SlideShare a Scribd company logo
1 of 19
Download to read offline
PSpice Model




 D.C. Motor
 Simplified SPICE Model



               All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   1
Contents
 1. Benefit of the Model
 2. Model Feature
 3. Parameter Settings
 4. D.C. Motor Specification (Example)
 5. Motor Start Up Simulation at Normal Load
 6. Motor Start Up Simulation at Half of Normal Load
 7. Lj of the Motor Model (1/2)
 8. Application Example
 9. Winding Characteristic Parameters: Lm
 10.Winding Characteristic Parameters: Rm

 Simulation Index



                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   2
1. Benefit of the Model

• The model enables circuit designer to use D.C. Motor as load in
  their design which include: Back EMF, Torque(Nm) and Speed
  (rpm) characteristics.

• The model can be easily adjusted to your own D.C. Motor
  specifications by editing a few parameters that are provided in the
  spec-sheet.




                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   3
2. Model Feature

               1                    H1
                                             TRQ
                                         +
                                         -         1
                                    H
                             RM                         L1
                             {Rm}                       100m
                                             0

                             LM
                                                   2                    E_EMF
                             {Lm}
                                                   N4                                  EMF
                                                                        IN+     OUT+
                                                       OUT+ IN+         IN-     OUT-
                             H2                                                              Rdmy
                                                       OUT- IN-         EVALUE
                         +
                         -                             GRB
               2              H                        GVALUE
                                                   0                   0


                   Concept of Equivalent circuit of the D.C. Motor model


•   This D.C. Motor Simplified SPICE Model is for users who require the model
    of D.C. Motor as a part of their system.
•   Perform electrical (voltage and current) and mechanical (speed and torque)
    characteristics at current load (Ampere) conditions.


                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012             4
3. Parameter Settings
                                                         Model Parameters:

                                                           If there is no measurement data, the default value will be
                                                           used:
                  U1                                                 Rm: motor winding resistance []
                  SMPL_DC_MOTOR                                      Lm: motor winding inductance [H]
                  Rm = 0.1
            +     Lm = 100u
            -     V_norm = 7.2
                  mNm = 19.6                               Data is given by D.C. motor spec-sheet:
                  kRPM_norm = 14.4
                  I_norm = 6.1                                       V_norm: normal voltage [V]
                                                                     mNm: normal load [mNm]
                  IL = 6.1                                           kRPM_norm: speed at normal load [kr/min]
                                                                     I_norm: current at normal load [A]
D.C. Motor model and Parameters with Default Value


                                                           Load Condition:

                                                                     IL: load current [A]


                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                5
4. D.C. Motor Specification (Example)



      U1
      SMPL_DC_MOTOR
      Rm = 0.1
  +   Lm = 100u
  -   V_norm = 7.2
      mNm = 19.6
      kRPM_norm = 14.4
      I_norm = 6.1

      IL = 6.1   D.C. Motor Specification
                  Parameters are input




                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   6
5. Motor Start Up Simulation at Normal Load (1/3)
Simulation Circuit and Setting
    PARAMETERS:                    Input the Supply No
    VOUT = 10.25                    Load Voltage* and
                                    Series Resistance
    Rs = 0.5                                                       VIM
                                                                                                      Simplified D.C. Motor with
                                                                                       VM                RS-540SH Spec.

                           RS
                           {Rs}                                Current Sensing
                                                                                                      U1
              V1                                                                                      SMPL_DC_MOTOR
              T2 = 0.01m                                                                              Rm = 0.1
              V2 = {VOUT}                                                                     +       Lm = 100u
                                                                                              -       V_norm = 7.2
                                                                                                      mNm = 19.6
                                                                                                      kRPM_norm = 14.4
                                                                                                      I_norm = 6.1

                                                                                                      IL = 6.1
                                                    0                                          0
*No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V).      Load Condition IL=I_norm
*Analysis directives:
.TRAN 0 400m 0 0.1m
.PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                7
5. Motor Start Up Simulation at Normal Load (2/3)




                                                                       Select “All” for the
                                                                     Voltages and Currents
                                                                    Data Collection Options.




