SlideShare a Scribd company logo
Design Kit
PV Ni-MH Battery System (AC Out)

         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013   1
Contents
                                                                                                                                    Slide #

    1. Nickel - Metal Hydride Battery
       1.1 Ni-MH Battery Specification.................................................................................             3
       1.2 Discharge Time Characteristics...........................................................................                4
       1.3 Battery Voltage vs. SOC Discharge Characteristics.............................................                           5
       1.4 Charge Time Characteristics................................................................................              6
       1.5 Battery Voltage vs. SOC Charge Characteristics.................................................                          7
    2. Solar Cells
       2.1 Solar Cells Specification......................................................................................          8
       2.2 Output Characteristics vs. Incident Solar Radiation.............................................                         9
    3. Solar Cell Battery Charger.........................................................................................          10
       3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit....................................                               11
       3.2 PV Ni-MH Battery Charger Circuit........................................................................                 12
       3.3 Charging Time Characteristics vs. Weather Condition.........................................                             13
       3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current.....                                           14
       3.5 Constant Current PV Ni-MH Battery Charger Circuit............................................                            15
       3.6 Charging Time Characteristics vs. Weather Condition + Constant Current..........                                         16
    4. Simulation PV Ni-MH Battery System in 24hr.
       4.1 Concept of Simulation PV Ni-MH Battery System in 24hr....................................                                17-18
       4.2 Short-Circuit Current vs. Time (24hr.)..................................................................                 19
       4.3 PV-Battery System Simulation Circuit..................................................................                   20
       4.3 PV-Battery System Simulation Result..................................................................                    21-26
    Simulations index............................................................................................................   27

                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                         2
1.1 Ni-MH Battery Specification


  KAWAZAKI’s Ni-MH Batteries : Gigacell (10-180)

  • Rated Voltage ..................12 [V]

  • Capacity............................177 [Ah] (Approximately)

  • Energy Capacity................2.1 [kWh]

  • Max Output........................48 [kW]                                        10 Ni-MH cells are
                                                                                         in series.
  • Rated Charge................ 0.2C5 [A] ( SoC=100% )




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2013               3
1.2 Discharge Time Characteristics



17V                                                                                  PARAMETERS:
                                                                                     rate = 0.2
                                                                                     CAh = 177
16V                                                                                                                      Hi


15V                                                                                                                C1           U1          0
                         1C ( 177A )                                    IN+    OUT+                                1n     +   - GIGACELL_10-180
14V        2C ( 354A )                                                  IN-    OUT-                                             TSCALE = 3600
                                                                     G1                                        0                NS = 1
                                                                     GVALUE                                                     SOC1 = 1
13V                                       0.2C ( 35.4A )             limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )

                                                                                                                          TSCALE=3600
12V                                                                                   0
                         0.5C ( 88.5A )                                                                                 means “Time Scale”
11V                                                                                                                      (Simulation time :
                                                                                                                        Real time) is 1:3600
10V
                                                                    Batteries Pack Model Parameters

 9V
                                                                    NS (number of batteries in series) = 1 Unit (10 Ni-MH cells)
                                                                    C (capacity) = 177 Ah
 8V                                                                 SOC1 (initial state of charge) = 1 (100%)
                                                                    TSCALE (time scale) ,           simulation : real time
 7V                                                                                                 1 : 3600s or
      0s   1.0s     2.0s       3.0s       4.0s     5.0s    6.0s                                     1s : 1h
            V(HI)
                               Time
                                                                    Discharge Rate : 0.2C(35.4A), 0.5C(88.5A), 1C(177A) and 2C(354A)




                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                        4
1.3 Battery Voltage vs. SOC Discharge Characteristics

                                                                                                         10 Ni-MH cells are in series for
                                                                                                          total rated current 12V (Each
                                                                                                          cell have 1.2V rated voltage).




     Measurement                                                                                                  Simulation

                                                                                           0.2C, Dch       2.0C, Dch       5.0C, Dch         8.0C, Dch         11C, Dch


                                                                                  17

                                                                                  16

                                                                                  15




                                                            Battery Voltage (V)
                                                                                  14

                                                                                  13

                                                                                  12

                                                                                  11

                                                                                  10

                                                                                   9

                                                                                   8

                                                                                   7
                                                                                       0           0.2             0.4                 0.6               0.8              1

                                                                                                                         SOC (%)



•   VBAT vs. SOC Discharge Characteristics are compared between measurement data and simulation
    data.


                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                                               5
1.4 Charge Time Characteristics

                                                                                  PARAMETERS:
                                                                                  rate = 0.2
                                                                                  CAh = 177

17V                                                                               G1
                                                                                  GVALUE
                                                                                  Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh )
16V                                                                                                                                    Hi




                                                                                   OUT+
                                                                                   OUT-
15V        1C ( 177A )                                                                                                          C1            U1          0
                                                                                                                                1n      +   - GIGACELL_10-180




                                                                                   IN+
                                                                                   IN-
14V                                                                                                                                           TSCALE = 3600
                                                                                                                            0                 NS = 1
                                                                                                                                              SOC1 = 0
13V                       0.2C ( 35.4A )                                  Vin
                                                                          18Vdc

12V
                   0.5C ( 88.5A )                                                                                                      TSCALE=3600
                                                                          0
                                                                                                                                     means “Time Scale”
11V
                                                                                                                                      (Simulation time :
10V
                                                                                                                                     Real time) is 1:3600
                                                                       Batteries Pack Model Parameters
 9V
                                                                       NS (number of batteries in series) = 1 Unit (10 Ni-MH cells)
 8V                                                                    C (capacity) = 177 Ah
                                                                       SOC1 (initial state of charge) = 1 (100%)
 7V                                                                    TSCALE (time scale) ,           simulation : real time
      0s         1.0s        2.0s          3.0s      4.0s      5.0s                                    1 : 3600s or
             V(HI)                                                                                     1s : 1h
                                    Time

                                                                       Charge Rate : 0.2C(35.4A), 0.5C(88.5A), and 1C(177A)




                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                   6
1.5 Battery Voltage vs. SOC Charge Characteristics



     Measurement                                                                                      Simulation

                                                                                           0.2C, Ch   2.0C, Ch          3.0C, Ch         5.0C, Ch


                                                                                  17

                                                                                  16

                                                                                  15




                                                            Battery Voltage (V)
                                                                                  14

                                                                                  13

                                                                                  12

                                                                                  11

                                                                                  10

                                                                                   9

                                                                                   8

                                                                                   7
                                                                                       0      0.2      0.4             0.6         0.8              1

                                                                                                             SOC (%)




•   VBAT vs. SOC Charge Characteristics are compared between measurement data and simulation
    data.


