonds of different maturity risks: income, interest-rate, default forces: smoothing, risk management, incentives, liquidity State of the art economics Can handle many risks Challenge: use standard bond =⇒ ↑curse of dimensionality forces use of consols typically two
  • 5. What we do... Change of Focus Limit nature of shocks....but Continuum of Bonds arbitrary cash-flow analytic expressions, realistic debt structure, rich dynamics Highlight role of liquidity captures price impact follows from OTC frictions technically convenient
  • 6. Environment SOE, CT, incomplete markets, exogenous short rates CT: elegance, speed and comp stats Consumption-Savings Problem: shocks: income, short rates, default value liquidity cost State Variable: mass of debt/assets f (τ, t)
  • 7. Agenda Deterministic Transitions: closed-form steady state transitional dynamics MIT shocks: output or short rate force: liquidity smoothing vs. consumption smoothing Risky Steady State asymptotics when waiting for shock one-time shocks: output, short rate force: risk management Default Shock transitions: if date of decision is known risky-steady state: if date of decision is unknown force: incentives
  • 8. Literature Sovereign Debt: Eaton Gersovitz (1981), Bulow Rogoff (1988), Arellano (2008), Chattarjee Eiyungor (2012), Arellano Ramayanan (2012), Bianchi Hatchondo Martinez (2014), Debortoli, Nunes, Yared (2017), Fernández Martin (2014), Aguiar Amador Hopenhayn Werning (2017) Preferred Habit Models: Modigliani and Stutch (1966), Greenwood Vayanos (2010), Vayanos and Vila (2010) Debt Management w/ Distortionary Taxes: Lucas Stokey (1983), Angeletos (2002), Buera Nicolini (2004), Bhandari Evans Golosov Sargent (2017) Continuous Time - Heterogeneous Agents: Kredler (2014), Nuno Moll (2017), Nuno Thomas (2017),
  • 9. Environment: shocks, preference and state Random paths: income y(t), short rate ¯r(t) later: default Preferences: V0 = E[ ∞ 0 e−ρt u(c(t))dt] and u(x) ≡ c1−σ − 1 1 − σ State: debt f (τ, t), expiration τ ∈ [0, T]
  • 10. Environment: constraint set Resource Constraint: c (t) = y (t) + T 0 q (τ, t, ι) ι (τ, t)dτ issuance − f (0, t) principal −δ T 0 f (τ, t) dτ coupons . Bond price: q (τ, t, ι) = ψ(τ, t) bond price − 1 2 ψ(τ, t)λ(ι) liquidity cost PDE constraint: Derivation ∂f (τ, t) ∂t = ι (τ, t) + ∂f (τ, t) ∂τ ; f (τ, 0) = f0(τ)
  • 11. Environment: bond price Bond Price ψ(τ, t): short rate ¯r(t) path and no-arbitrage: ψ(τ, t) = E[e − τ 0 ¯r(t+s)ds + δ τ 0 e − s 0 ¯r(t+z)dz ds] In HJB form: ¯r(t)ψ(τ, t) = δ + ∂ψ ∂t − ∂ψ ∂τ ; ψ(0, t) = 1
  • 12. Environment: liquidity cost WholesaleRetail bond market Walrasian wholesale auction of ι (τ, t) investment banks only price cash-flow at ¯r (t) + η OTC retail market µ flow of clients match with banks client valuation ψ(τ, t) Auction price: q(τ, t, ι) ψ(τ, t) − 1 2 ψ(τ, t) ¯λι λ(ι) , and ¯λ ≡ η µyss .