              All Rights Reserved Copyright (C) Bee Technologies Corporation 2012              8
5. Motor Start Up Simulation at Normal Load (3/3)
 80V


 40V
                                                                                                   Torque Load= 19.6mNm
  0V
            V(X_U1.TRQ)
 20A
                                                                                            D.C. Motor Speed = 14.4krpm
 10A


  0A
            I(X_U1.V_kRPM)
 10V
                                                                                                D.C. Motor Voltage = 7.2V
  5V

SEL>>
   0V
            V(VM)
 20A


 10A                                                                                             D.C. Motor Current = 6.1A

  0A
       0s            40ms    80ms      120ms        160ms        200ms        240ms        280ms      320ms    360ms   400ms
            I(VIM)
                                                                  Time




                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                          9
6. Motor Start Up Simulation at Half of Normal Load (1/2)

Simulation Circuit and Setting
     PARAMETERS:                    Input the Supply No
     VOUT = 10.25                    Load Voltage* and
                                     Series Resistance
     Rs = 0.5                                                       VIM
                                                                                                       Simplified D.C. Motor with
                                                                                        VM                RS-540SH Spec.

                            RS
                            {Rs}                                Current Sensing
                                                                                                       U1
               V1                                                                                      SMPL_DC_MOTOR
               T2 = 0.01m                                                                              Rm = 0.1
               V2 = {VOUT}                                                                     +       Lm = 100u
                                                                                               -       V_norm = 7.2
                                                                                                       mNm = 19.6
                                                                                                       kRPM_norm = 14.4
                                                                                                       I_norm = 6.1

                                                                                                       IL = 3.05
                                                     0                                          0
 *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V).      Load Condition IL=I_norm
*Analysis directives:
.TRAN 0 400m 0 0.1m
.PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))

                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                10
6. Motor Start Up Simulation at Half of Normal Load (2/2)

 80V


 40V

                                                                                                      Torque Load= 9.8mNm
  0V
            V(X_U1.TRQ)
 20A

                                                                                          D.C. Motor Speed = 18.4krpm
 10A

SEL>>
   0A
            I(X_U1.V_kRPM)
 10V

                                                                                            D.C. Motor Voltage = 8.725V
  5V


  0V
            V(VM)
 20A


 10A
                                                                                              D.C. Motor Current = 3.05A
  0A
       0s            40ms    80ms      120ms        160ms        200ms        240ms        280ms         320ms   360ms   400ms
            I(VIM)
                                                                  Time




                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                          11
7. Lj of the Motor Model (1/2)
 Simulation Circuit and Setting
PARAMETERS:         Global parameter
VOUT = 10.25         Lj is assigned
Rs = 0.5                                                                     Double click to edit
Lj = 100m
                                       VIM                                   properties of the DC
                                                 VM                             Motor model
               RS
               {Rs}                                       U1
      V1                                                  SMPL_DC_MOTOR
      T2 = 0.01m                                          Rm = 0.1
      V2 = {VOUT}                                     +   Lm = 100u
                                                      -   V_norm = 7.2
                                                          mNm = 19.6
                                                          kRPM_norm = 14.4
                                                          I_norm = 6.1

 *Analysis directives:                                    IL = 6.1                           Input the Lj value or input
                       0                              0
 .TRAN 0 400m 0 0.1m                                                                        “{Lj}” for parametric sweep
 .STEP PARAM Lj LIST 100m, 200m




                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                12
7. Lj of the Motor Model (2/2)
                                                                                               The Motor Start-up Waveform is
 80V                                                                                             changed by the Lj values.
               Lj=200m
 40V
                                                                                                              Torque Load= 19.6mNm
           Lj=100m
   0V
             V(X_U1.TRQ)
 20A
             Lj=100m
                                                                                                              D.C. Motor Speed = 14.4krpm
 10A



   0A
                       Lj=200m
             I(X_U1.V_kRPM)
 10V
           Lj=100m                                                                                            D.C. Motor Voltage = 7.2V
   5V


                     Lj=200m
   0V
             V(VM)
 20A
                                 Lj=200m
 10A                                                                                                          D.C. Motor Current = 6.1A
SEL>>       Lj=100m
   0A
      0s              40ms       80ms          120ms         160ms        200ms        240ms        280ms          320ms      360ms       400ms
             I(VIM)
                                                                          Time




                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                13
8. Application Example (1/3)
Simulation Circuit and Setting

