SlideShare a Scribd company logo
Nickel-Metal Hydride Battery
Simplified SPICE Behavioral Model



        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   1
Contents
 1. Benefit of the Model
 2. Model Feature
 3. Concept of the Model
 4. Parameter Settings
 5. Ni-Mh Battery Specification (Example)
     5.1 Charge Time Characteristic
     5.2 Discharge Time Characteristic
     5.3 Vbat vs. SOC Characteristic
 6. Extend the number of Cell (Example)
     6.1 Charge Time Characteristic, NS=7
     6.2 Discharge Time Characteristic, NS=7
     Simulation Index


                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   2
1. Benefit of the Model

•   The model enables circuit designer to predict and optimize Ni-MH
    battery runtime and circuit performance.

•   The model can be easily adjusted to your own Ni-MH battery
    specifications by editing a few parameters that are provided in the
    datasheet.

•   The model is optimized to reduce the convergence error and the
    simulation time.




                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   3
2. Model Feature


•   This Ni-MH Battery Simplified SPICE Behavioral Model is for users who
    require the model of a Ni-MH Battery as a part of their system.
•   The model accounts for Battery Voltage(Vbat) vs. Battery Capacity Level (SOC)
    Characteristic, so it can perform battery charge and discharge time at
    various current rate conditions.
•   As a simplified model, the effects of cycle number and temperature are
    neglected.




                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   4
3. Concept of the Model


                     Ni-Mh battery                                             +
                     Simplified SPICE Behavioral Model
                     [Spec: C, NS]
                                                                                             Output
                                                                                          Characteristics
                     Adjustable SOC [ 0-1(100%) ]
                                                                                 -
• The model is characterized by parameters: C which represent the battery
  capacity and SOC which represent the battery initial capacity level.
• Open-circuit voltage (VOC) vs. SOC is included in the model as an analog
  behavioral model (ABM).
• NS (Number of Cells in series) is used when the Ni-mh cells are in series to
  increase battery voltage level.

                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                     5
4. Parameter Settings
                                                   Model Parameters:
                                                  C is the amp-hour battery capacity [Ah]
                                                  – e.g. C = 0.3, 1.4, or 2.8 [Ah]

                                                  NS is the number of cells in series
       +     -     N I-M H _ B A T T E R Y        – e.g. NS=1 for 1 cell battery, NS=2 for 2 cells battery
                   TS C A LE = 1                     (battery voltage is double from 1 cell)
           U 1     C = 1350M
                   SO C = 1                       SOC is the initial state of charge in percent
                   N S = 1                        – e.g. SOC=0 for a empty battery (0%), SOC=1 for a full
                                                    charged battery (100%)


    (Default values)                              TSCALE turns TSCALE seconds(in the real world) into a
                                                    second(in simulation)
                                                  – e.g. TSCALE=60 turns 60s or 1min (in the real world)
                                                    into a second(in simulation), TSCALE=3600 turns 3600s
                                                    or 1h into a second.


•      From the Ni-Mh Battery specification, the model is characterized by setting parameters
       C, NS, SOC and TSCALE.

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2011          6
5. Ni-Mh Battery Specification (Example)


                                                Nominal Voltage                            1.2V

                                                                           Typical         1350mAh
                                                Capacity
    +     -   N I-M H _ B A T T E R Y
              TSC A LE = 1                                                Minimum          1250mAh
        U 1   SO C = 1
              C = 1350M                         Charging Current × Time                    1350mA × about 1.1h
              N S = 1
                                                Discharge cut-off voltage                  1.0V
                      Battery capacity
                       Battery capacity
                     [Typ.] is input as aa
                      [Typ.] is input as
                      model parameter
                       model parameter




•   The battery information refer to a battery part number HF-A1U of SANYO.