                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                         7
2.1 Solar Cells Specification


  Suntech’s photovoltaic module : STP140D-12/TEA

  • Maximum power (Pmax)............140[W]

  • Voltage at Pmax (Vmp).............17.6[V]

  • Current at Pmax (Imp)...............7.95[A]

  • Short-circuit current (Isc)...........8.33[A]

  • Open-circuit voltage(Voc)..........22.4[V]




                                                                                            1482mm
                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2013            8
2.2 Output Characteristics vs. Incident Solar Radiation

                                              STP140D-12/TEA Output Characteristics vs. Incident Solar Radiation

                                                                      10A
                                                                                            SOL=1
                                                                        8A




                                                     Current (A)
                                                                        6A
                                                                                        SOL=0.5
                                                                        4A
         +
                U1                                                      2A              SOL=0.16
                STP140D-12TEA
                                                                        0A
                SOL = 1                                                         I(Isense)
                                                                     150W
                                                                                              SOL=1



                                                         Power (W)
                                                                     100W

       Parameter, SOL is added as                                                                        SOL=0.5

       normalized incident radiation,
                                                                      50W
         where SOL=1 for AM1.5                                                                        SOL=0.16
                conditions                                           SEL>>
                                                                        0W
                                                                           0V      5V       10V      15V           20V   25V
                                                                                V(V1:+)*I(Isense)
                                                                                                V_V1
                                                                                                Voltage (V)



                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                      9
3. Solar Cell Battery Charger

•   Solar Cell charges the Ni-MH battery pack (STP140D-12/TEA) with direct connect
    technique. Choose the solar cell that is able to provide current at charging rate or more
    with the maximum power voltage (Vmp) nears the batteries pack charging voltage.


•   Gigacell 10-180 (Ni-MH Battery)
     – Charging time is approximately 5 hours with charging rate 0.2C or 35.4A
     – Voltage during charging with 0.2C is between 11.8 to 14.2 V

                          17V

                          16V

                          15V

                          14V
                                                                                        14.2 V
                          13V
                                                    0.2C or 35.4A
                          12V                                                           11.8 V
                          11V

                          10V

                           9V

                           8V

                           7V
                                0s           1.0s   2.0s          3.0s   4.0s    5.0s
                                     V(HI)
                                                           Time



                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2013       10
3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit



                                                                    Over Voltage
                                                                    Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                   14.01V Clamp Circuit



         Photovoltaic
                                                                               Ni-MH Battery
         Module



       STP140D-12/TEA (Suntech)                                              Gigacell 10-180 (Kawasaki)
       10 panels (parallel)                                                 DC12V (10 cells)
       Vmp=17.6V                                                             177Ah
       Pmax=1.4kW




                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013              11
3.2 PV Ni-MH Battery Charger Circuit

                                                                                                              D1


                         PARAMETERS:                                                                          DMOD
                         sol = 1
                                                                                                                        Voch
                                                                                                                        14.01dc
                                                                                  pv                                   0
                                                                                                             Hi

       +             +             +             +            +                                               +    -
               U6            U5            U4            U3           U2                               C1              0
                                                                           STP140D-12TEA               1n
                                                                           SOL = {sol}
                                                                                                   0
           0             0             0             0            0                                          U1
                                                                                                             GIGACELL_10-180
                                                                                                             TSCALE = 3600
                                                                                                             NS = 1
       +             +             +             +            +                                              SOC1 = 0
               U11           U10           U9            U8           U7




           0             0             0             0            0



   •       Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
           radiation, where SOL=1 for AM1.5 conditions.



                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                        12
3.3 Charging Time Characteristics vs. Weather Condition


       1.00V




       0.75V




       0.50V




       0.25V                                                                                      sol = 1.00
                                                                                                  sol = 0.50
                                                                                                  sol = 0.16
          0V
               0s     1s        2s        3s        4s         5s        6s         7s            8s     9s    10s
                    V(X_U1.SOC)
                                                             Time



   •     Simulation result shows the charging time for sol = 1, 0.5, and 0.16.



                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                      13
3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit
+ Constant Current



                                                                         Over Voltage
                                                                         Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                        14.01V Clamp Circuit


                                Constant
      Photovoltaic              Current
                                                                                    Ni-MH Battery
      Module                    Control
                                Circuit


     STP140D-12/TEA        Icharge=0.2C (35.4A)                                   Gigacell 10-180 (Kawasaki)
     (Suntech)                                                                    DC12V (10 cells)
     10 panels (parallel)                                                        177Ah
     Vmp=17.6V
     Pmax=1.4kW



                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013               14
3.5 Constant Current PV Ni-MH Battery Charger Circuit


                                                                                                                                     D1

                                                                                          PARAMETERS:
                         PARAMETERS:                                                                                                 DMOD
                                                                                          rate = 0.2
                         sol = 1                                                          CAh = 177
                                                                                                                                               Voch
                                                                                                                                               14.01dc
                                                                                   pv                                                         0
                                                                                                                                    Hi




                                                                                             OUT+
                                                                                             OUT-
       +             +             +            +            +                                                                       +    -
               U6            U5            U4           U3           U2                                                    C1                 0
                                                                          STP140D-12TEA                                    1n
                                                                          SOL = {sol}




                                                                                             IN+
                                                                                             IN-
                                                                                                                       0
           0             0             0            0            0                          G1                                      U1
                                                                                            GVALUE                                  GIGACELL_10-180
                                                                                            Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)   TSCALE = 3600
                                                                                                                                    NS = 1
       +             +             +            +            +                                                                      SOC1 = 0
               U11           U10           U9           U8           U7




           0             0             0            0            0




   •           Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
   •           “PARAMETERS: CAh = 177 and rate = 0.2 ” to set the charging current.



