SlideShare a Scribd company logo
1 of 22
Download to read offline
Toshihiro Fujii, Max Malacari, Jose A. Bellido, Bruce Dawson, Pavel
Horvath, Miroslav Hrabovsky, Jiaqi Jiang, Dusan Mandat, Ariel Matalon,
John N. Matthews, Pavel Motloch, Libor Nozka, Palatka, Miroslav Pech,
Paolo Privitera, Petr Schovanek, Stan B. Thomas, Petr Travnicek
2016/Feb/29, UHEAP 2016 workshop
Next-Generation Observatory: Fluorescence
detector Array of Single-pixel Telescopes (FAST)
Physics Goal and Future Prospects
Origin and Nature of Ultra-high Energy Cosmic Rays and
Particle Interactions at the Highest Energies
Exposure and Full Sky Coverage
TA×4 + Auger
JEM-EUSO : pioneer detection from
space and sizable increase of exposure
Detector R&D
Radio, SiPM,
Low-cost
Detectors
“Precision” Measurements
AugerPrime
Low energy enhancement
(Auger infill+HEAT+AMIGA,
TALE+TA-muon+NICHE)
5 - 10 years
Next Generation Observatories
In space (100×exposure): EUSO-Next
Ground (10×exposure with high quality events): Giant Ground Array, FAST
10 - 20 years
Fine pixelated camera
Low-cost and simplified/optimized FD
✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles
✦ Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
3
Single or few pixels and smaller optics
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
4
20 km UHECRs
16
56 EeV zenith 500
1
2
3
1
3 2
PhotonsatdiaphragmPhotonsatdiaphragm
Photonsatdiaphragm
Fluorescence detector Array of Single-pixel Telescopes
✦ Each telescope: 4 PMTs, 30°×30°
field of view (FoV).
✦ Reference design: 1 m2 aperture,
15°×15° FoV per PMT
✦ Each station: 12 telescopes, 48 PMTs,
30°×360° FoV.
✦ Deploy on a triangle grid with 20 km
spacing, like “Surface Detector
Array”.
✦ If 500 stations are installed, a ground
coverage is ~ 150,000 km2.
✦ Geometry: Radio, SD, coincidence of
three stations being investigated.
FAST Exposure
5
1.E+2
1.E+3
1.E+4
1.E+5
1.E+6
1.E+7
1.E+8
1990 2000 2010 2020 2030 2040
Exposures(L=km^2*sr*yr)
Year
Fly's Eye
AGASA
HiRes
Auger
JEM-EUSO
nadir
TAx4
JEM-EUSO
tilt
TA
✦ Conventional operation of FD
under 10~15% duty cycle
✦ Target: >1019.5 eV
✦ Observation in moon night to
achieve 25% duty cycle,
✦ Target: >1019.8 eV = Super
GZK events (Hotspot/
Warmspot)
✦ Test operation by Auger FD
(Radomir Smida).
✦ Ground area of 150,000 km2 with
25% duty cycle = 37,500 km2
(12×Auger, cost ~50 MUSD)
Preliminary
FAST
Window of Opportunity at EUSO-TA
6
EUSO prototype
Telescope Array site Black Rock Mesa station
✦ Temporally use the EUSO-TA optics at the TA site.
✦ Two Fresnel lenses (+ 1 UV acrylic plate in front for protection)
✦ 1 m2 aperture, 14°×14° FoV ≒ FAST reference design.
✦ Install FAST camera and DAQ system at EUSO-TA telescope.
✦ Milestones: Stable observation under large night sky backgrounds,
UHECR detection with external trigger from TAFD.
EUSO-TA telescope FAST camera
✦ 8 inch PMT
(R5912-03,
Hamamtsu)
✦ PMT base (E7694-01,
Hamamatsu)
✦ Ultra-violet band pass
filter (MUG6, Schott)
7
Start observation
1 2 3
4 5 6
7 8 9
Laser Signal to Check Performance
8
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
350
Data
Simulation
FAST
FOV
Hit
clouds
Directional sensitivity
by RayTrace of
EUSO-TA telescope
Efficiency
TAFD
FAST
Np.e./(100ns)
✦ Vertical Ultra-Violet laser at 6 km from FAST ≒ ~1019.2 eV
✦ Expected signal TAFD/FAST: (7 m2 aperture × 0.7 shadow
× 0.9 mirror) / (1 m2 aperture × 0.43 optics efficiency) ~10
✦ TAFD Peak signal : ~3000 p.e. / 100 ns
✦ FAST Peak signal : ~300 p.e. / 100 ns. All shots are
detected significantly.
✦ Agreement of signal shape with simulation.
UHECR Signal Search
FAST
FoV
✦ Data set: April and June 2014
observation, 19 days, 83 hours.
✦ Stable observation.
✦ We searched for UHECR signal in
coincidence between FAST and TAFD.
1. Search for TAFD signal crossing the
field of view (FoV) with FAST.
2. Search for a significant signal (>5σ)
with FAST waveform at the same
trigger.
✦ 16 candidates found.
✦ Low energy showers as expected.
log(E/eV)=18.0
Np.e./(100ns)
9
TAFD
FAST
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
0
20
40
60
80