                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                 7
5.1 Charge Time Characteristic
   Measurement                                                             Simulation
                                                              1. 8V


                                                              1. 7V


                                                              1. 6V


                                                              1. 5V

                                                                                                                  Charge: 1350mA
                                                              1. 4V


                                                              1. 3V


                                                              1. 2V


                                                              1. 1V


                                                              1. 0V
                                                                      0s       10s      20s   30s   40s     50s     60s    70s     80s
                                                                           V( HI )
                                                                                                                                   (min.)
                                                                                                    Ti me


   +     -   N I-M H _ B A T T E R Y
                                                                • Charging Current: 1350mA × about 1.1h
             TS C A LE = 60
       U 1   C = 1350M
             SO C = 0                SOC=0 means
                                      SOC=0 means
             N S = 1             battery start from 0%
                                  battery start from 0%
                                of capacity (empty)
                                 of capacity (empty)



                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                      8
5.1 Charge Time Characteristic
− Simulation Circuit and Setting


                  PARAMETERS:
                  ra te = 1
                  C Ah = 1350m


                                                                                                          H I
Charge Voltage
 Charge Voltage
                                                                                                    C 1
                                       OUT+
                       V in            OUT-                                                         10n
                       3V
                                                                                                0                         IB A TT
                                       IN+
                                       IN-




                              G 1
                              L im it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h )                                       0
                   0                                                                                            +     -       N I-M H _ B A T T E R Y
                                                                                                                              TSC ALE = 60
                   AAconstant current charger at
                      constant current charger at                                                                   U 1       C = 1350M
                       rate of capacity (e.g.                                                                                 SO C = 0
                        rate of capacity (e.g.                                                                                                       11minute into aa
                                                                                                                              N S = 1                   minute into
                           1×1350mA)
                            1×1350mA)                                                                                                        second (in simulation)
                                                                                                                                              second (in simulation)

*Analysis directives:
.TRAN 0 62 0 25m
.PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                                     9
5.2 Discharge Time Characteristic
•          Battery voltage vs. time are simulated at 0.2C, 1.0C, and 2.0C discharge rates.


                                                                                                                                    1. 6V

                           PARAMETERS:
                           ra te = 1
                           C Ah = 1350m                                                                                             1. 5V
                                                                 sense
                                                                                          H I

                                                                                                                                    1. 4V
                                                                                    C 1                        0
    IN+        OUT+                                                                 10n         +     -   N I-M H _ B A T T E R Y
                                                                                                          TS C A LE = 60
    IN-        OUT-                                                             0                   U 1   C = 1350M                 1. 3V
G 1                                                                                                       SO C = 1                                                         0.2C
G VALU E                                                                                                  N S = 1
lim it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h )
                                                                                                                                    1. 2V

                             0                                              TSCALE turns 11minute into aa
                                                                             TSCALE turns minute into                                                 1C
                                                                         second(in simulation), battery starts
                                                                          second(in simulation), battery starts                     1. 1V
                                                                             from 100% of capacity (fully
                                                                               from 100% of capacity (fully
                                                                                       charged)
                                                                                        charged)                                                 2C
                                                                                                                                    1. 0V



                                                                                                                                    0. 9V
*Analysis directives:                                                                                                                       0s     60s
                                                                                                                                                  V( HI )
                                                                                                                                                            120s   180s           240s   300s    360s
                                                                                                                                                                                                     (min.)
.TRAN 0 360 0 100m                                                                                                                                                 Ti me

.STEP PARAM rate LIST 0.2,1,2
.PROBE V(*) I(*) W(*) D(*) NOISE(*)
                                                                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                    10
5.3 Vbat vs. SOC Characteristic
   Measurement                                                                Simulation
                                                                    1.6
                                                                                                                0.2C (270mA)
                                                                    1.5                                         1.0C (1350mA)
                                                                                                                2.0C (2700mA)
                                                                    1.4

                                                                    1.3

                                                                    1.2

                                                                    1.1            270mA
                                                                                                 1350mA




                                                               C
                                                               V
                                                               g
                                                               a
                                                               o
                                                               e
                                                                    1.0                                    2700mA




                                                               ]
                                                               [
                                                               t
                                                               l
                                                                    0.9
                                                                          0       250      500       750       1000    1250        1500
                                                                                           Discharge Capacity [mAh]