                                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                           15
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)


       1.00V




       0.75V




       0.50V




       0.25V                                                                                           sol = 1.00
                                                                                                       sol = 0.50
                                                                                                       sol = 0.16
          0V
               0s     1s        2s        3s        4s         5s        6s         7s            8s        9s      10s
                    V(X_U1.SOC)
                                                             Time

   •     Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can
         generate current more than the constant charge rate (0.2C), battery can be fully
         charged in about 5 hour.


                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                           16
4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.


                                                                                       Over Voltage
   The model contains 24hr.                                                            Protection Circuit
  solar power data (example).
                                                                                     14.01V Clamp Circuit



  Photovoltaic
                                                                                       Ni-MH Battery
  Module

                               Low-Voltage                                           Gigacell 10-180 (Kawasaki)
 STP140D-12/TEA                Shutdown                                              DC12V (10 cells)
 (Suntech)                     Circuit                Vopen=11. 6(V)                 177Ah
 10 panels (parallel)                                Vclose= 13.8(V)
 Vmp=17.6V
 Pmax=1.4kW
                                                    Inverter
                                                                                   Load
                                                    (DC/AC)

                                                  VIN=8~16V                       PLOAD=250W
                                                  VOUT=100Vac, 50Hz


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                      17
4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.
(Reference)




   Kawasaki GigaCell website: http://www.khi.co.jp/gigacell/use/sun.html

                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2013   18
4.2 Short-Circuit Current vs. Time (24hr.)
                                                                                                           The model contains
                                                                                                          24hr. solar power data
                                                                                                                (example).
 15A




 10A                                                                                                       U1
                                                                                                     +




                                                                                                         STP140D-12TEA_24H_TS3600
  5A




  0A
       0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s    12s    14s    16s    18s     20s    22s   24s
          I(Isense)
                                            Time




        •    Short-circuit current vs. time characteristics of photovoltaic module STP140D-12/TEA
             for 24hours as the solar power profile (example) is included to the model.



                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                            19
4.3 PV-Battery System Simulation Circuit

    Solar cell model
    with 24hr. solar                                                                                                                                                                                                                        D1

     power data.                                                                                                                                                                                                                            DMOD

                                                                                                                                                                                                                                                           Voch
                                                                                                                                                                                                                                                           14.01Vdc
                                                                      pv                                                                                                                                                                                   0
                                                                                     D2
                                                                                                                                                                                                                                          batt
                                                                                     DMOD
+       U6    +       U5    +       U4   +       U3   +       U2
                                                                                                                                                                                                                                    C1                               0
                                                                                                                                                        Low-Voltage Shutdown Circuit                                                10n      +   -
                                                          STP140D-12TEA_24H_TS3600
                                                                                            VON = 0.7                                                                                                                        0
    0             0             0            0            0                                 VOFF = 0.3                                             E1
                                                                                            RON = 0.01m                            Ronof f         EVALUE
                                                                                            ROFF = 10MEG                           100             IF(V(batt1)>V(dchth),5,0)                         Ronof f 1                              U1
                                                                                                +                          Lctrl                                                             batt1                                          GIGACELL_10-180
                                                                                                    +                                            OUT+         IN+
+       U11   +       U10   +       U9   +       U8   +       U7                     C3                                                                                                                                                     TSCALE = 3600
                                                                                            -       -                                            OUT-         IN-      dchth                               100
                                                                                     100n                                    Conof f                                                                                                        NS = 1
                                                                                            S2                               1n                                                                                                             SOC1 = 1
                                                                                                         0                                                              OUT+     IN+
                                                                                            S                                IC = 5                                                                    Conof f 1
                                                                                                                                                                        OUT-     IN-                   100n
                                                                                            PARAMETERS:                                                                   E2
    0             0             0            0            0                                 Lopen = 11.6                                                                  EVALUE
                                                                                                                                                               IF( V(lctrl) > 0.25 ,Lopen ,Lclose)
                                                                                                                                                                                                                                  SOC1 value is initial
                                                                                            Lclose = 13.8                                                                                             0
                                                                                                                                                                                                                                   State Of Charge of
                                                                                                                                                                                                                                  the battery, is set as
                                                                                                                                                                                        Inverter (DC/AC)                           70% of full voltage.
                                                          Lopen value is load                                                                                                  PARAMETERS:
                                                                                                                                                                               n=1                                                 out_ac
                                                           shutdown voltage.                                                                                                                                                                               PARAMETERS:
                                                                                                        IN                                                                                           OUT                                                   Pload = 250
                                                          Lclose value is load                               G1                                           Iomax
                                                                                                                                                                                                                                                               Rload
                                                                                                             IN+  OUT+                 IN+         OUT+                        EVout
                                                           reconnect voltage                                 IN-  OUT-                 IN-         OUT-                        IN+   OUT+                                                                      {100*100/Pload}
                                                                                                             GVALUE                                                            IN-   OUT-
                                                                                                                                       ecal_Iomax
                                                                                                                                       EVALUE                                  EVALUE
                                                                                                                                                     0
                                                                                                                                       n*V(%IN+, %IN-)*I(IN)/100
                                                                                                                                                         IF( V(Irms)>V(Iomax), V(1VAC)*n*limit(V(%IN+, %IN-),7,17)*I(IN)/(V(Irms)+1u), V(1VAC)*100 )
                                                                                                                                                                                                                                                                    250(W)
                                                                                            0           Limit( V(%IN+, %IN-)/0.1, 1m, 100*V(Irms)/(n*limit(V(%IN+, %IN-),8,16)) )                                                                      0
                                                                                                                                                                                                                                                                     Load
                                                                                                             abs(I(out))                     Rf ilt                                     1VAC
                                                                                                                                                      Irms                               Vac1
                                                                                                                           OUT
                                                                                                                                                          Cf ilt         VOFF = 0
                                                                                                                                             10k
                                                                                                                                                          8u             VAMPL = 1.414
                                                                                                        EC                                                IC = 0.01      FREQ = 50
                                                                                                                                                          0                              0