(E (eV))10
log
17 17.5 18 18.5 19 19.5 20
Impactparameter[km]
1
10
2
10
Preliminary
Detectable
Figure 14: Distribution of the impact parameter as a function of the primary energy recon-
structed by TA for shower candidates detected by the FAST prototype. The line indicates
the maximum detectable distance by the FAST prototype (not fitted).
Distance vs Energy (from TAFD) for Candidates
10
FAST
FoV
Almost! log(E/eV)=19.1
log(E/eV)=18.0
Results on the First Field Observation
✦ Data set: April and June 2014 observation, 19 days, 83 hours
✦ Very stable observation under large night sky backgrounds
✦ Laser detection to confirm a performance of the prototype
✦ UHECR search : 16 candidates coincidence with TA-FD
✦ Very successful example among Telescope Array, JEM-EUSO, Pierre
Auger Collaborations.
11
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
350
Data
Simulation
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
0
20
40
60
80
Vertical Laser
~1019.3 eV
Cosmic Ray
~1018.0 eV
Astroparticle Physics 74 (2016) 64-72, arXiv: 1504.00692
(E (eV))10
log
17 17.5 18 18.5 19 19.5 20
Impactparameter[km]
1
10
2
10
Preliminary
Detectable
Figure 14: Distribution of the impact parameter as a function of the primary energy reco
Accepted for publication
in Astroparticle Physics
Full-scale FAST Prototype
12
✦ Confirmed milestones by EUSO-TA Telescope
✦ Stable operation under high night sky
backgrounds.
✦ UHECR detection.
✦ Next milestones by new full-scale FAST prototype
✦ Establish the FAST sensitivity.
✦ Detect a shower profile including Xmax with
FAST
FAST meeting in December 2015
(Olomouc, Czech Republic)
FAST - progress in design and construction
UV Plexiglass Segmented primary mirror8 inch PMT camera
(2 x 2)
1m2 aperture
FOV = 25°x 25°
variable
tilt
Joint Laboratory of Optics Olomouc – Malargue November 2015
Prototype - October 2015
15°
45°
13Joint Laboratory of Optics in Olomouc, Czech Republic
Full-scale FAST Prototype
Ray-Trace Simulation
14420mm x 420 mm
✦ The spherical surface on
PMT has complicated
point spread function.
✦ We need to calculation
efficiency of optics.
✦ It will be used in the
offline analysis after
data-taking is started.
Focal plane Bottom plane
UV Band-pass Filter
15
UV band pass
filter used in
MAGIC
http://arxiv.org/pdf/1509.02048v2.pdf
Using UV-pass filters for bright Moon observations with MAGIC
Wavelenght [nm]
300 350 400 450 500 550 600
Photonflux[a.u.]
0
1
2
3
4
5
6
7
8
9
10
Filtertransmission
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Direct Moonlight
Diffuse Moonlight
Cherenkov light
Filter transmission
Figure 1: The blue curve shows the typical Cherenkov light spectrum for a vertical s
ing UV-pass filters for bright Moon observations with MAGIC D. Guberman
gure 2: On the left, the filters installed in the camera of one of the MAGIC telescopes. On the right, the
15
FAST components
UV PMMA „window“
in octagonal aperture
4 PMTs
camera
8 inch
UV filter
glass
cover = black shroud
DUST and STRAY LIGHT protection
cabling
electronics
mirrors
4
Building - ground plan – required dimensions
Cca3000mm
Cca 3500 mm
600mm
FOV
5Cca3000mm
Cca 3500 mm
FOV
Building height – elevation 15°
required dimensions
Cca 1000 mm
Design of Hut and Shutter
16
shutter – like sectional garrage doors
closed
open
roof „window“
Possible solution of building
4000mm
Cca3000mm
closed
open
✦ Adjustable elevation 15° or 45°,
like HEAT and TALE, to enlarge
the FoV of the current FD.
✦ Robust design for maintenance free
and stand-alone observation.
“Easy” to Change Elevation
17
FAST Prototype in February 2016
18
FAST Hut and Shutter
͛͛”†
ǡ 
—Ž›͚Ǧ͡ǡ ͚͙͛͘ǡ‹‘ †‡ 
ƒ‡‹”‘Ǧ ”ƒœ‹Ž
^ ŝŶ d ͲZD ^ŝƚĞ
ϯELS
Black Rock Mesa FD Station
2012年年11⽉月8⽇日
Many activities,
EUSO-TA, Radio
FAST͛͛”†
ǡ 
—Ž›͚Ǧ͡ǡ ͚͙͛͘ǡ‹‘ †‡ 
ƒ‡‹”‘Ǧ ”ƒœ‹Ž
^ ŝŶ d ͲZD ^ŝƚĞ
ϯ
We will plan to install the full-scale FAST telescope on June 2016.
Possible Application of FAST Prototype
20
1. Introduction
The hybrid detector of the Pierre Auger Observatory [1] consists of 1600
surface stations – water Cherenkov tanks and their associated electronics – and