                                                                              Simulation
                                                                    1.2
   + -    N I-M H _ B A T T E R Y
                                                                    1.0
          TS C A LE = 60
   U 1    C = 1350M                                                 0.8
          SO C = 1                                                  0.6
          N S = 1                                                   0.4
                                                                                                                      Mesurement
                                                                    0.2
                                                             C
                                                             A




 • Nominal Voltage: 1.2V
                                                             p
                                                             a
                                                             u
                                                             y
                                                             c




                                                                                                                      Simulation
                                                             t
                                                             i
                                                             l
                                                               %
                                                               C
                                                               R




                                                                    0.0
                                                               p
                                                               d
                                                               e
                                                               a
                                                               o
                                                               y
                                                               c
                                                               )
                                                               (
                                                               t
                                                               f
                                                               i




 • Capacity: 1350mAh                                                      0          1           2         3            4            5
 • Discharge cut-off voltage: 1.0V                                                 Discharge Rate (Multiples of C)

                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                        11
5.3 Vbat vs. SOC Characteristic
− Simulation Circuit and Setting


                                   PARAMETERS:
                                   ra te = 0 .2
                                   C Ah = 1350m
                                                                         sense
                                                                                            H I


                                                                                      C 1                        0
           IN+         OUT+                        AAconstant current
                                                      constant current                10n         +     -   N I-M H _ B A T T E R Y
                                                  discharger at rate of                                     TSC ALE = 60
           IN-         OUT-                        discharger at rate of          0                   U 1   C = 1350M
        G 1
                                               capacity (e.g. 1×1350mA)
                                                capacity (e.g. 1×1350mA)                                    SO C = 1
        G VALU E                                                                                            N S = 1
        lim it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h )                                                     11minute into aa
                                                                                                                              minute into
                                                                                                                        second (in simulation)
                                                                                                                         second (in simulation)

                                      0



*Analysis directives:
.TRAN 0 296.4 0 100m
.PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                  12
6. Extend the number of Cell (Example)

                                                                                                         Ni-MH needs 77
                                                                                                          Ni-MH needs
                                                                                                          cells to reach
                                                                                                           cells to reach
                                                                                                        this voltage level
                                                                                                         this voltage level
                                            Basic Specification
    +     -   N I-M H _ B A T T E R Y
              TS C A LE = 3600                            Voltage - Rated                       8.4V
        U 1   SO C = 1
              C = 1500M
                                                          Capacity                              1500mAh
              N S = 7
                 The number of
                   The number of                          Structure                             1 Row x 7 Cells Side to Side
                 cells in series is
                   cells in series is
                input as aamodel
                  input as model                          Number of Cells                       7
                    parameter
                      parameter



                                             Voltage − Rated     8.4
                          NS =                                 =
                                        Ni - MH Nominal Voltage 1.2
•       The battery information refer to a battery part number HHR-150AAB01F7
        of Panasonic.


                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                             13
6.1 Charge Time Characteristic, NS=7
                                                                                 The battery needs 5 hours to be fully charged
     12. 6V



     11. 9V



     11. 2V



     10. 5V

                                                     Voltage
      9. 8V



      9. 1V



      8. 4V



      7. 7V



      7. 0V
              0s             1s      2s         3s             4s     5s          6s         7s          8s          9s          10s
                   V( HI )                                                                                                         (hour)
                                                                     Ti me



•   Charging Current: 300mA (0.2 Charge)


                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                   14
6.1 Charge Time Characteristic, NS=7
− Simulation Circuit and Setting


                  PARAMETERS:
                  ra te = 0 .2
                  C Ah = 1500m


                                                                                                          H I
Charge Voltage
 Charge Voltage
                                                                                                    C 1
                                       OUT+
                       V in            OUT-                                                         10n
                       12V
                                                                                                0                         IB A TT
                                       IN+
                                       IN-