            VDD             VCC                                                                     VCC
                                                                                                           Simplified D.C. Motor with
                                                                                                          RS-380PH Spec at No load.
                     Vdd          Vcc
                     15V          15V
                                                                                                          U2
                                                                                                          SMPL_DC_MOTOR
                                                                                                          Rm = 0.576
                0             0                                                           D2          +   Lm = 165u
                                                                                          D4001       -   V_norm = 7.2
                                                                                                          mNm = 9.8
                                                                                                          kRPM_norm = 14.2
                                                                                                          I_norm = 2.9
                                             U1
                                                                                                          IL = 0.6
                       R1               NC                   VCC VDD
                       1u
                                         A                   NC                    RG                                No load IL=0.6
                                                                                   120                        D3
   V1 = 0       V1                      K                    VO                                               DGT10J321_s
   V2 = 1.8                                                                                     U3
   TD = 0                               NC                   GND                          GT10J321
   TR = 10n
   TF = 10n
   PW = 199.99u                              TLP350
   PER = 400u

                0                  0                               0                                  0




                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                               14
8. Application Example (2/3)


 Measurement                                             Simulation
                                        14A        20V
                                    1         2

                                        12A        10V


                                        10A         0V
                                                                                     Motor Voltage (10V/Div)
                                         8A       -10V


                                         6A       -20V
                                                                                      Motor Current (2A/Div)
                                         4A       -30V


                                         2A       -40V


                                         0A       -50V

                                                    >>
                                        -2A       -60V
                                                    -100ms 0s 100ms       300ms      500ms     700ms    900ms
                                                       1    I(U2:1) 2     V(U2:1,U2:2)
                                                                                Time




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                              15
8. Application Example (3/3)


 Measurement                                          Simulation
                              14A        50V        20V
                          1         2          3

                              12A        40V        10V


                              10A        30V         0V

  IGBT: VGE                                               IGBT: VGE (10V/Div)
                               8A        20V       -10V


                               6A        10V       -20V


                               4A         0V       -30V
  IGBT: VCE                                               IGBT: VCE (10V/Div)
                               2A       -10V       -40V


                               0A       -20V       -50V
  IGBT: IC                     >>                          IGBT: IC (2A/Div)
                              -2A       -30V       -60V
                                                    898.0ms   898.4ms      898.8ms    899.2ms    899.6ms
                                                        1   I(U3:C) 2        V(U3:C) 3      V(U3:G)
                                                                                  Time




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                         16
9. Winding Characteristic Parameters: Lm

                      Winding Characteristic:2 Lm
                                    1
                                      14A       50V
                                                               3
                                                                    20V
      U2
      SMPL_DC_MOTOR
                                               12A      40V         10V
      Rm = 0.576
  +   Lm = 165u
  -   V_norm = 7.2    Motor Spec.
                                               10A      30V          0V
      mNm = 9.8
      kRPM_norm = 14.2                                                         Lm=100u
                                                8A      20V        -10V
      I_norm = 2.9
                                                                                            Lm=165u
      IL = 0.6                                  6A      10V        -20V
                      Load Condition

                                                4A       0V        -30V


                                                                            Lm=100u
   The Motor Current Waveform is                2A     -10V        -40V

     changed by the Lm values.                                                          Lm=165u
                                                0A     -20V        -50V


                                                                   >>
                                               -2A     -30V      -60V
                                                                  898.0ms 898.4ms       898.8ms 899.2ms   899.6ms
                                           1         I(U3:C)   2      V(U3:C) 3           V(U3:G)
                                                                                              Time




                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                           17
10. Winding Characteristic Parameters: Rm

                       Winding Characteristic: Rm
      U2
      SMPL_DC_MOTOR
      Rm = 0.576
  +   Lm = 165u
  -   V_norm = 7.2    Motor Spec.                                                Rm=0.1
      mNm = 9.8
      kRPM_norm = 14.2
      I_norm = 2.9

      IL = 0.6
                        Load Condition
                                                                                  Rm=0.576




                 The Motor Start-up is Current
                  changed by the Rm values.