24 air fluorescence telescopes. The Observatory is located outside the city of
Malarg¨ue, Argentina (69◦
W, 35◦
S, 1400 m a.s.l.) and the detector layout is
shown in Fig. 1. Details of the construction, deployment and maintenance of
the array of surface detectors are described elsewhere [2]. In this paper we will
concentrate on details of the fluorescence detector and its performance.
Figure 1: Status of the Pierre Auger Observatory as of March 2009. Gray dots show the
positions of surface detector stations, lighter gray shades indicate deployed detectors, while
a r t i c l e i n f o
Article history:
Received 25 December 2011
Received in revised form
25 May 2012
Accepted 25 May 2012
Available online 2 June 2012
Keywords:
Ultra-high energy cosmic rays
Telescope Array experiment
Extensive air shower array
a b s t r a c t
The Telescope Array (TA) experiment, located in the western desert of Utah, USA,
observation of extensive air showers from extremely high energy cosmic rays. The
surface detector array surrounded by three fluorescence detectors to enable simulta
shower particles at ground level and fluorescence photons along the shower trac
detectors and fluorescence detectors started full hybrid observation in March, 2008
describe the design and technical features of the TA surface detector.
 2012 Elsevier B.V.
1. Introduction
The main aim of the Telescope Array (TA) experiment [1] is to
explore the origin of ultra high energy cosmic rays (UHECR) using
their energy spectrum, composition and anisotropy. There are two
major methods of observation for detecting cosmic rays in the
energy region above 1017.5
eV. One method which was used at the
High Resolution Fly’s Eye (HiRes) experiment is to detect air
fluorescence light along air shower track using fluorescence
detectors. The other method, adopted by the AGASA experiment,
is to detect air shower particles at ground level using surface
detectors deployed over a wide area ( $ 100 km
2
).
The AGASA experiment reported that there were 11 events
above 1020
eV in the energy spectrum [2,3]. However, the
existence of the GZK cutoff [4,5] was reported by the HiRes
experiment [6]. The Pierre Auger experimen
suppression on the cosmic ray flux at energy a
[7] using an energy scale obtained by fluores
scopes (FD). The contradiction between results f
detectors and those from surface detector arrays
be investigated by having independent ener
both techniques. Hybrid observations with SD
us to compare both energy scales. Information ab
and impact timing from SD observation impro
reconstruction of FD observations. Observatio
detectors have a nearly 100% duty cycle, which
especially for studies of anisotropy. Correlations
directions of cosmic rays and astronomical objec
region should give a key to exploring the origin o
their propagation in the galactic magnetic field.
Fig. 1. Layout of the Telescope Array in Utah, USA. Squares denote 507 SDs. There are three subarrays controlled by three communication towers den
three star symbols denote the FD stations.
T. Abu-Zayyad et al. / Nuclear Instruments and Methods in Physics Research A 689 (2012) 87–9788
Pierre Auger Collaboration, NIM-A (2010) Telescope Array Collaboration NIM-A (2012)
Identical
simplified FD
Telescope Array
Experiment
Pierre Auger Observatory
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
Efficiency
0
0.2
0.4
0.6
0.8
1 Proton
Iron
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
EnergyResolution[%]
0
5
10
15
20
25
Proton
Iron
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
]2
Resolution[g/cmmaxX
0
20
40
60
80
100
Proton
Iron
Energy
Xmax
✦ Install FAST at Auger and TA for a cross calibration.
✦ Profile reconstruction with geometry given by SD (smearing
gaussian width of 1° in direction, 100 m in core location).
✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV
✦ Independent cross-check of Energy and Xmax scale
between Auger and TA
(E (eV))
10
log
17.5 18 18.5 19 19.5 20 20.5
)-1s-1sr-2m2
(eV24
/103
E×Flux
-1
10
1
10
Preliminary
TA ICRC 2015
Auger ICRC 2015