                              G 1
                              L im it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h )                                       0
                   0                                                                                            +     -       N I-M H _ B A T T E R Y
                                                                                                                              TSC ALE = 3600
                                                                                                                    U 1       C = 1500M
                                                                                                                              SO C = 0
                                                                                                                              N S = 7
                                                                                                                                              11hour into aasecond
                                                                                                                                                 hour into second
                                                                                                                                                 (in simulation)
                                                                                                                                                   (in simulation)
*Analysis directives:
.TRAN 0 5.2 0 2.5m
.PROBE V(*) I(*) W(*) D(*) NOISE(*)

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                             15
6.2 Discharge Time Characteristic, NS=7
     11. 2V




     10. 5V




      9. 8V




      9. 1V


                                                                                                0.2C
      8. 4V
                                                 0.5C

      7. 7V                    1C


      7. 0V




      6. 3V
              0s             1. 0s             2. 0s              3. 0s              4. 0s             5. 0s   6. 0s
                   V( HI )                                                                                         (hour)
                                                                  Ti me



• Voltage - Rated: 8.4V
• Discharging Current: 300mA(0.2C), 750mA(0.5C), 1500mA(1.0C)

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                         16
6.2 Discharge Time Characteristic, NS=7
− Simulation Circuit and Setting
   Parametric sweep
     Parametric sweep
 “rate” for multiple rate
  “rate” for multiple rate
  discharge simulation
   discharge simulation
                                     PARAMETERS:
                                     ra te = 1
                                     C Ah = 1500m
                                                                           sense
                                                                                               H I


                                                                                         C 1                       0
             IN+         OUT+                                                            10n         +     -   N I-M H _ B A T T E R Y
                                                                                                               TSC A LE = 3600
             IN-         OUT-                                                        0                   U 1   C = 1500M
          G 1                                                                                                  SO C = 1
          G VALU E                                                                                             N S = 7
          lim it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h )                                                    11hour into aasecond
                                                                                                                                 hour into second
                                                                                                                                 (in simulation)
                                                                                                                                   (in simulation)

                                       0


*Analysis directives:
.TRAN 0 6 0 2.5m
.STEP PARAM rate LIST 0.2,0.5,1
.PROBE V(*) I(*) W(*) D(*) NOISE(*)
                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                 17
Simulation Index

Simulations                                                                         Folder name
1. Charge Time Characteristic.................................                      Charge_Time
2. Discharge Time Characteristic.............................                       Discharge_Time
3. Vbat vs. SOC Characteristic..................................                    Discharge_SOC
4. Charge Time Characteristic, NS=7....................... Charge_Time(NS)
5. Discharge Time Characteristic, NS=7................... Discharge_Time(NS)




                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2011           18

More Related Content

What's hot

Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
Tsuyoshi Horigome
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
Tsuyoshi Horigome
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspice
Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
Tsuyoshi Horigome
 
LTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーションLTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーション
Tsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)
Tsuyoshi Horigome
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model)
Tsuyoshi Horigome
 
Simple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpiceSimple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpice
Tsuyoshi Horigome
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
Tsuyoshi Horigome
 
DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)
spicepark
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)
Tsuyoshi Horigome
 
Lead-Acid Battery Simplified Simulink Model using MATLAB
Lead-Acid Battery Simplified Simulink Model using MATLAB Lead-Acid Battery Simplified Simulink Model using MATLAB
Lead-Acid Battery Simplified Simulink Model using MATLAB
Tsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)
Tsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Tsuyoshi Horigome
 

What's hot (16)

Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspice
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
 
LTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーションLTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーション
 
リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model)
 
Simple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpiceSimple Model of DC Motor using PSpice
Simple Model of DC Motor using PSpice
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
 
DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)
 
Lead-Acid Battery Simplified Simulink Model using MATLAB
Lead-Acid Battery Simplified Simulink Model using MATLAB Lead-Acid Battery Simplified Simulink Model using MATLAB
Lead-Acid Battery Simplified Simulink Model using MATLAB
 
ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 

Viewers also liked

Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
Tsuyoshi Horigome
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspice
spicepark
 
Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)
Tsuyoshi Horigome
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)
Tsuyoshi Horigome
 
Simple model of Fuse(LTspice)
Simple model of Fuse(LTspice) Simple model of Fuse(LTspice)
Simple model of Fuse(LTspice)
Tsuyoshi Horigome
 
Simple model of Fuse(PSpice)
Simple model of Fuse(PSpice)Simple model of Fuse(PSpice)
Simple model of Fuse(PSpice)
Tsuyoshi Horigome
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
spicepark
 
Simple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspiceSimple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspice
spicepark
 
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)
Tsuyoshi Horigome
 
Simple Model of Lithium-Ion Battery (LTspice)
Simple Model of Lithium-Ion Battery (LTspice)Simple Model of Lithium-Ion Battery (LTspice)
Simple Model of Lithium-Ion Battery (LTspice)
マルツエレック株式会社 marutsuelec
 
Symbol of Lithium Ion Battery (LTspice)
Symbol of Lithium Ion Battery (LTspice) Symbol of Lithium Ion Battery (LTspice)
Symbol of Lithium Ion Battery (LTspice)
Tsuyoshi Horigome
 

Viewers also liked (11)

Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspice
 
Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)
 
Simple model of Fuse(LTspice)
Simple model of Fuse(LTspice) Simple model of Fuse(LTspice)
Simple model of Fuse(LTspice)
 
Simple model of Fuse(PSpice)
Simple model of Fuse(PSpice)Simple model of Fuse(PSpice)
Simple model of Fuse(PSpice)
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
Simple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspiceSimple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspice
 
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)
 
Simple Model of Lithium-Ion Battery (LTspice)
Simple Model of Lithium-Ion Battery (LTspice)Simple Model of Lithium-Ion Battery (LTspice)
Simple Model of Lithium-Ion Battery (LTspice)
 
Symbol of Lithium Ion Battery (LTspice)
Symbol of Lithium Ion Battery (LTspice) Symbol of Lithium Ion Battery (LTspice)
Symbol of Lithium Ion Battery (LTspice)
 

Similar to Simple Model of Ni-MH Battery Model using PSpice

4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル
Tsuyoshi Horigome
 
Li-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionLi-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice Version
Tsuyoshi Horigome
 
3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル
Tsuyoshi Horigome
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Tsuyoshi Horigome
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)
spicepark
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
spicepark
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)
spicepark
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
Tsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Tsuyoshi Horigome
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナー
spicepark
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
Tsuyoshi Horigome
 
Ee2259 lab-manual
Ee2259 lab-manualEe2259 lab-manual
Ee2259 lab-manual
Gopinath.B.L Naidu
 
ee2259-lab-manual
 ee2259-lab-manual ee2259-lab-manual
ee2259-lab-manual
surya721327
 
デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書
Tsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Tsuyoshi Horigome
 
Li-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice VersionLi-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice Version
Tsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Tsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
Tsuyoshi Horigome
 

Similar to Simple Model of Ni-MH Battery Model using PSpice (20)

4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル
 
Li-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionLi-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice Version
 
3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナー
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
Ee2259 lab-manual
Ee2259 lab-manualEe2259 lab-manual
Ee2259 lab-manual
 
ee2259-lab-manual
 ee2259-lab-manual ee2259-lab-manual
ee2259-lab-manual
 
デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書
 
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
 
Li-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice VersionLi-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice Version
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 

More from spicepark

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
spicepark
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
spicepark
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
spicepark
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
spicepark
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
spicepark
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービスspicepark
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
spicepark
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料spicepark
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
spicepark
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
spicepark
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
spicepark
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
spicepark
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
spicepark
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
spicepark
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
spicepark
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
spicepark
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
spicepark
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
spicepark
 

More from spicepark (20)

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービス
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
 

Recently uploaded

Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
Nunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdf
Nunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdfNunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdf
Nunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdf
flufftailshop
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
UI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentationUI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentation
Wouter Lemaire
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Tatiana Kojar
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
kumardaparthi1024
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
Operating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptxOperating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptx
Pravash Chandra Das
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
Tomaz Bratanic
 