                                                                                                                                                                     Simulation at 500W load, change Pload from 250(W) to 500(W)




                                                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                                                                                                                 20
4.3.1 Simulation Result (SOC1=1, 250W load)

                             100A

PV generated current


                               0A
                                        I(PV)                               PV module charge the battery
                  16V        100A
          1
Battery voltage         2

                  14V          0A
Battery current 
                               >>
                  12V       -100A                                                                                       Battery starts to supply current
                                    1      V(batt)     2       I(U1:PLUS)                                               when solar power drops.
                             1.0V
Battery SOC
                                                                                          Fully charged,
                                        SOC1=1 (100%)                                     stop charging

                               0V
                                        V(X_U1.SOC)
100VAC output
         200V               20.0A
        1               2
Inverter input current
                   0V       17.5A
                            SEL>>
                -200V       15.0A
                                  0s            3s               6s           9s           12s             15s          18s           21s          24s
                                   1       V(out_ac)       2     I(IN)   Charging
                                                                         time             Time
                                     When battery is discharging , current I(U1:PLUS) is minus and when the battery is charging, the current is plus.

                                                                                           •      .Options
            •       C1=10n IC=13.7
                                                                                                    •    RELTOL=0.01
            •       Run to time: 24s (24hours in real world)
                                                                                                    •    ABSTOL=1.0u
            •       Step size: 0.001s
                                                                                                    •    ITL4=1000

                                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                        21
4.3.2 Simulation Result (SOC1=0.7, 250W load)

                            100A

PV generated current


                              0A
                                       I(PV)
               15.0V        100A
Battery 1
        voltage        2                            (6.9292,11.587)
               12.5V          0A                                        (8.4725,13.800)
Battery current                                        V=Lopen
                  >>                                                           V=Lclose                          Battery starts to supply current
               10.0V       -100A                                                                                 when solar power drops.
                                   1      V(batt)     2       I(U1:PLUS)
                            1.0V
                                        SOC1=0.7                                             Fully charged,
Battery SOC
                                                                                             stop charging


                              0V
                                       V(X_U1.SOC)
DC output voltage                                                   Shutdown
          200V             20.0A
       1               2
DC/DC input current
                                                                                 Reconnect
                  0V       17.5A
                           SEL>>
               -200V       15.0A
                                 0s            3s               6s          9s            12s             15s     18s          21s          24s
                                  1       V(out_ac)       2     I(IN)
                                                                                          Time
                                                                        Charging
                                                                        time
                                                                                          •        .Options
           •       Run to time: 24s (24hours in real world)                                          •    RELTOL=0.01
           •       Step size: 0.01s                                                                  •    ABSTOL=1.0u
                                                                                                     •    ITL4=1000


                                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                  22
4.3.3 Simulation Result (SOC1=0.3, 250W load)

                            100A

PV generated current


                              0A
                                       I(PV)
               15.0V        100A
Battery 1
        voltage        2               V=Lopen
               12.5V          0A                                        (8.3025,13.800)
Battery current
                           SEL>>                                              V=Lclose                         Battery starts to supply current
                                          (2.3577,11.587)
               10.0V       -100A                                                                               when solar power drops.
                                   1      V(batt)     2       I(U1:PLUS)
                            1.0V
Battery SOC                                                                               Fully charged,
                                         SOC1=0.7                                         stop charging


                              0V
                                       V(X_U1.SOC)
DC output voltage
          200V             20.0A
       1               2
DC/DC input current                                  Shutdown
                                                                             Reconnect
                  0V       17.5A
                              >>
               -200V       15.0A
                                 0s            3s               6s           9s           12s          15s      18s          21s          24s
                                  1       V(out_ac)       2     I(IN)
                                                                                          Time
                                                                  Charging time

                                                                                          •      .Options
           •       Run to time: 24s (24hours in real world)                                        •    RELTOL=0.01
           •       Step size: 0.01s                                                                •    ABSTOL=1.0u
                                                                                                   •    ITL4=1000


                                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                23
4.3.4 Simulation Result (SOC1=0.07, 250W load)

                            100A

PV generated current


                              0A
                                       I(PV)
               15.0V        100A
Battery 1
        voltage        2

               12.5V          0A
Battery current                                                         (8.3015,13.800)
                           SEL>>                                              V=Lclose                               Battery starts to supply current
               10.0V       -100A                                                                                     when solar power drops.
                                   1      V(batt)     2       I(U1:PLUS)
                            1.0V
Battery SOC                                                                               Fully charged,
                                                                                          stop charging
                                       SOC1=0.07
                              0V
                                       V(X_U1.SOC)
DC output voltage
          200V             20.0A
       1               2
DC/DC input current                      Shutdown
                                                                              Reconnect
                  0V       17.5A
                              >>
               -200V       15.0A
                                 0s            3s               6s           9s           12s              15s   18s            21s          24s
                                  1       V(out_ac)       2     I(IN)
                                                                                          Time
                                                                  Charging time

                                                                                          •      .Options
           •       Run to time: 24s (24hours in real world)                                        •    RELTOL=0.01
           •       Step size: 0.01s                                                                •    ABSTOL=1.0u
                                                                                                   •    ITL4=1000


                                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                      24
4.3.5 Simulation Result (SOC1=1, 500W load)

                                  100A

PV generated current


                                    0A
                                             I(PV)                                  V=Lclose
                                                                     V=Lopen                                                                         V=Lopen
             15.0V                100A
Battery 1
        voltage           2                      (4.8181,11.600)                                                                  (22.476,11.575)

             12.5V                  0A
Battery current                                                               (8.2935,13.800)
                                 >>
                                                                                                                        Battery supplies current when solar
             10.0V            -100A
                                                                                                                        power drops.
                                         1      V(batt)     2       I(U1:PLUS)
                                  1.0V
Battery SOC                                                                                            Fully charged,
                                             SOC1=100                                                  stop charging