More Related Content

What's hot

Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonToshihiro FUJII
 
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Toshihiro FUJII
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013AREA Science Park
 
Simulating X-ray Observations with yt
Simulating X-ray Observations with ytSimulating X-ray Observations with yt
Simulating X-ray Observations with ytJohn ZuHone
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran Inc.
 
Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV LaboratoryMultilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV LaboratoryJoakim Laksman
 
Grb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterGrb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterSérgio Sacani
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FASTToshihiro FUJII
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Toshihiro FUJII
 
tw1979_current_topics_paper
tw1979_current_topics_papertw1979_current_topics_paper
tw1979_current_topics_paperThomas Wigg
 
Imaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleImaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleDatabricks
 
20131107 damasso great
20131107 damasso great20131107 damasso great
20131107 damasso greatOAVdA_APACHE
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic CosmosCosmoAIMS Bassett
 
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxgrssieee
 

What's hot (20)

Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE Photon
 
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
Simulating X-ray Observations with yt
Simulating X-ray Observations with ytSimulating X-ray Observations with yt
Simulating X-ray Observations with yt
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
 
Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV LaboratoryMultilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
 
GAIA @SpaceUpParis
GAIA @SpaceUpParisGAIA @SpaceUpParis
GAIA @SpaceUpParis
 
Grb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterGrb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monster
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
SSC13-IV-8
SSC13-IV-8SSC13-IV-8
SSC13-IV-8
 
Cosmology Research in China
Cosmology Research in ChinaCosmology Research in China
Cosmology Research in China
 
tw1979_current_topics_paper
tw1979_current_topics_papertw1979_current_topics_paper
tw1979_current_topics_paper
 
Imaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleImaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black Hole
 
20131107 damasso great
20131107 damasso great20131107 damasso great
20131107 damasso great
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic Cosmos
 
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 

Similar to Next-Generation Observatory: Fluorescence detector Array of Single Pixel Telescopes (FAST)

First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...Ayuntamiento de Alcalá la Real (Jaén)
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringSérgio Sacani
 
Uv lunar observatory ana gomez castro
Uv lunar observatory ana gomez castroUv lunar observatory ana gomez castro
Uv lunar observatory ana gomez castroILOAHawaii
 
Eis meeting talk
Eis meeting talkEis meeting talk
Eis meeting talkastrosanti
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster RevisedAlejandro Cota
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaborationahmad bassiouny
 
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES  A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES Roberto Valer
 
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...Sérgio Sacani
 
Dhrimaj_Helion_FinalPaper_ECE523
Dhrimaj_Helion_FinalPaper_ECE523Dhrimaj_Helion_FinalPaper_ECE523
Dhrimaj_Helion_FinalPaper_ECE523Helion Dhrimaj
 