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Jeffrey Haguewood
 
Serial Arm Control in Real Time Presentation
Serial Arm Control in Real Time PresentationSerial Arm Control in Real Time Presentation
Serial Arm Control in Real Time Presentation
tolgahangng
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
Tatiana Kojar
 
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
alexjohnson7307
 
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptxOcean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
SitimaJohn
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
innovationoecd
 
Recommendation System using RAG Architecture
Recommendation System using RAG ArchitectureRecommendation System using RAG Architecture
Recommendation System using RAG Architecture
fredae14
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Jeffrey Haguewood
 

Recently uploaded (20)

Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
Nunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdf
Nunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdfNunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdf
Nunit vs XUnit vs MSTest Differences Between These Unit Testing Frameworks.pdf
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
UI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentationUI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentation
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
Operating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptxOperating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptx
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
 
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
 
Serial Arm Control in Real Time Presentation
Serial Arm Control in Real Time PresentationSerial Arm Control in Real Time Presentation
Serial Arm Control in Real Time Presentation
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
 
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
 
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptxOcean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
 
Recommendation System using RAG Architecture
Recommendation System using RAG ArchitectureRecommendation System using RAG Architecture
Recommendation System using RAG Architecture
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
 

Simple Model of Ni-MH Battery Model using PSpice

  • 1. Nickel-Metal Hydride Battery Simplified SPICE Behavioral Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1
  • 2. Contents 1. Benefit of the Model 2. Model Feature 3. Concept of the Model 4. Parameter Settings 5. Ni-Mh Battery Specification (Example) 5.1 Charge Time Characteristic 5.2 Discharge Time Characteristic 5.3 Vbat vs. SOC Characteristic 6. Extend the number of Cell (Example) 6.1 Charge Time Characteristic, NS=7 6.2 Discharge Time Characteristic, NS=7 Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2
  • 3. 1. Benefit of the Model • The model enables circuit designer to predict and optimize Ni-MH battery runtime and circuit performance. • The model can be easily adjusted to your own Ni-MH battery specifications by editing a few parameters that are provided in the datasheet. • The model is optimized to reduce the convergence error and the simulation time. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3
  • 4. 2. Model Feature • This Ni-MH Battery Simplified SPICE Behavioral Model is for users who require the model of a Ni-MH Battery as a part of their system. • The model accounts for Battery Voltage(Vbat) vs. Battery Capacity Level (SOC) Characteristic, so it can perform battery charge and discharge time at various current rate conditions. • As a simplified model, the effects of cycle number and temperature are neglected. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4