  • 13. General Problem Perfect Foresight V [f (·, 0)] = max {ι(τ,t)}t∈[0,∞),τ∈[0,T] Et ∞ t e−ρ(s−t) u(c(s))ds s.t. c (t) = y (t) − f (0, t) + T 0 [q (τ, t, ι) ι (τ, t) − δf (τ, t)] dτ ∂f ∂t = ι (τ, t) + ∂f ∂τ ; f (τ, 0) = f0(τ) Dual: Dual
  • 15. Deterministic Paths no default, known paths, f0 given Next... derive steady-state distribution f ∗(τ) path for transitional dynamics: f0 → f ∗(τ) comparative statistics: f ∗(τ, X) → f ∗(τ, X )
  • 16. Solving it Step 1. Lagrangian L (ι, f ) = ∞ 0 e−ρt u (c(t)) dt + ∞ 0 T 0 e−ρt j (τ, t) − ∂f ∂t + ι (τ, t) + ∂f ∂τ dτdt, c(t) = y (t) − f (0, t) + T 0 [q (t, τ, ι) ι (τ, t) − δf (τ, t)] dτ. Step 2. First-Order Condition and Envelope Marginal Value u (c) q (τ, t, ι) + ∂q ∂ι ι (τ, t) = Marginal Cost −j (τ, t) ρj (τ, t) = −δu (c (t)) + ∂j ∂t − ∂j ∂τ , if τ ∈ (0, T] and j (0, t) = −u (c (t)) .
  • 17. Solving it Step 1. Lagrangian L (ι, f ) = ∞ 0 e−ρt u (c(t)) dt + ∞ 0 T 0 e−ρt j (τ, t) − ∂f ∂t + ι (τ, t) + ∂f ∂τ dτdt, c(t) = y (t) − f (0, t) + T 0 [q (t, τ, ι) ι (τ, t) − δf (τ, t)] dτ. Step 2. First-Order Condition and Envelope Marginal Value u (c) ψ (τ, t) − ¯λψ (τ, t) ι = Marginal Cost −j (τ, t) ρj (τ, t) = −δu (c (t)) + ∂j ∂t − ∂j ∂τ , if τ ∈ (0, T] and j (0, t) = −u (c (t)) .
  • 18. Optimal Path Proposition: 1) v(τ, t) ≡ − j(τ,t) u (c(t)) solves "individual trader” price-PDE: r(t) ρ+σ . c(t)/c(t) v (τ, t) = δ + ∂v ∂t − ∂v ∂τ , if τ ∈ (0, T] v (0, t) = 1 2) issuances ι(τ, t): ψ (τ, t) − ¯λψ (τ, t) ι marginal income = v (τ, t) discounted payouts 3) PDE given f0, c(t) given by BC
  • 19. Optimal Path Proposition: 1) v(τ, t) ≡ − j(τ,t) u (c(t)) solves ‘"ndividual trader” price-PDE: r(t) ρ+σ . c(t)/c(t) v (τ, t) = δ + ∂v ∂t − ∂v ∂τ , if τ ∈ (0, T] v (0, t) = 1 2) issuances ι(τ, t): ι = ψ (τ, t) − v (τ, t) ¯λψ (τ, t) 3) PDE given f0, c(t) given by BC
  • 20. Asymptotic Properties (t −→ ∞) 1. market and internal valuations: ψ(τ) = δ 1 − e−¯rss τ ¯rss + e−¯rss τ and v∗ (τ) = δ 1 − e−rss (¯λ)τ rss(¯λ) + e−rss (¯λ)τ 2. issuance: ι∗ (τ) = ψ(τ) − v∗(τ) ¯λψ(τ) .
  • 21. Asymptotic Properties (t −→ ∞) If ¯λ ≥ ¯λo rss(λ) = ρ Steady State c(t) = css > 0 If¯λ < ¯λo limt→∞C(t) = 0 rss(λ) ∈ [¯rss, ρ)
  • 22. Asymptotic Values - varying ¯λ Liquidity, 76 0 0.5 1 1.5 2 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 6o c1 Liquidity, 76 0 0.5 1 1.5 2 0.04 0.045 0.05 0.055 0.06 6o r1 Maturity, = 0 5 10 15 20 0 0.05 0.1 0.15 0.2 41 Maturity, = 0 5 10 15 20 0 0.5 1 1.5 2 2.5 f1
  • 23. Steady State (when λ ≥ ¯λo) Assumption ρ > ¯r Maturity, = 0 5 10 15 20 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Outstanding Debt f(=) Maturity, = 0 5 10 15 20 #10-3 0 1 2 3 4 5 6 Issuances 4(=) Maturity, = 0 5 10 15 20 #10-3 0 1 2 3 4 5 6 7 Maturity Distribution Maturity, = 0 5 10 15 20 0.75 0.8 0.85 0.9 0.95 1 A(=) vs. !v(=) A(=) !v(=)
  • 24. Frictionless Benchmark ¯λ = 0 If ψ arbitrage free: r(t) = ¯r(t), ψ(τ, t) = v(τ, t) Discount Factor pins consumption: . c(t) c(t) = − ρ − ¯r(t) σ Indeterminate maturity!