                                    0V
                                             V(X_U1.SOC)
DC output voltage
            200V                   40A                                Shutdown                                                                     Shutdown
             1                2
DC/DC input current                                                                  Reconnected
                     0V            35A
                              SEL>>
                 -200V          30A
                                    0s               3s               6s           9s           12s           15s           18s           21s          24s
                                     1          V(out_ac)       2     I(IN)      Charging
                                                                                 time           Time


                                                                                                •      .Options
         •         C1=10n IC=13.7
                                                                                                         •    RELTOL=0.01
         •         Run to time: 24s (24hours in real world)
                                                                                                         •    ABSTOL=1.0u
         •         Step size: 0.001s
                                                                                                         •    ITL4=1000


                                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                                       25
4.3.4 Simulation Result (Example of Conclusion)
The simulation start from midnight(time=0). The system supplies DC load 250W.
•   If initial SOC is 100%,
      – this system will never shutdown.
•   If initial SOC is 70%,
      – this system will shutdown after 6.93 hours (about 6:56AM.).
      – system load will reconnect again at 8:28AM.
•   If initial SOC is 30%,
      – this system will shutdown after 2.36 hours (about 2:21AM.).
      – system load will reconnect again at 8:18AM.
•   If initial SOC is 7%,
      – this system will start shutdown.
      – this system will reconnect again at 8:18AM (Morning).
•   With the PV generated current profile, battery will fully charged in about 5.48 hours.


The simulation start from midnight(time=0). The system supplies DC load 500W.
•   If initial SOC is 100%,
      – this system will shutdown after 4.82 hours (about 4:49AM.).
      – system load will reconnect again at 8:18AM.
      – this system will shutdown again at 10:29PM.
•   With the PV generated current profile, battery will fully charged in about 6.15 hours.

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2013   26
Simulations index



 Simulations                                                                                 Folder name

 1.   PV Ni-MH Battery Charger Circuit..................................................     charge-sol

 2.   Constant Current PV Ni-MH Battery Charger Circuit.....................                 charge-sol-const

 3.   PV-Battery System Simulation Circuit (SOC1=1, 250W)...............                     sol_24h_soc100

 4.   PV-Battery System Simulation Circuit (SOC1=0.7, 250W)............                      sol_24h_soc70

 5.   PV-Battery System Simulation Circuit (SOC1=0.3, 250W)............                      sol_24h_soc30

 6.   PV-Battery System Simulation Circuit (SOC1=0.07, 250W)..........                       sol_24h_soc7

 7.   PV-Battery System Simulation Circuit (SOC1=1, 500W)...............                     sol_24h_soc100_500W




                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2013                   27

More Related Content

What's hot

SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)spicepark
 
3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)Tsuyoshi Horigome
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARKSPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARKTsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)spicepark
 
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARKSPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARKTsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) Tsuyoshi Horigome
 
SPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARKSPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARKTsuyoshi Horigome
 

What's hot (19)

SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB05D-120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARKSPICE MODEL of 2SC5505 in SPICE PARK
SPICE MODEL of 2SC5505 in SPICE PARK
 
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MB03D120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH03D-120 (Professional+FWDP Model) in SPICE PARK
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH15D-120 (Professional+FWDS Model) in SPICE PARK
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)
 
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARKSPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of 1MBH15D-060 (Professional+FWDP Model) in SPICE PARK
 
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH05D-120 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWDP Model) in SPICE PARK
 
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARKSPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
SPICE MODEL of TPCP8402 (Standard+BDS N&P Model) in SPICE PARK
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)
 
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARKSPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
SPICE MODEL of KGH25N120NDA (Professional+FWD+SP Model) in SPICE PARK
 
SPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARKSPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of 1MBH50D-060 (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDS Model) in SPICE PARK
 
SPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARKSPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARK
SPICE MODEL of CM600HA-12H (Professional+FWDP Model) in SPICE PARK
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
 
SPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARKSPICE MODEL of RN1966FS in SPICE PARK
SPICE MODEL of RN1966FS in SPICE PARK
 

Similar to PV Ni-MH Battery System (Output is AC)

ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルTsuyoshi Horigome
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーspicepark
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションTsuyoshi Horigome
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Tsuyoshi Horigome
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpicespicepark
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
SPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKSPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKTsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
SPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARKSPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARKTsuyoshi Horigome
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspicespicepark
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New InfineonOriginal IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineonauthelectroniccom
 
SPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARKSPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARKTsuyoshi Horigome
 
Simple Model of Ni-MH Battery Model using PSpice
Simple Model of Ni-MH Battery Model using PSpiceSimple Model of Ni-MH Battery Model using PSpice
Simple Model of Ni-MH Battery Model using PSpicespicepark
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
SPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARKSPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARKTsuyoshi Horigome
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例Tsuyoshi Horigome
 

Similar to PV Ni-MH Battery System (Output is AC) (20)

ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデル
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナー
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
 
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
Nickel-Metal Hydride Battery Simplified Simulink Model using MATLAB
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
SPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKSPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARK
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
SPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARKSPICE MODEL of PC817X in SPICE PARK
SPICE MODEL of PC817X in SPICE PARK
 
Simple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspiceSimple Model of Ni-MH Battery Model using LTspice
Simple Model of Ni-MH Battery Model using LTspice
 
SPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARKSPICE MODEL of 2SC6078 in SPICE PARK
SPICE MODEL of 2SC6078 in SPICE PARK
 
Ds1307 datasheet
Ds1307 datasheetDs1307 datasheet
Ds1307 datasheet
 
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPC8018-H (Professional+BDP Model) in SPICE PARK
 
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New InfineonOriginal IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
Original IGBT IHW20N120R5 H20MR5 40A 1200V TO-247 New Infineon
 
SPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARKSPICE MODEL of RN1903AFS in SPICE PARK
SPICE MODEL of RN1903AFS in SPICE PARK
 