20131107 damasso great
20131107 damasso great20131107 damasso great
20131107 damasso greatOAVdA_Social
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentationClifford Stone
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...Cristian Randieri PhD
 
How do engines make a gps for the milky way possible
How do engines make a gps for the milky way possibleHow do engines make a gps for the milky way possible
How do engines make a gps for the milky way possibleBurraqITSloution
 
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionizationSpectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionizationSérgio Sacani
 
Collective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceCollective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceTeruakiEnoto1
 

Similar to Next-Generation Observatory: Fluorescence detector Array of Single Pixel Telescopes (FAST) (20)

First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY PUBLICA UN PROYECTO DE INVE...
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
 
Uv lunar observatory ana gomez castro
Uv lunar observatory ana gomez castroUv lunar observatory ana gomez castro
Uv lunar observatory ana gomez castro
 
Goddard 2015: Mark Clampin, NASA
Goddard 2015: Mark Clampin, NASAGoddard 2015: Mark Clampin, NASA
Goddard 2015: Mark Clampin, NASA
 
Eis meeting talk
Eis meeting talkEis meeting talk
Eis meeting talk
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster Revised
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaboration
 
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES  A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
A PHYSICAL METHOD TO COMPUTE SURFACE RADIATION FROM GEOSTATIONARY SATELLITES
 
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
An evolucionary missing_link_a_modest_mass_early_type_galaxy_hosting_an_over_...
 
Dhrimaj_Helion_FinalPaper_ECE523
Dhrimaj_Helion_FinalPaper_ECE523Dhrimaj_Helion_FinalPaper_ECE523
Dhrimaj_Helion_FinalPaper_ECE523
 
20131107 damasso great
20131107 damasso great20131107 damasso great
20131107 damasso great
 
637126main stysley presentation
637126main stysley presentation637126main stysley presentation
637126main stysley presentation
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
How do engines make a gps for the milky way possible
How do engines make a gps for the milky way possibleHow do engines make a gps for the milky way possible
How do engines make a gps for the milky way possible
 
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionizationSpectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
 
Collective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceCollective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric Science
 

More from Toshihiro FUJII

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...Toshihiro FUJII
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)Toshihiro FUJII
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究Toshihiro FUJII
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdfToshihiro FUJII
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Toshihiro FUJII
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Toshihiro FUJII
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告Toshihiro FUJII
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 

More from Toshihiro FUJII (9)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 

Recently uploaded

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfWadeK3
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 

Recently uploaded (20)

Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 

Next-Generation Observatory: Fluorescence detector Array of Single Pixel Telescopes (FAST)