  • 25. Frictionless Limit ¯λ −→ 0 If ψ arbitrage free r(t) = ¯r(t), ψ(τ, t) = v(τ, t) Discount Factor pins consumption: . c(t) c(t) = − ρ − ¯r(t) σ Determinate Maturity!
  • 26. Transitional Dynamics - Fixed Point Input: c(t) Discount Factor: r(t) = ρ + σ . c(t) c(t) Valuations: r(t) Value of Debt v (τ, t) = Coupon δ + dv(τ,t) dt ∂v ∂t − ∂v ∂τ Optimal Issuance: ι (τ, t) = ψ(τ, t) − v(τ, t) ¯λψ(τ, t) Output: c(t) (follows from KFE+BC)
  • 28. Application 1 - Transitions Transitions reveal two novel features: 1. Income path for y(t) liquidity cost + finite maturity produce issuance cycle 2. Path for short rate ¯r(t) show consumption vs. liquidity smoothing
  • 29. Transition after MIT shock to y(t) Shock %5 output, T = 20 Time, t 0 50 100 150 200 % 5.9 6 6.1 6.2 6.3 6.4 6.5 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.85 0.9 0.95 1 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 %yss 0 0.01 0.02 0.03 0.04 Issuances Rate, 4(t) Time, t 0 50 100 150 200 %yss 0 0.2 0.4 0.6 0.8 Debt Outstanding, f(t) 0-5 (years) 5-10 10-15 T-5 to T
  • 30. Longer Maturity Shock %5 output, from T = 20 to T = 30 Time, t 0 50 100 150 200 % 5.9 6 6.1 6.2 6.3 6.4 6.5 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.85 0.9 0.95 1 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 %yss 0 0.01 0.02 0.03 0.04 Issuances Rate, 4(t) Time, t 0 50 100 150 200 %yss 0 0.2 0.4 0.6 0.8 Debt Outstanding, f(t) 0-5 (years) 5-10 10-15 T-5 to T
  • 31. Transitions after AR(1) MIT shock to ¯r(t) Rates
  • 32. Transitions after AR(1) MIT shock to ¯r(t) Optimal Policy Time, t 0 50 100 150 200 % 4 5 6 7 8 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.9 0.95 1 1.05 1.1 1.15 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 %yss 0 0.02 0.04 0.06 0.08 Issuances Rate, 4(t) Time, t 0 50 100 150 200 %yss 0 0.2 0.4 0.6 0.8 Debt Outstanding, f(t) 0-5 (years) 5-10 10-15 T-5 to T
  • 33. Transitions after AR(1) MIT shock to ¯r(t) Infinite IES - when σ=0 Time, t 0 50 100 150 200 % 4 5 6 7 8 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.9 0.95 1 1.05 1.1 1.15 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 %yss 0 0.02 0.04 0.06 0.08 Issuances Rate, 4(t) Time, t 0 50 100 150 200 %yss 0 0.2 0.4 0.6 0.8 Debt Outstanding, f(t) 0-5 (years) 5-10 10-15 T-5 to T
  • 35. Risk What about Risk? Complication: fixed point in sets of functions Risky Steady State: allows analysis with risk
  • 36. Role of Uncertainty - Risky Steady State Next... Before shock: yss and ¯rss at steady state Poisson event with arrival rate θ After shock: draw {y (0) ,¯r(0)} ∼ F {y(t),¯r(t)} → {yss,¯rss} RSS: shock expected t → ∞ before realization opposite of MIT shock
  • 37. After Shocks - Risky Steady State Fixed point in {crss} ∪ {c(t)}t≥0 Jump crss to c(0) Post-shock: same as before but f (τ,0)=f rss (τ) Issuance rule: ι (τ, t) = ψ(τ, t) − v(τ, t) ¯λψ(τ, t)