Simple Model of Ni-MH Battery Model using PSpice
Simple Model of Ni-MH Battery Model using PSpiceSimple Model of Ni-MH Battery Model using PSpice
Simple Model of Ni-MH Battery Model using PSpice
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
SPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARKSPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARK
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
 

More from spicepark

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社spicepark
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)spicepark
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)spicepark
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)spicepark
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)spicepark
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービスspicepark
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料spicepark
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料spicepark
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)spicepark
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎spicepark
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図spicepark
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)spicepark
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)spicepark
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)spicepark
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)spicepark
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料spicepark
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)spicepark
 

More from spicepark (20)

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービス
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
 

Recently uploaded

IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxAbida Shariff
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Product School
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...BookNet Canada
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoTAnalytics
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualityInflectra
 
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»QADay
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsPaul Groth
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor TurskyiFwdays
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform EngineeringJemma Hussein Allen
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingThijs Feryn
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaRTTS
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...Elena Simperl
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2DianaGray10
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsExpeed Software
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf91mobiles
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Ramesh Iyer
 

Recently uploaded (20)

IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT Professionals
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 

PV Ni-MH Battery System (Output is AC)

  • 1. Design Kit PV Ni-MH Battery System (AC Out) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 1
  • 2. Contents Slide # 1. Nickel - Metal Hydride Battery 1.1 Ni-MH Battery Specification................................................................................. 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Battery Voltage vs. SOC Discharge Characteristics............................................. 5 1.4 Charge Time Characteristics................................................................................ 6 1.5 Battery Voltage vs. SOC Charge Characteristics................................................. 7 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 8 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 9 3. Solar Cell Battery Charger......................................................................................... 10 3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit.................................... 11 3.2 PV Ni-MH Battery Charger Circuit........................................................................ 12 3.3 Charging Time Characteristics vs. Weather Condition......................................... 13 3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current..... 14 3.5 Constant Current PV Ni-MH Battery Charger Circuit............................................ 15 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 16 4. Simulation PV Ni-MH Battery System in 24hr. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr.................................... 17-18 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 19 4.3 PV-Battery System Simulation Circuit.................................................................. 20 4.3 PV-Battery System Simulation Result.................................................................. 21-26 Simulations index............................................................................................................ 27 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 2
  • 3. 1.1 Ni-MH Battery Specification KAWAZAKI’s Ni-MH Batteries : Gigacell (10-180) • Rated Voltage ..................12 [V] • Capacity............................177 [Ah] (Approximately) • Energy Capacity................2.1 [kWh] • Max Output........................48 [kW] 10 Ni-MH cells are in series. • Rated Charge................ 0.2C5 [A] ( SoC=100% ) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 3
  • 4. 1.2 Discharge Time Characteristics 17V PARAMETERS: rate = 0.2 CAh = 177 16V Hi 15V C1 U1 0 1C ( 177A ) IN+ OUT+ 1n + - GIGACELL_10-180 14V 2C ( 354A ) IN- OUT- TSCALE = 3600 G1 0 NS = 1 GVALUE SOC1 = 1 13V 0.2C ( 35.4A ) limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) TSCALE=3600 12V 0 0.5C ( 88.5A ) means “Time Scale” 11V (Simulation time : Real time) is 1:3600 10V Batteries Pack Model Parameters 9V NS (number of batteries in series) = 1 Unit (10 Ni-MH cells) C (capacity) = 177 Ah 8V SOC1 (initial state of charge) = 1 (100%) TSCALE (time scale) , simulation : real time 7V 1 : 3600s or 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 1s : 1h V(HI) Time Discharge Rate : 0.2C(35.4A), 0.5C(88.5A), 1C(177A) and 2C(354A) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 4