  • 1. Toshihiro Fujii, Max Malacari, Jose A. Bellido, Bruce Dawson, Pavel Horvath, Miroslav Hrabovsky, Jiaqi Jiang, Dusan Mandat, Ariel Matalon, John N. Matthews, Pavel Motloch, Libor Nozka, Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Stan B. Thomas, Petr Travnicek 2016/Feb/29, UHEAP 2016 workshop Next-Generation Observatory: Fluorescence detector Array of Single-pixel Telescopes (FAST)
  • 2. Physics Goal and Future Prospects Origin and Nature of Ultra-high Energy Cosmic Rays and Particle Interactions at the Highest Energies Exposure and Full Sky Coverage TA×4 + Auger JEM-EUSO : pioneer detection from space and sizable increase of exposure Detector R&D Radio, SiPM, Low-cost Detectors “Precision” Measurements AugerPrime Low energy enhancement (Auger infill+HEAT+AMIGA, TALE+TA-muon+NICHE) 5 - 10 years Next Generation Observatories In space (100×exposure): EUSO-Next Ground (10×exposure with high quality events): Giant Ground Array, FAST 10 - 20 years
  • 3. Fine pixelated camera Low-cost and simplified/optimized FD ✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles ✦ Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 3 Single or few pixels and smaller optics Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 4. 4 20 km UHECRs 16 56 EeV zenith 500 1 2 3 1 3 2 PhotonsatdiaphragmPhotonsatdiaphragm Photonsatdiaphragm Fluorescence detector Array of Single-pixel Telescopes ✦ Each telescope: 4 PMTs, 30°×30° field of view (FoV). ✦ Reference design: 1 m2 aperture, 15°×15° FoV per PMT ✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV. ✦ Deploy on a triangle grid with 20 km spacing, like “Surface Detector Array”. ✦ If 500 stations are installed, a ground coverage is ~ 150,000 km2. ✦ Geometry: Radio, SD, coincidence of three stations being investigated.
  • 5. FAST Exposure 5 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7 1.E+8 1990 2000 2010 2020 2030 2040 Exposures(L=km^2*sr*yr) Year Fly's Eye AGASA HiRes Auger JEM-EUSO nadir TAx4 JEM-EUSO tilt TA ✦ Conventional operation of FD under 10~15% duty cycle ✦ Target: >1019.5 eV ✦ Observation in moon night to achieve 25% duty cycle, ✦ Target: >1019.8 eV = Super GZK events (Hotspot/ Warmspot) ✦ Test operation by Auger FD (Radomir Smida). ✦ Ground area of 150,000 km2 with 25% duty cycle = 37,500 km2 (12×Auger, cost ~50 MUSD) Preliminary FAST
  • 6. Window of Opportunity at EUSO-TA 6 EUSO prototype Telescope Array site Black Rock Mesa station ✦ Temporally use the EUSO-TA optics at the TA site. ✦ Two Fresnel lenses (+ 1 UV acrylic plate in front for protection) ✦ 1 m2 aperture, 14°×14° FoV ≒ FAST reference design. ✦ Install FAST camera and DAQ system at EUSO-TA telescope. ✦ Milestones: Stable observation under large night sky backgrounds, UHECR detection with external trigger from TAFD. EUSO-TA telescope FAST camera ✦ 8 inch PMT (R5912-03, Hamamtsu) ✦ PMT base (E7694-01, Hamamatsu) ✦ Ultra-violet band pass filter (MUG6, Schott)
  • 7. 7 Start observation 1 2 3 4 5 6 7 8 9
  • 8. Laser Signal to Check Performance 8 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 350 Data Simulation FAST FOV Hit clouds Directional sensitivity by RayTrace of EUSO-TA telescope Efficiency TAFD FAST Np.e./(100ns) ✦ Vertical Ultra-Violet laser at 6 km from FAST ≒ ~1019.2 eV ✦ Expected signal TAFD/FAST: (7 m2 aperture × 0.7 shadow × 0.9 mirror) / (1 m2 aperture × 0.43 optics efficiency) ~10 ✦ TAFD Peak signal : ~3000 p.e. / 100 ns ✦ FAST Peak signal : ~300 p.e. / 100 ns. All shots are detected significantly. ✦ Agreement of signal shape with simulation.
  • 9. UHECR Signal Search FAST FoV ✦ Data set: April and June 2014 observation, 19 days, 83 hours. ✦ Stable observation. ✦ We searched for UHECR signal in coincidence between FAST and TAFD. 1. Search for TAFD signal crossing the field of view (FoV) with FAST. 2. Search for a significant signal (>5σ) with FAST waveform at the same trigger. ✦ 16 candidates found. ✦ Low energy showers as expected. log(E/eV)=18.0 Np.e./(100ns) 9 TAFD FAST