  • 38. Before Shock - Risky Steady State Risk Adjusted Valuation: ρvrss (τ) = δ + ∂vrss(τ) ∂τ + θ E v (τ, 0) u (c(0)) u (crss) − vrss(τ) HJB solution is: vrss(τ) = τ 0 e−(ρ+θ)s θE v (τ, 0) u (c(0)) u (crss) + δ ds + e−(ρ+θ)τ Intuition: One value per shock: v (τ, 0) and c(0) marginal utility ratio: “exchange-rate” between states
  • 39. Frictionless Limit - Pre-shock Transition ˆψ (τ, t) = ˆv (τ, t) Price Equation: ¯r (t) ˆψ (τ, t) = δ + ∂ ˆψ ∂t − ∂ ˆψ ∂τ + θ E [ψ (τ, t)] − ˆψ (τ, t) HJB and ˆψ (τ, t) = ˆv (τ, t) r(t) ˆψ (τ, t) = δ + ∂ ˆψ ∂t − ∂ ˆψ ∂τ + θ E U (c (t)) U (ˆc (t)) ψ (τ, t) − ˆψ (τ, t) both equations must be consistent
  • 40. Frictionless Limit - Two Polar Cases Lack of Insurance: If only y(t) jumps ψ (τ, t) = ˆψ (τ, t) = 1 r(t) = ¯r(t) + θ E U (c (t)) U (ˆc (t)) − 1 And an RSS always exists Complete Insurance: requires ability to construct portfolio: such that ˆc (t) = c (t) for all shocks r(t) = ¯r(t) Asymptotic Limit, but no RSS
  • 42. AR(1) MIT shock to y(t) - RSS vs. SS Expecting a 5% y(t) drop Maturity, = 0 5 10 15 20 0 0.01 0.02 0.03 0.04 0.05 0.06 Outstanding Debt f(=) Maturity, = 0 5 10 15 20 #10-3 0 1 2 3 4 5 Issuances 4(=) Maturity, = 0 5 10 15 20 #10-3 0 1 2 3 4 5 6 7 Maturity Distribution Maturity, = 0 5 10 15 20 0.75 0.8 0.85 0.9 0.95 1 A(=) vs. !v(=) A(=; ss) A(=; rss) !v(=; ss) !v(=; rss) !v(=; 0)
  • 43. AR(1) MIT shock to y(t) - Transition from RSS 5% Output Shock Time, t 0 50 100 150 200 % 5.8 5.85 5.9 5.95 6 6.05 6.1 6.15 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.94 0.95 0.96 0.97 0.98 0.99 1 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 %yss 0 0.005 0.01 0.015 0.02 0.025 Issuances Rate, 4(t) Time, t 0 50 100 150 200 %yss 0 0.05 0.1 0.15 0.2 0.25 0.3 Debt Outstanding, f(t) 0-5 (years) 5-10 10-15 T-5 to T
  • 44. AR(1) MIT shock to ¯r(t) - RSS vs. SS Shock 4% to 8% on impact, ρ = 6% Maturity, = 0 5 10 15 20 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 Outstanding Debt f(=) Maturity, = 0 5 10 15 20 #10-3 -1 0 1 2 3 4 5 Issuances 4(=) Maturity, = 0 5 10 15 20 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 Maturity Distribution Maturity, = 0 5 10 15 20 0.7 0.75 0.8 0.85 0.9 0.95 1 A(=) vs. !v(=) A(=; ss) A(=; rss) !v(=; ss) !v(=; rss) !v(=; 0)
  • 45. AR(1) MIT shock to ¯r(t) - RSS vs. SS Shock 4% to 8% on impact, ρ = 6% Time, t 0 50 100 150 200 % 5.6 5.8 6 6.2 6.4 6.6 6.8 7 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.96 0.97 0.98 0.99 1 1.01 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 %yss -0.005 0 0.005 0.01 0.015 0.02 0.025 Issuances Rate, 4(t) Time, t 0 50 100 150 200 %yss -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Debt Outstanding, f(t) 0-5 (years) 5-10 10-15 T-5 to T
  • 46. Application 1: Lessons optimal risk management long-term debt, short-term assets