  • 5. 1.3 Battery Voltage vs. SOC Discharge Characteristics 10 Ni-MH cells are in series for total rated current 12V (Each cell have 1.2V rated voltage). Measurement Simulation 0.2C, Dch 2.0C, Dch 5.0C, Dch 8.0C, Dch 11C, Dch 17 16 15 Battery Voltage (V) 14 13 12 11 10 9 8 7 0 0.2 0.4 0.6 0.8 1 SOC (%) • VBAT vs. SOC Discharge Characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 5
  • 6. 1.4 Charge Time Characteristics PARAMETERS: rate = 0.2 CAh = 177 17V G1 GVALUE Limit(V(%IN+, %IN-)/0.1m, 0, rate*CAh ) 16V Hi OUT+ OUT- 15V 1C ( 177A ) C1 U1 0 1n + - GIGACELL_10-180 IN+ IN- 14V TSCALE = 3600 0 NS = 1 SOC1 = 0 13V 0.2C ( 35.4A ) Vin 18Vdc 12V 0.5C ( 88.5A ) TSCALE=3600 0 means “Time Scale” 11V (Simulation time : 10V Real time) is 1:3600 Batteries Pack Model Parameters 9V NS (number of batteries in series) = 1 Unit (10 Ni-MH cells) 8V C (capacity) = 177 Ah SOC1 (initial state of charge) = 1 (100%) 7V TSCALE (time scale) , simulation : real time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 1 : 3600s or V(HI) 1s : 1h Time Charge Rate : 0.2C(35.4A), 0.5C(88.5A), and 1C(177A) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 6
  • 7. 1.5 Battery Voltage vs. SOC Charge Characteristics Measurement Simulation 0.2C, Ch 2.0C, Ch 3.0C, Ch 5.0C, Ch 17 16 15 Battery Voltage (V) 14 13 12 11 10 9 8 7 0 0.2 0.4 0.6 0.8 1 SOC (%) • VBAT vs. SOC Charge Characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 7
  • 8. 2.1 Solar Cells Specification Suntech’s photovoltaic module : STP140D-12/TEA • Maximum power (Pmax)............140[W] • Voltage at Pmax (Vmp).............17.6[V] • Current at Pmax (Imp)...............7.95[A] • Short-circuit current (Isc)...........8.33[A] • Open-circuit voltage(Voc)..........22.4[V] 1482mm All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 8
  • 9. 2.2 Output Characteristics vs. Incident Solar Radiation STP140D-12/TEA Output Characteristics vs. Incident Solar Radiation 10A SOL=1 8A Current (A) 6A SOL=0.5 4A + U1 2A SOL=0.16 STP140D-12TEA 0A SOL = 1 I(Isense) 150W SOL=1 Power (W) 100W Parameter, SOL is added as SOL=0.5 normalized incident radiation, 50W where SOL=1 for AM1.5 SOL=0.16 conditions SEL>> 0W 0V 5V 10V 15V 20V 25V V(V1:+)*I(Isense) V_V1 Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 9
  • 10. 3. Solar Cell Battery Charger • Solar Cell charges the Ni-MH battery pack (STP140D-12/TEA) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. • Gigacell 10-180 (Ni-MH Battery) – Charging time is approximately 5 hours with charging rate 0.2C or 35.4A – Voltage during charging with 0.2C is between 11.8 to 14.2 V 17V 16V 15V 14V 14.2 V 13V 0.2C or 35.4A 12V 11.8 V 11V 10V 9V 8V 7V 0s 1.0s 2.0s 3.0s 4.0s 5.0s V(HI) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 10
  • 11. 3.1 Concept of Simulation PV Ni-MH Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 14.01V Clamp Circuit Photovoltaic Ni-MH Battery Module STP140D-12/TEA (Suntech) Gigacell 10-180 (Kawasaki) 10 panels (parallel) DC12V (10 cells) Vmp=17.6V 177Ah Pmax=1.4kW All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 11
  • 12. 3.2 PV Ni-MH Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 14.01dc pv 0 Hi + + + + + + - U6 U5 U4 U3 U2 C1 0 STP140D-12TEA 1n SOL = {sol} 0 0 0 0 0 0 U1 GIGACELL_10-180 TSCALE = 3600 NS = 1 + + + + + SOC1 = 0 U11 U10 U9 U8 U7 0 0 0 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 12
  • 13. 3.3 Charging Time Characteristics vs. Weather Condition 1.00V 0.75V 0.50V 0.25V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 13
  • 14. 3.4 Concept of Simulation PV Ni-MH Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 14.01V Clamp Circuit Constant Photovoltaic Current Ni-MH Battery Module Control Circuit STP140D-12/TEA Icharge=0.2C (35.4A) Gigacell 10-180 (Kawasaki) (Suntech) DC12V (10 cells) 10 panels (parallel) 177Ah Vmp=17.6V Pmax=1.4kW All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 14
  • 15. 3.5 Constant Current PV Ni-MH Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD rate = 0.2 sol = 1 CAh = 177 Voch 14.01dc pv 0 Hi OUT+ OUT- + + + + + + - U6 U5 U4 U3 U2 C1 0 STP140D-12TEA 1n SOL = {sol} IN+ IN- 0 0 0 0 0 0 G1 U1 GVALUE GIGACELL_10-180 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) TSCALE = 3600 NS = 1 + + + + + SOC1 = 0 U11 U10 U9 U8 U7 0 0 0 0 0 • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 177 and rate = 0.2 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 15
  • 16. 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) 1.00V 0.75V 0.50V 0.25V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2C), battery can be fully charged in about 5 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 16
  • 17. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr. Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 14.01V Clamp Circuit Photovoltaic Ni-MH Battery Module Low-Voltage Gigacell 10-180 (Kawasaki) STP140D-12/TEA Shutdown DC12V (10 cells) (Suntech) Circuit Vopen=11. 6(V) 177Ah 10 panels (parallel) Vclose= 13.8(V) Vmp=17.6V Pmax=1.4kW Inverter Load (DC/AC) VIN=8~16V PLOAD=250W VOUT=100Vac, 50Hz All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 17
  • 18. 4.1 Concept of Simulation PV Ni-MH Battery System in 24hr. (Reference)  Kawasaki GigaCell website: http://www.khi.co.jp/gigacell/use/sun.html All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 18
  • 19. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). 15A 10A U1 + STP140D-12TEA_24H_TS3600 5A 0A 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 12s 14s 16s 18s 20s 22s 24s I(Isense) Time • Short-circuit current vs. time characteristics of photovoltaic module STP140D-12/TEA for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 19