  • 5. 3. Concept of the Model Ni-Mh battery + Simplified SPICE Behavioral Model [Spec: C, NS] Output Characteristics Adjustable SOC [ 0-1(100%) ] - • The model is characterized by parameters: C which represent the battery capacity and SOC which represent the battery initial capacity level. • Open-circuit voltage (VOC) vs. SOC is included in the model as an analog behavioral model (ABM). • NS (Number of Cells in series) is used when the Ni-mh cells are in series to increase battery voltage level. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5
  • 6. 4. Parameter Settings Model Parameters: C is the amp-hour battery capacity [Ah] – e.g. C = 0.3, 1.4, or 2.8 [Ah] NS is the number of cells in series + - N I-M H _ B A T T E R Y – e.g. NS=1 for 1 cell battery, NS=2 for 2 cells battery TS C A LE = 1 (battery voltage is double from 1 cell) U 1 C = 1350M SO C = 1 SOC is the initial state of charge in percent N S = 1 – e.g. SOC=0 for a empty battery (0%), SOC=1 for a full charged battery (100%) (Default values) TSCALE turns TSCALE seconds(in the real world) into a second(in simulation) – e.g. TSCALE=60 turns 60s or 1min (in the real world) into a second(in simulation), TSCALE=3600 turns 3600s or 1h into a second. • From the Ni-Mh Battery specification, the model is characterized by setting parameters C, NS, SOC and TSCALE. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6
  • 7. 5. Ni-Mh Battery Specification (Example) Nominal Voltage 1.2V Typical 1350mAh Capacity + - N I-M H _ B A T T E R Y TSC A LE = 1 Minimum 1250mAh U 1 SO C = 1 C = 1350M Charging Current × Time 1350mA × about 1.1h N S = 1 Discharge cut-off voltage 1.0V Battery capacity Battery capacity [Typ.] is input as aa [Typ.] is input as model parameter model parameter • The battery information refer to a battery part number HF-A1U of SANYO. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7
  • 8. 5.1 Charge Time Characteristic Measurement Simulation 1. 8V 1. 7V 1. 6V 1. 5V Charge: 1350mA 1. 4V 1. 3V 1. 2V 1. 1V 1. 0V 0s 10s 20s 30s 40s 50s 60s 70s 80s V( HI ) (min.) Ti me + - N I-M H _ B A T T E R Y • Charging Current: 1350mA × about 1.1h TS C A LE = 60 U 1 C = 1350M SO C = 0 SOC=0 means SOC=0 means N S = 1 battery start from 0% battery start from 0% of capacity (empty) of capacity (empty) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8
  • 9. 5.1 Charge Time Characteristic − Simulation Circuit and Setting PARAMETERS: ra te = 1 C Ah = 1350m H I Charge Voltage Charge Voltage C 1 OUT+ V in OUT- 10n 3V 0 IB A TT IN+ IN- G 1 L im it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h ) 0 0 + - N I-M H _ B A T T E R Y TSC ALE = 60 AAconstant current charger at constant current charger at U 1 C = 1350M rate of capacity (e.g. SO C = 0 rate of capacity (e.g. 11minute into aa N S = 1 minute into 1×1350mA) 1×1350mA) second (in simulation) second (in simulation) *Analysis directives: .TRAN 0 62 0 25m .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9
  • 10. 5.2 Discharge Time Characteristic • Battery voltage vs. time are simulated at 0.2C, 1.0C, and 2.0C discharge rates. 1. 6V PARAMETERS: ra te = 1 C Ah = 1350m 1. 5V sense H I 1. 4V C 1 0 IN+ OUT+ 10n + - N I-M H _ B A T T E R Y TS C A LE = 60 IN- OUT- 0 U 1 C = 1350M 1. 3V G 1 SO C = 1 0.2C G VALU E N S = 1 lim it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h ) 1. 2V 0 TSCALE turns 11minute into aa TSCALE turns minute into 1C second(in simulation), battery starts second(in simulation), battery starts 1. 1V from 100% of capacity (fully from 100% of capacity (fully charged) charged) 2C 1. 0V 0. 9V *Analysis directives: 0s 60s V( HI ) 120s 180s 240s 300s 360s (min.) .TRAN 0 360 0 100m Ti me .STEP PARAM rate LIST 0.2,1,2 .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10