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   18
Simulation Index

Simulations                                                                                    Folder name

1. Motor Start Up Simulation at Normal Load...................                                 Normal
2. Motor Start Up Simulation at Haft of Normal Load........ Half
3. Lj of the Motor Model....................................................                   Lj




                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                 19

More Related Content

What's hot

Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Tsuyoshi Horigome
 
DC/DC Converter (LTspice Model)
DC/DC Converter (LTspice Model)DC/DC Converter (LTspice Model)
DC/DC Converter (LTspice Model)Tsuyoshi Horigome
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsimperix
 
Upgrading gen protect and grounding
Upgrading gen protect and groundingUpgrading gen protect and grounding
Upgrading gen protect and groundingmichaeljmack
 
Li-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice VersionLi-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice VersionTsuyoshi Horigome
 
LTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーションLTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーションTsuyoshi Horigome
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filtersop205
 
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.popochis
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequencySARITHA REDDY
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEnandivashishth
 
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Tsuyoshi Horigome
 
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)Tsuyoshi Horigome
 
Advanced insrumentation lab manual
Advanced insrumentation lab manualAdvanced insrumentation lab manual
Advanced insrumentation lab manualGautam sai teza
 
DC Motor Modling,Controlling and Simulation
DC Motor Modling,Controlling and SimulationDC Motor Modling,Controlling and Simulation
DC Motor Modling,Controlling and SimulationSyed Atif Naseem
 
Laws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELDLaws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELDKarthik Kathan
 
Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report Alamgir Hossain
 

What's hot (20)

Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
 
DC/DC Converter (LTspice Model)
DC/DC Converter (LTspice Model)DC/DC Converter (LTspice Model)
DC/DC Converter (LTspice Model)
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronics
 
Upgrading gen protect and grounding
Upgrading gen protect and groundingUpgrading gen protect and grounding
Upgrading gen protect and grounding
 
Li-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice VersionLi-ion Capacitor Model (Simplified Model) LTspice Version
Li-ion Capacitor Model (Simplified Model) LTspice Version
 
LTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーションLTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーション
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filters
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
 
Mcc
MccMcc
Mcc
 
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (LTspice Version)
 
3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)3-Phase AC Motor Model (LTspice)
3-Phase AC Motor Model (LTspice)
 
PWM RECTIFIER
PWM RECTIFIERPWM RECTIFIER
PWM RECTIFIER
 
Advanced insrumentation lab manual
Advanced insrumentation lab manualAdvanced insrumentation lab manual
Advanced insrumentation lab manual
 
DC Motor Modling,Controlling and Simulation
DC Motor Modling,Controlling and SimulationDC Motor Modling,Controlling and Simulation
DC Motor Modling,Controlling and Simulation
 
Laws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELDLaws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELD
 
Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report Digital signal Processing all matlab code with Lab report
Digital signal Processing all matlab code with Lab report
 
Basic PLC
Basic PLCBasic PLC
Basic PLC
 

Similar to Simple Model of DC Motor using PSpice

DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)spicepark
 
Concept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelConcept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelTsuyoshi Horigome
 
Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Tsuyoshi Horigome
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料spicepark
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要Tsuyoshi Horigome
 
SPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARKSPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARKTsuyoshi Horigome
 
Concept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelConcept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelTsuyoshi Horigome
 
Concept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelConcept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelTsuyoshi Horigome
 
ACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてTsuyoshi Horigome
 
SPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARKSPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKTsuyoshi Horigome
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceTsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Tsuyoshi Horigome
 
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKSPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKTsuyoshi Horigome
 
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...IRJET Journal
 
Piggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentationPiggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentationHanan E. Levy
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Aya Mahmoud
 

Similar to Simple Model of DC Motor using PSpice (20)

DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)
 
Concept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelConcept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients Model
 
Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
 
SPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARKSPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARK
 
Concept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelConcept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients Model
 
Concept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelConcept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average Model
 
5630731
56307315630731
5630731
 
ACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてACモーターのスパイスモデルについて
ACモーターのスパイスモデルについて
 
SPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARKSPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARK
 
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspice
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKSPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
 
POWER SYSTEM LOADS
POWER SYSTEM LOADSPOWER SYSTEM LOADS
POWER SYSTEM LOADS
 
POWER SYSTEM LOADS
POWER SYSTEM LOADSPOWER SYSTEM LOADS
POWER SYSTEM LOADS
 
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
 
Piggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentationPiggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentation
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"
 

More from Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Recently uploaded

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 

Recently uploaded (20)

