The document provides an overview and agenda for an introduction to running AI workloads on PowerAI. It discusses PowerAI and how it combines popular deep learning frameworks, development tools, and accelerated IBM Power servers. It then demonstrates AI workloads using TensorFlow and PyTorch, including running an MNIST workload to classify handwritten digits using basic linear regression and convolutional neural networks in TensorFlow, and an introduction to PyTorch concepts like tensors, modules, and softmax cross entropy loss.