  • 11. 5.3 Vbat vs. SOC Characteristic Measurement Simulation 1.6 0.2C (270mA) 1.5 1.0C (1350mA) 2.0C (2700mA) 1.4 1.3 1.2 1.1 270mA 1350mA C V g a o e 1.0 2700mA ] [ t l 0.9 0 250 500 750 1000 1250 1500 Discharge Capacity [mAh] Simulation 1.2 + - N I-M H _ B A T T E R Y 1.0 TS C A LE = 60 U 1 C = 1350M 0.8 SO C = 1 0.6 N S = 1 0.4 Mesurement 0.2 C A • Nominal Voltage: 1.2V p a u y c Simulation t i l % C R 0.0 p d e a o y c ) ( t f i • Capacity: 1350mAh 0 1 2 3 4 5 • Discharge cut-off voltage: 1.0V Discharge Rate (Multiples of C) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11
  • 12. 5.3 Vbat vs. SOC Characteristic − Simulation Circuit and Setting PARAMETERS: ra te = 0 .2 C Ah = 1350m sense H I C 1 0 IN+ OUT+ AAconstant current constant current 10n + - N I-M H _ B A T T E R Y discharger at rate of TSC ALE = 60 IN- OUT- discharger at rate of 0 U 1 C = 1350M G 1 capacity (e.g. 1×1350mA) capacity (e.g. 1×1350mA) SO C = 1 G VALU E N S = 1 lim it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h ) 11minute into aa minute into second (in simulation) second (in simulation) 0 *Analysis directives: .TRAN 0 296.4 0 100m .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12
  • 13. 6. Extend the number of Cell (Example) Ni-MH needs 77 Ni-MH needs cells to reach cells to reach this voltage level this voltage level Basic Specification + - N I-M H _ B A T T E R Y TS C A LE = 3600 Voltage - Rated 8.4V U 1 SO C = 1 C = 1500M Capacity 1500mAh N S = 7 The number of The number of Structure 1 Row x 7 Cells Side to Side cells in series is cells in series is input as aamodel input as model Number of Cells 7 parameter parameter Voltage − Rated 8.4 NS = = Ni - MH Nominal Voltage 1.2 • The battery information refer to a battery part number HHR-150AAB01F7 of Panasonic. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 13
  • 14. 6.1 Charge Time Characteristic, NS=7 The battery needs 5 hours to be fully charged 12. 6V 11. 9V 11. 2V 10. 5V Voltage 9. 8V 9. 1V 8. 4V 7. 7V 7. 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V( HI ) (hour) Ti me • Charging Current: 300mA (0.2 Charge) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 14
  • 15. 6.1 Charge Time Characteristic, NS=7 − Simulation Circuit and Setting PARAMETERS: ra te = 0 .2 C Ah = 1500m H I Charge Voltage Charge Voltage C 1 OUT+ V in OUT- 10n 12V 0 IB A TT IN+ IN- G 1 L im it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h ) 0 0 + - N I-M H _ B A T T E R Y TSC ALE = 3600 U 1 C = 1500M SO C = 0 N S = 7 11hour into aasecond hour into second (in simulation) (in simulation) *Analysis directives: .TRAN 0 5.2 0 2.5m .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 15
  • 16. 6.2 Discharge Time Characteristic, NS=7 11. 2V 10. 5V 9. 8V 9. 1V 0.2C 8. 4V 0.5C 7. 7V 1C 7. 0V 6. 3V 0s 1. 0s 2. 0s 3. 0s 4. 0s 5. 0s 6. 0s V( HI ) (hour) Ti me • Voltage - Rated: 8.4V • Discharging Current: 300mA(0.2C), 750mA(0.5C), 1500mA(1.0C) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 16
  • 17. 6.2 Discharge Time Characteristic, NS=7 − Simulation Circuit and Setting Parametric sweep Parametric sweep “rate” for multiple rate “rate” for multiple rate discharge simulation discharge simulation PARAMETERS: ra te = 1 C Ah = 1500m sense H I C 1 0 IN+ OUT+ 10n + - N I-M H _ B A T T E R Y TSC A LE = 3600 IN- OUT- 0 U 1 C = 1500M G 1 SO C = 1 G VALU E N S = 7 lim it ( V ( % I N + , % I N - ) / 1 m , 0 , r a t e * C A h ) 11hour into aasecond hour into second (in simulation) (in simulation) 0 *Analysis directives: .TRAN 0 6 0 2.5m .STEP PARAM rate LIST 0.2,0.5,1 .PROBE V(*) I(*) W(*) D(*) NOISE(*) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 17
  • 18. Simulation Index Simulations Folder name 1. Charge Time Characteristic................................. Charge_Time 2. Discharge Time Characteristic............................. Discharge_Time 3. Vbat vs. SOC Characteristic.................................. Discharge_SOC 4. Charge Time Characteristic, NS=7....................... Charge_Time(NS) 5. Discharge Time Characteristic, NS=7................... Discharge_Time(NS) All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 18