  • 10. Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 0 20 40 60 80 (E (eV))10 log 17 17.5 18 18.5 19 19.5 20 Impactparameter[km] 1 10 2 10 Preliminary Detectable Figure 14: Distribution of the impact parameter as a function of the primary energy recon- structed by TA for shower candidates detected by the FAST prototype. The line indicates the maximum detectable distance by the FAST prototype (not fitted). Distance vs Energy (from TAFD) for Candidates 10 FAST FoV Almost! log(E/eV)=19.1 log(E/eV)=18.0
  • 11. Results on the First Field Observation ✦ Data set: April and June 2014 observation, 19 days, 83 hours ✦ Very stable observation under large night sky backgrounds ✦ Laser detection to confirm a performance of the prototype ✦ UHECR search : 16 candidates coincidence with TA-FD ✦ Very successful example among Telescope Array, JEM-EUSO, Pierre Auger Collaborations. 11 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 350 Data Simulation Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 0 20 40 60 80 Vertical Laser ~1019.3 eV Cosmic Ray ~1018.0 eV Astroparticle Physics 74 (2016) 64-72, arXiv: 1504.00692 (E (eV))10 log 17 17.5 18 18.5 19 19.5 20 Impactparameter[km] 1 10 2 10 Preliminary Detectable Figure 14: Distribution of the impact parameter as a function of the primary energy reco
  • 12. Accepted for publication in Astroparticle Physics Full-scale FAST Prototype 12 ✦ Confirmed milestones by EUSO-TA Telescope ✦ Stable operation under high night sky backgrounds. ✦ UHECR detection. ✦ Next milestones by new full-scale FAST prototype ✦ Establish the FAST sensitivity. ✦ Detect a shower profile including Xmax with FAST FAST meeting in December 2015 (Olomouc, Czech Republic)
  • 13. FAST - progress in design and construction UV Plexiglass Segmented primary mirror8 inch PMT camera (2 x 2) 1m2 aperture FOV = 25°x 25° variable tilt Joint Laboratory of Optics Olomouc – Malargue November 2015 Prototype - October 2015 15° 45° 13Joint Laboratory of Optics in Olomouc, Czech Republic Full-scale FAST Prototype
  • 14. Ray-Trace Simulation 14420mm x 420 mm ✦ The spherical surface on PMT has complicated point spread function. ✦ We need to calculation efficiency of optics. ✦ It will be used in the offline analysis after data-taking is started. Focal plane Bottom plane
  • 15. UV Band-pass Filter 15 UV band pass filter used in MAGIC http://arxiv.org/pdf/1509.02048v2.pdf Using UV-pass filters for bright Moon observations with MAGIC Wavelenght [nm] 300 350 400 450 500 550 600 Photonflux[a.u.] 0 1 2 3 4 5 6 7 8 9 10 Filtertransmission 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Direct Moonlight Diffuse Moonlight Cherenkov light Filter transmission Figure 1: The blue curve shows the typical Cherenkov light spectrum for a vertical s ing UV-pass filters for bright Moon observations with MAGIC D. Guberman gure 2: On the left, the filters installed in the camera of one of the MAGIC telescopes. On the right, the
  • 16. 15 FAST components UV PMMA „window“ in octagonal aperture 4 PMTs camera 8 inch UV filter glass cover = black shroud DUST and STRAY LIGHT protection cabling electronics mirrors 4 Building - ground plan – required dimensions Cca3000mm Cca 3500 mm 600mm FOV 5Cca3000mm Cca 3500 mm FOV Building height – elevation 15° required dimensions Cca 1000 mm Design of Hut and Shutter 16 shutter – like sectional garrage doors closed open roof „window“ Possible solution of building 4000mm Cca3000mm closed open ✦ Adjustable elevation 15° or 45°, like HEAT and TALE, to enlarge the FoV of the current FD. ✦ Robust design for maintenance free and stand-alone observation.
  • 17. “Easy” to Change Elevation 17
  • 18. FAST Prototype in February 2016 18
  • 19. FAST Hut and Shutter ͛͛”†
  • 20. ǡ —Ž›͚Ǧ͡ǡ ͚͙͛͘ǡ‹‘ †‡ ƒ‡‹”‘Ǧ ”ƒœ‹Ž ^ ŝŶ d ͲZD ^ŝƚĞ ϯELS Black Rock Mesa FD Station 2012年年11⽉月8⽇日 Many activities, EUSO-TA, Radio FAST͛͛”†
  • 21. ǡ —Ž›͚Ǧ͡ǡ ͚͙͛͘ǡ‹‘ †‡ ƒ‡‹”‘Ǧ ”ƒœ‹Ž ^ ŝŶ d ͲZD ^ŝƚĞ ϯ We will plan to install the full-scale FAST telescope on June 2016.