  • 20. 4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar D1 power data. DMOD Voch 14.01Vdc pv 0 D2 batt DMOD + U6 + U5 + U4 + U3 + U2 C1 0 Low-Voltage Shutdown Circuit 10n + - STP140D-12TEA_24H_TS3600 VON = 0.7 0 0 0 0 0 0 VOFF = 0.3 E1 RON = 0.01m Ronof f EVALUE ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 U1 + Lctrl batt1 GIGACELL_10-180 + OUT+ IN+ + U11 + U10 + U9 + U8 + U7 C3 TSCALE = 3600 - - OUT- IN- dchth 100 100n Conof f NS = 1 S2 1n SOC1 = 1 0 OUT+ IN+ S IC = 5 Conof f 1 OUT- IN- 100n PARAMETERS: E2 0 0 0 0 0 Lopen = 11.6 EVALUE IF( V(lctrl) > 0.25 ,Lopen ,Lclose) SOC1 value is initial Lclose = 13.8 0 State Of Charge of the battery, is set as Inverter (DC/AC) 70% of full voltage. Lopen value is load PARAMETERS: n=1 out_ac shutdown voltage. PARAMETERS: IN OUT Pload = 250 Lclose value is load G1 Iomax Rload IN+ OUT+ IN+ OUT+ EVout reconnect voltage IN- OUT- IN- OUT- IN+ OUT+ {100*100/Pload} GVALUE IN- OUT- ecal_Iomax EVALUE EVALUE 0 n*V(%IN+, %IN-)*I(IN)/100 IF( V(Irms)>V(Iomax), V(1VAC)*n*limit(V(%IN+, %IN-),7,17)*I(IN)/(V(Irms)+1u), V(1VAC)*100 ) 250(W) 0 Limit( V(%IN+, %IN-)/0.1, 1m, 100*V(Irms)/(n*limit(V(%IN+, %IN-),8,16)) ) 0 Load abs(I(out)) Rf ilt 1VAC Irms Vac1 OUT Cf ilt VOFF = 0 10k 8u VAMPL = 1.414 EC IC = 0.01 FREQ = 50 0 0  Simulation at 500W load, change Pload from 250(W) to 500(W) All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 20
  • 21. 4.3.1 Simulation Result (SOC1=1, 250W load) 100A PV generated current 0A I(PV) PV module charge the battery 16V 100A 1 Battery voltage 2 14V 0A Battery current  >> 12V -100A Battery starts to supply current 1 V(batt) 2 I(U1:PLUS) when solar power drops. 1.0V Battery SOC Fully charged, SOC1=1 (100%) stop charging 0V V(X_U1.SOC) 100VAC output 200V 20.0A 1 2 Inverter input current 0V 17.5A SEL>> -200V 15.0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_ac) 2 I(IN) Charging time Time  When battery is discharging , current I(U1:PLUS) is minus and when the battery is charging, the current is plus. • .Options • C1=10n IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.001s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 21
  • 22. 4.3.2 Simulation Result (SOC1=0.7, 250W load) 100A PV generated current 0A I(PV) 15.0V 100A Battery 1 voltage 2 (6.9292,11.587) 12.5V 0A (8.4725,13.800) Battery current V=Lopen >> V=Lclose Battery starts to supply current 10.0V -100A when solar power drops. 1 V(batt) 2 I(U1:PLUS) 1.0V SOC1=0.7 Fully charged, Battery SOC stop charging 0V V(X_U1.SOC) DC output voltage Shutdown 200V 20.0A 1 2 DC/DC input current Reconnect 0V 17.5A SEL>> -200V 15.0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_ac) 2 I(IN) Time Charging time • .Options • Run to time: 24s (24hours in real world) • RELTOL=0.01 • Step size: 0.01s • ABSTOL=1.0u • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 22
  • 23. 4.3.3 Simulation Result (SOC1=0.3, 250W load) 100A PV generated current 0A I(PV) 15.0V 100A Battery 1 voltage 2 V=Lopen 12.5V 0A (8.3025,13.800) Battery current SEL>> V=Lclose Battery starts to supply current (2.3577,11.587) 10.0V -100A when solar power drops. 1 V(batt) 2 I(U1:PLUS) 1.0V Battery SOC Fully charged, SOC1=0.7 stop charging 0V V(X_U1.SOC) DC output voltage 200V 20.0A 1 2 DC/DC input current Shutdown Reconnect 0V 17.5A >> -200V 15.0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_ac) 2 I(IN) Time Charging time • .Options • Run to time: 24s (24hours in real world) • RELTOL=0.01 • Step size: 0.01s • ABSTOL=1.0u • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 23
  • 24. 4.3.4 Simulation Result (SOC1=0.07, 250W load) 100A PV generated current 0A I(PV) 15.0V 100A Battery 1 voltage 2 12.5V 0A Battery current (8.3015,13.800) SEL>> V=Lclose Battery starts to supply current 10.0V -100A when solar power drops. 1 V(batt) 2 I(U1:PLUS) 1.0V Battery SOC Fully charged, stop charging SOC1=0.07 0V V(X_U1.SOC) DC output voltage 200V 20.0A 1 2 DC/DC input current Shutdown Reconnect 0V 17.5A >> -200V 15.0A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_ac) 2 I(IN) Time Charging time • .Options • Run to time: 24s (24hours in real world) • RELTOL=0.01 • Step size: 0.01s • ABSTOL=1.0u • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 24
  • 25. 4.3.5 Simulation Result (SOC1=1, 500W load) 100A PV generated current 0A I(PV) V=Lclose V=Lopen V=Lopen 15.0V 100A Battery 1 voltage 2 (4.8181,11.600) (22.476,11.575) 12.5V 0A Battery current (8.2935,13.800) >> Battery supplies current when solar 10.0V -100A power drops. 1 V(batt) 2 I(U1:PLUS) 1.0V Battery SOC Fully charged, SOC1=100 stop charging 0V V(X_U1.SOC) DC output voltage 200V 40A Shutdown Shutdown 1 2 DC/DC input current Reconnected 0V 35A SEL>> -200V 30A 0s 3s 6s 9s 12s 15s 18s 21s 24s 1 V(out_ac) 2 I(IN) Charging time Time • .Options • C1=10n IC=13.7 • RELTOL=0.01 • Run to time: 24s (24hours in real world) • ABSTOL=1.0u • Step size: 0.001s • ITL4=1000 All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 25
  • 26. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 250W. • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 6.93 hours (about 6:56AM.). – system load will reconnect again at 8:28AM. • If initial SOC is 30%, – this system will shutdown after 2.36 hours (about 2:21AM.). – system load will reconnect again at 8:18AM. • If initial SOC is 7%, – this system will start shutdown. – this system will reconnect again at 8:18AM (Morning). • With the PV generated current profile, battery will fully charged in about 5.48 hours. The simulation start from midnight(time=0). The system supplies DC load 500W. • If initial SOC is 100%, – this system will shutdown after 4.82 hours (about 4:49AM.). – system load will reconnect again at 8:18AM. – this system will shutdown again at 10:29PM. • With the PV generated current profile, battery will fully charged in about 6.15 hours. All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 26
  • 27. Simulations index Simulations Folder name 1. PV Ni-MH Battery Charger Circuit.................................................. charge-sol 2. Constant Current PV Ni-MH Battery Charger Circuit..................... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=1, 250W)............... sol_24h_soc100 4. PV-Battery System Simulation Circuit (SOC1=0.7, 250W)............ sol_24h_soc70 5. PV-Battery System Simulation Circuit (SOC1=0.3, 250W)............ sol_24h_soc30 6. PV-Battery System Simulation Circuit (SOC1=0.07, 250W).......... sol_24h_soc7 7. PV-Battery System Simulation Circuit (SOC1=1, 500W)............... sol_24h_soc100_500W All Rights Reserved Copyright (C) Bee Technologies Corporation 2013 27