  • 47. Conclusion New approach to study maturity liquidity continuum of bonds of any class Can only analyze RSS Forces at play liquidity cost vs. consumption smoothing risk-aversion vs. incentives Next: default Future: recent developments to study aggregate shocks
  • 48. Steady State - Comp Stats Higher differentials ρ − ¯r amplifies issuances, for higher maturity Lower λ scales ι(τ) and f (τ) Role of T dilutes adjustment cost
  • 49. Dual Given {c(t)}t≥0, then planner’s discount: r(t) = ρ + σ ˙c(t) c(t) Dual Problem D [f (·, 0)] = min {ι(τ,t)}t=τ∈[0,∞),τ∈[0,T] ∞ 0 e− t 0 r(s)ds ytdt s.t. ∂f ∂t = ι (τ, t) + ∂f ∂τ , f (T, t) = 0; f (τ, 0) = f0(τ) y (t) = c (t) + f (0, t) − T 0 [q (τ, t, ι) ι (τ, t) − δf (τ, t)] dτ back
  • 50. Dual (button) Given {c(t)}t≥0, then planner’s discount: r(t) = ρ − σ ˙c(t) c(t) Dual: D [f (·, 0)] = min {ι(τ,t)}t=τ∈[0,∞),τ∈[0,T] ∞ 0 e− t 0 r(s)ds (f (0, t)− T 0 (ψ(τ, t) − λ ∂f ∂t = ι (τ, t) + ∂f ∂τ , f (τ, 0) = f0(τ) back
  • 51. Two Definitions (button) Yield curve Ψ(τ, t): Implicit constant rate Ψ(τ, t) that solves: ψ(τ, t) = e−Ψ(τ,t)τ + δ τ 0 e−Ψ(τ,t)s ds Portfolio Weights (maturity distribution): (τ,t) ≡ f (τ, t) T 0 f (s, t)ds
  • 52. Two Definitions (button) Yield curve Ψ(τ, t): Implicit constant rate Ψ(τ, t) that solves: ψ(τ, t) = e−Ψ(τ,t)τ + δ τ 0 e−Ψ(τ,t)s ds Portfolio Weights (maturity distribution): (τ,t) ≡ f (τ, t) T 0 f (s, t)ds
  • 53. Appendix - Debt Evolution From Discrete time f (τ, t + dt) τ−debt tomorrow = ι(τ, t)dt new inflow + f (τ + dt, t) becoming τ−debt Note that dt = −dτ: f (τ, t + dt) − f (τ, t) dt = ι(τ, t) + f (τ + dt, t) − f (τ, t) dt = ι(τ, t) + f (τ − dτ, t) − f (τ, t) (−dτ) Take limit dt → 0 ∂f (τ, t) ∂t = ι (τ, t) + ∂f (τ, t) ∂τ Back
  • 54. Appendix - Debt Evolution From Discrete time f (τ, t + dt) τ−debt tomorrow = ι(τ, t)dt new inflow + f (τ + dt, t) becoming τ−debt Note that dt = −dτ: f (τ, t + dt) − f (τ, t) dt = ι(τ, t) + f (τ + dt, t) − f (τ, t) dt = ι(τ, t) + f (τ − dτ, t) − f (τ, t) (−dτ) Take limit dt → 0 ∂f (τ, t) ∂t = ι (τ, t) + ∂f (τ, t) ∂τ Back
  • 55. Appendix - Debt Evolution From Discrete time f (τ, t + dt) τ−debt tomorrow = ι(τ, t)dt new inflow + f (τ + dt, t) becoming τ−debt Note that dt = −dτ: f (τ, t + dt) − f (τ, t) dt = ι(τ, t) + f (τ + dt, t) − f (τ, t) dt = ι(τ, t) + f (τ − dτ, t) − f (τ, t) (−dτ) Take limit dt → 0 ∂f (τ, t) ∂t = ι (τ, t) + ∂f (τ, t) ∂τ Back
  • 56. Appendix - Debt Evolution From Discrete time f (τ, t + dt) τ−debt tomorrow = ι(τ, t)dt new inflow + f (τ + dt, t) becoming τ−debt Note that dt = −dτ: f (τ, t + dt) − f (τ, t) dt = ι(τ, t) + f (τ + dt, t) − f (τ, t) dt = ι(τ, t) + f (τ − dτ, t) − f (τ, t) (−dτ) Take limit dt → 0 ∂f (τ, t) ∂t = ι (τ, t) + ∂f (τ, t) ∂τ Back