  • 22. Possible Application of FAST Prototype 20 1. Introduction The hybrid detector of the Pierre Auger Observatory [1] consists of 1600 surface stations – water Cherenkov tanks and their associated electronics – and 24 air fluorescence telescopes. The Observatory is located outside the city of Malarg¨ue, Argentina (69◦ W, 35◦ S, 1400 m a.s.l.) and the detector layout is shown in Fig. 1. Details of the construction, deployment and maintenance of the array of surface detectors are described elsewhere [2]. In this paper we will concentrate on details of the fluorescence detector and its performance. Figure 1: Status of the Pierre Auger Observatory as of March 2009. Gray dots show the positions of surface detector stations, lighter gray shades indicate deployed detectors, while a r t i c l e i n f o Article history: Received 25 December 2011 Received in revised form 25 May 2012 Accepted 25 May 2012 Available online 2 June 2012 Keywords: Ultra-high energy cosmic rays Telescope Array experiment Extensive air shower array a b s t r a c t The Telescope Array (TA) experiment, located in the western desert of Utah, USA, observation of extensive air showers from extremely high energy cosmic rays. The surface detector array surrounded by three fluorescence detectors to enable simulta shower particles at ground level and fluorescence photons along the shower trac detectors and fluorescence detectors started full hybrid observation in March, 2008 describe the design and technical features of the TA surface detector. 2012 Elsevier B.V. 1. Introduction The main aim of the Telescope Array (TA) experiment [1] is to explore the origin of ultra high energy cosmic rays (UHECR) using their energy spectrum, composition and anisotropy. There are two major methods of observation for detecting cosmic rays in the energy region above 1017.5 eV. One method which was used at the High Resolution Fly’s Eye (HiRes) experiment is to detect air fluorescence light along air shower track using fluorescence detectors. The other method, adopted by the AGASA experiment, is to detect air shower particles at ground level using surface detectors deployed over a wide area ( $ 100 km 2 ). The AGASA experiment reported that there were 11 events above 1020 eV in the energy spectrum [2,3]. However, the existence of the GZK cutoff [4,5] was reported by the HiRes experiment [6]. The Pierre Auger experimen suppression on the cosmic ray flux at energy a [7] using an energy scale obtained by fluores scopes (FD). The contradiction between results f detectors and those from surface detector arrays be investigated by having independent ener both techniques. Hybrid observations with SD us to compare both energy scales. Information ab and impact timing from SD observation impro reconstruction of FD observations. Observatio detectors have a nearly 100% duty cycle, which especially for studies of anisotropy. Correlations directions of cosmic rays and astronomical objec region should give a key to exploring the origin o their propagation in the galactic magnetic field. Fig. 1. Layout of the Telescope Array in Utah, USA. Squares denote 507 SDs. There are three subarrays controlled by three communication towers den three star symbols denote the FD stations. T. Abu-Zayyad et al. / Nuclear Instruments and Methods in Physics Research A 689 (2012) 87–9788 Pierre Auger Collaboration, NIM-A (2010) Telescope Array Collaboration NIM-A (2012) Identical simplified FD Telescope Array Experiment Pierre Auger Observatory log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 Efficiency 0 0.2 0.4 0.6 0.8 1 Proton Iron log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 EnergyResolution[%] 0 5 10 15 20 25 Proton Iron log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 ]2 Resolution[g/cmmaxX 0 20 40 60 80 100 Proton Iron Energy Xmax ✦ Install FAST at Auger and TA for a cross calibration. ✦ Profile reconstruction with geometry given by SD (smearing gaussian width of 1° in direction, 100 m in core location). ✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV ✦ Independent cross-check of Energy and Xmax scale between Auger and TA (E (eV)) 10 log 17.5 18 18.5 19 19.5 20 20.5 )-1s-1sr-2m2 (eV24 /103 E×Flux -1 10 1 10 Preliminary TA ICRC 2015 Auger ICRC 2015
  • 23. Summary and Future Plans 21 ✦Fluorescence detector Array of Single-pixel Telescopes (FAST) ✦Deploy the economical fluorescence detector array. ✦Detect UHECRs and neutral particles. ✦This concept of single-pixel telescope was confirmed by the field measurements using the EUSO-TA optics. ✦Published in Astroparticle Physics 74 (2016) 64-72 ✦The full-scale FAST prototype is being constructed, and almost ready to ship to Utah. ✦We plan to install in June 2016.