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 

Simple Model of DC Motor using PSpice

  • 1. PSpice Model D.C. Motor Simplified SPICE Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1
  • 2. Contents 1. Benefit of the Model 2. Model Feature 3. Parameter Settings 4. D.C. Motor Specification (Example) 5. Motor Start Up Simulation at Normal Load 6. Motor Start Up Simulation at Half of Normal Load 7. Lj of the Motor Model (1/2) 8. Application Example 9. Winding Characteristic Parameters: Lm 10.Winding Characteristic Parameters: Rm Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 2
  • 3. 1. Benefit of the Model • The model enables circuit designer to use D.C. Motor as load in their design which include: Back EMF, Torque(Nm) and Speed (rpm) characteristics. • The model can be easily adjusted to your own D.C. Motor specifications by editing a few parameters that are provided in the spec-sheet. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 3
  • 4. 2. Model Feature 1 H1 TRQ + - 1 H RM L1 {Rm} 100m 0 LM 2 E_EMF {Lm} N4 EMF IN+ OUT+ OUT+ IN+ IN- OUT- H2 Rdmy OUT- IN- EVALUE + - GRB 2 H GVALUE 0 0 Concept of Equivalent circuit of the D.C. Motor model • This D.C. Motor Simplified SPICE Model is for users who require the model of D.C. Motor as a part of their system. • Perform electrical (voltage and current) and mechanical (speed and torque) characteristics at current load (Ampere) conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 4
  • 5. 3. Parameter Settings Model Parameters: If there is no measurement data, the default value will be used: U1 Rm: motor winding resistance [] SMPL_DC_MOTOR Lm: motor winding inductance [H] Rm = 0.1 + Lm = 100u - V_norm = 7.2 mNm = 19.6 Data is given by D.C. motor spec-sheet: kRPM_norm = 14.4 I_norm = 6.1 V_norm: normal voltage [V] mNm: normal load [mNm] IL = 6.1 kRPM_norm: speed at normal load [kr/min] I_norm: current at normal load [A] D.C. Motor model and Parameters with Default Value Load Condition: IL: load current [A] All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 5
  • 6. 4. D.C. Motor Specification (Example) U1 SMPL_DC_MOTOR Rm = 0.1 + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 IL = 6.1 D.C. Motor Specification Parameters are input All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 6
  • 7. 5. Motor Start Up Simulation at Normal Load (1/3) Simulation Circuit and Setting PARAMETERS: Input the Supply No VOUT = 10.25 Load Voltage* and Series Resistance Rs = 0.5 VIM Simplified D.C. Motor with VM RS-540SH Spec. RS {Rs} Current Sensing U1 V1 SMPL_DC_MOTOR T2 = 0.01m Rm = 0.1 V2 = {VOUT} + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 IL = 6.1 0 0 *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm *Analysis directives: .TRAN 0 400m 0 0.1m .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*)) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 7
  • 8. 5. Motor Start Up Simulation at Normal Load (2/3) Select “All” for the Voltages and Currents Data Collection Options. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 8
  • 9. 5. Motor Start Up Simulation at Normal Load (3/3) 80V 40V Torque Load= 19.6mNm 0V V(X_U1.TRQ) 20A D.C. Motor Speed = 14.4krpm 10A 0A I(X_U1.V_kRPM) 10V D.C. Motor Voltage = 7.2V 5V SEL>> 0V V(VM) 20A 10A D.C. Motor Current = 6.1A 0A 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 9
  • 10. 6. Motor Start Up Simulation at Half of Normal Load (1/2) Simulation Circuit and Setting PARAMETERS: Input the Supply No VOUT = 10.25 Load Voltage* and Series Resistance Rs = 0.5 VIM Simplified D.C. Motor with VM RS-540SH Spec. RS {Rs} Current Sensing U1 V1 SMPL_DC_MOTOR T2 = 0.01m Rm = 0.1 V2 = {VOUT} + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 IL = 3.05 0 0 *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm *Analysis directives: .TRAN 0 400m 0 0.1m .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*)) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 10