  • 57. Transitions from an arbitrary f (τ, 0) Transitional Dynamics from f (τ, 0)=0 Time, t 0 50 100 150 200 % 5.5 5.6 5.7 5.8 5.9 6 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.94 0.96 0.98 1 1.02 1.04 1.06 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 Issuances 0 0.005 0.01 0.015 0.02 0.025 0.03 Issuances Rate, 4(t) 0-5 year 5-10 years 10-15 years T-5 to T years Time, t 0 50 100 150 200 Deviationsfromsteadystate(in%) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Outstanding amounts, f(t) 0-5 year 5-10 years 10-15 years T-5 to T years λ smooths adjustment, bullwhip effect, expiration limits debt accumulation
  • 58. AR(1) MIT shock to y(t) - Risk Neutrality (button) 10% Output Shock Time, t 0 50 100 150 200 % 6 6.001 6.002 6.003 6.004 6.005 6.006 6.007 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.85 0.9 0.95 1 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 Outstandingamounts 0.005 0.01 0.015 0.02 0.025 0.03 Issuances Rate, 4(t) 0-5 year 5-10 years 10-15 years 15 6 years Time, t 0 50 100 150 200 Outstandingamounts 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Issuances Rate, 4(t) 0-5 year 5-10 years 10-15 years 15 6 years
  • 59. AR(1) MIT shock to y(t) - Less Persistence (button) Same but less persistence Maturity, = 0 5 10 15 20 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Outstanding Debt f(=) Maturity, = 0 5 10 15 20 #10-3 -1 0 1 2 3 4 5 6 Issuances 4(=) Maturity, = 0 5 10 15 20 #10-3 0 1 2 3 4 5 6 7 Maturity Distribution Maturity, = 0 5 10 15 20 0.75 0.8 0.85 0.9 0.95 1 1.05 A(=) vs. !v(=) A(=; ss) A(=; rss) !v(=; ss) !v(=; rss)
  • 60. Dynamic Hedging - A Combined Shock A ¯r(t) and y(t) shock combined Maturity, = 0 5 10 15 20 -0.04 -0.02 0 0.02 0.04 0.06 0.08 Outstanding Debt f(=) Maturity, = 0 5 10 15 20 #10-3 -2 -1 0 1 2 3 4 5 6 Issuances 4(=) Maturity, = 0 5 10 15 20 -0.01 -0.005 0 0.005 0.01 Maturity Distribution Maturity, = 0 5 10 15 20 0.75 0.8 0.85 0.9 0.95 1 A(=) vs. !v(=) A(=; ss) A(=; rss) !v(=; ss) !v(=; rss)
  • 61. Dynamic Hedging - A Combined Shock A ¯r(t) and y(t) shock combined Time, t 0 50 100 150 200 % 5.5 6 6.5 7 7.5 Time Discount r(t) (bps) Time, t 0 50 100 150 200 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 c(t) vs. y(t) c(t) y(t) Time, t 0 50 100 150 200 Outstandingamounts -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 Issuances Rate, 4(t) 0-5 year 5-10 years 10-15 years 15 6 years Time, t 0 50 100 150 200 Outstandingamounts -0.2 -0.1 0 0.1 0.2 0.3 0.4 Issuances Rate, 4(t) 0-5 year 5-10 years 10-15 years 15 6 years
  • 62. Transitional Dynamics - Fixed Point Algorithm in r(t) 1. Build: r(t) = ρ − σ ˙c(t) c(t) 2. Plug r(t) into value PDE: r(t)v (τ, t) = −δ + ∂v ∂t − ∂v ∂τ 3. Build issuances: ι (τ, t) = ψ(τ, t) + v(τ, t) ¯λ 4. Obtain f (t, τ): f (τ, t) = min{T,τ+t} τ ι(t + τ − s, s)ds + I[T > t + τ] · f (τ + t, 0) 5. c(t) given by cout (t) = y (t) − f (0, t) + T 0 [q (τ, t, ι) ι (τ, t) − δf (τ, t)] dτ
  • 63. Gateaux Derivative of V dV df = lim α→0 V (f + αh(τ,t)) − V (f ) α where h(τ,t)(˜τ,˜t) = Dirac function at (τ, t) Back