  • 11. 6. Motor Start Up Simulation at Half of Normal Load (2/2) 80V 40V Torque Load= 9.8mNm 0V V(X_U1.TRQ) 20A D.C. Motor Speed = 18.4krpm 10A SEL>> 0A I(X_U1.V_kRPM) 10V D.C. Motor Voltage = 8.725V 5V 0V V(VM) 20A 10A D.C. Motor Current = 3.05A 0A 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 11
  • 12. 7. Lj of the Motor Model (1/2) Simulation Circuit and Setting PARAMETERS: Global parameter VOUT = 10.25 Lj is assigned Rs = 0.5 Double click to edit Lj = 100m VIM properties of the DC VM Motor model RS {Rs} U1 V1 SMPL_DC_MOTOR T2 = 0.01m Rm = 0.1 V2 = {VOUT} + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 *Analysis directives: IL = 6.1 Input the Lj value or input 0 0 .TRAN 0 400m 0 0.1m “{Lj}” for parametric sweep .STEP PARAM Lj LIST 100m, 200m All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 12
  • 13. 7. Lj of the Motor Model (2/2) The Motor Start-up Waveform is 80V changed by the Lj values. Lj=200m 40V Torque Load= 19.6mNm Lj=100m 0V V(X_U1.TRQ) 20A Lj=100m D.C. Motor Speed = 14.4krpm 10A 0A Lj=200m I(X_U1.V_kRPM) 10V Lj=100m D.C. Motor Voltage = 7.2V 5V Lj=200m 0V V(VM) 20A Lj=200m 10A D.C. Motor Current = 6.1A SEL>> Lj=100m 0A 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 13
  • 14. 8. Application Example (1/3) Simulation Circuit and Setting VDD VCC VCC Simplified D.C. Motor with RS-380PH Spec at No load. Vdd Vcc 15V 15V U2 SMPL_DC_MOTOR Rm = 0.576 0 0 D2 + Lm = 165u D4001 - V_norm = 7.2 mNm = 9.8 kRPM_norm = 14.2 I_norm = 2.9 U1 IL = 0.6 R1 NC VCC VDD 1u A NC RG No load IL=0.6 120 D3 V1 = 0 V1 K VO DGT10J321_s V2 = 1.8 U3 TD = 0 NC GND GT10J321 TR = 10n TF = 10n PW = 199.99u TLP350 PER = 400u 0 0 0 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 14
  • 15. 8. Application Example (2/3) Measurement Simulation 14A 20V 1 2 12A 10V 10A 0V Motor Voltage (10V/Div) 8A -10V 6A -20V Motor Current (2A/Div) 4A -30V 2A -40V 0A -50V >> -2A -60V -100ms 0s 100ms 300ms 500ms 700ms 900ms 1 I(U2:1) 2 V(U2:1,U2:2) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 15
  • 16. 8. Application Example (3/3) Measurement Simulation 14A 50V 20V 1 2 3 12A 40V 10V 10A 30V 0V IGBT: VGE IGBT: VGE (10V/Div) 8A 20V -10V 6A 10V -20V 4A 0V -30V IGBT: VCE IGBT: VCE (10V/Div) 2A -10V -40V 0A -20V -50V IGBT: IC >> IGBT: IC (2A/Div) -2A -30V -60V 898.0ms 898.4ms 898.8ms 899.2ms 899.6ms 1 I(U3:C) 2 V(U3:C) 3 V(U3:G) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 16
  • 17. 9. Winding Characteristic Parameters: Lm Winding Characteristic:2 Lm 1 14A 50V 3 20V U2 SMPL_DC_MOTOR 12A 40V 10V Rm = 0.576 + Lm = 165u - V_norm = 7.2 Motor Spec. 10A 30V 0V mNm = 9.8 kRPM_norm = 14.2 Lm=100u 8A 20V -10V I_norm = 2.9 Lm=165u IL = 0.6 6A 10V -20V Load Condition 4A 0V -30V Lm=100u The Motor Current Waveform is 2A -10V -40V changed by the Lm values. Lm=165u 0A -20V -50V >> -2A -30V -60V 898.0ms 898.4ms 898.8ms 899.2ms 899.6ms 1 I(U3:C) 2 V(U3:C) 3 V(U3:G) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 17
  • 18. 10. Winding Characteristic Parameters: Rm Winding Characteristic: Rm U2 SMPL_DC_MOTOR Rm = 0.576 + Lm = 165u - V_norm = 7.2 Motor Spec. Rm=0.1 mNm = 9.8 kRPM_norm = 14.2 I_norm = 2.9 IL = 0.6 Load Condition Rm=0.576 The Motor Start-up is Current changed by the Rm values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 18
  • 19. Simulation Index Simulations Folder name 1. Motor Start Up Simulation at Normal Load................... Normal 2. Motor Start Up Simulation at Haft of Normal Load........ Half 3. Lj of the Motor Model.................................................... Lj All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 19