SlideShare a Scribd company logo
1 of 14
Download to read offline
Toshihiro Fujii (KICP University of Chicago, ICRR University of Tokyo)
fujii@kicp.uchicago.edu
Max Malacari, Mario Bertaina, Marco Casolino, Bruce Dawson,
Pavel Horvath, Miroslav Hrabovsky, Jiaqi Jiang, Dusan Mandat,
Ariel Matalon, John N. Matthews, Pavel Motloch, Miroslav Palatka,
Miroslav Pech, Paolo Privitera, Petr Schovanek, Yoshiyuki Takizawa,
Stan B. Thomas, Petr Travnicek, Katsuya Yamazaki
First results from a prototype for the Fluorescence
detector Array of Single-pixel Telescopes
arXiv: 1504.00692
PoS (ICRC2015) 323
Physics Goal and Future Prospects
2
Origin and Nature of Ultra-high Energy Cosmic Rays (UHECRs) and
Particle Interactions at the Highest Energies
Exposure and Full Sky Coverage
TA×4 + Auger
JEM-EUSO : pioneer detection from
space and sizable increase of exposure
Detector R&D
Radio, SiPM,
Low-cost
Fluorescence
Detector (FD)
“Precision” Measurements
AugerPrime
Low energy enhancement
(Auger infill+HEAT+AMIGA,
TALE+TA-muon+NICHE)
5 - 10 years
Next Generation Observatories
In space (100×exposure): Super-EUSO
Ground (10×exposure with high quality events):
10 - 20 years
Fine pixelated camera
Low-cost and simplified/optimized FD
✦Target : > 1019.5 eV, UHE nuclei and neutral particles
✦Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
3
Single or few pixels and smaller optics
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
4
20 km
✦ Each telescope: 4 PMTs, 30°×30°
field of view (FoV).
✦ Reference design: 1 m2 aperture,
15°×15° FoV per PMT
✦ Each station: 12 telescopes, 48
PMTs, 30°×360° FoV.
✦ Deploy on a triangle grid with 20 km
spacing, like “surface detector
array”.
✦ If 127 stations are installed, a ground
coverage is ~ 40,000 km2.
✦ Geometry: Radio, SD, coincidence
of three stations being investigated.
UHECRs
16
56 EeV zenith 500
1
2
3
1
3 2
PhotonsatdiaphragmPhotonsatdiaphragm
Photonsatdiaphragm
Fluorescence detector Array of Single-pixel Telescopes
Window of Opportunity at EUSO-TA
5
EUSO prototype
Telescope Array site Black Rock Mesa station
✦ Temporally use the EUSO-TA optics at the TA site.
✦ Two Fresnel lenses (+ 1 UV acrylic plate in front for protection)
✦ 1 m2 aperture, 14°×14° FoV ≒ FAST reference design.
✦ Install FAST camera and DAQ system at EUSO-TA telescope.
✦ Milestones: Stable observation under large night sky backgrounds,
UHECR detection with external trigger from TAFD.
EUSO-TA telescope FAST camera
✦ 8 inch PMT
(R5912-03,
Hamamtsu)
✦ PMT base (E7694-01,
Hamamatsu)
✦ Ultra-violet band pass
filter (MUG6, Schott)
6
Start observation
1 2 3
4 5 6
7 8 9
Laser Signal to Check Performance
7
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
350
Data
Simulation
FAST
FOV
Hit
clouds
Directional sensitivity
by RayTrace of
EUSO-TA telescope
Efficiency
TAFD
FAST
Np.e./(100ns)
✦ Vertical Ultra-Violet laser at 6 km from FAST ≒ ~1019.2 eV
✦ Expected signal TAFD/FAST: (7 m2 aperture × 0.7 shadow
× 0.9 mirror) / (1 m2 aperture × 0.43 optics efficiency) ~10
✦ TAFD Peak signal : ~3000 p.e. / 100 ns
✦ FAST Peak signal : ~300 p.e. / 100 ns. All shots are
detected significantly.
✦ Agreement of signal shape with simulation.
UHECR Signal Search
FAST
FoV
✦ Data set: April and June 2014
observation, 19 days, 83 hours.
✦ Stable observation.
✦ We searched for UHECR signal in
coincidence between FAST and TAFD.
1. Search for TAFD signal crossing the
field of view (FoV) with FAST.
2. Search for a significant signal (>5σ)
with FAST waveform at the same
trigger.
✦ 16 candidates found.
✦ Low energy showers as expected.
log(E/eV)=18.0
Np.e./(100ns)
8
TAFD
FAST
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
0
20
40
60
80
(E (eV))10
log
17 17.5 18 18.5 19 19.5 20
Impactparameter[km]
1
10
2
10
Preliminary
Detectable
Figure 14: Distribution of the impact parameter as a function of the primary energy recon-
structed by TA for shower candidates detected by the FAST prototype. The line indicates
the maximum detectable distance by the FAST prototype (not fitted).
Distance vs Energy (from TAFD) for Candidates
9
FAST
FoV
Almost! log(E/eV)=19.1
log(E/eV)=18.0
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
40
50
60
(a) Data: Erec = 1017.2 eV
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
40
50
(b) Data: Erec = 1018.0 eV
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
10
20
30
40
50
60
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
10
20
30
40
50
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
40
50
60
(a) Data: Erec = 1017.2 eV
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
40
50
(b) Data: Erec = 1018.0 eV
/(100ns)p.e.N
10
20
30
40
50
60
/(100ns)p.e.N
10
20
30
40
50
Comparison to Expected Signal from UHECRs
10
log(E/eV)=17.2 log(E/eV)=18.0
Simulation
Data
Simulation
Data
✦ Geometry, Energy and
Xmax was reconstructed by
the TAFD monocular
analysis.
✦ Based on these
information, we calculate
expected signal by FAST
prototype.
✦ Size, shape and width are
consistent with expectation.
✦ A signal location is fluctuated
within the TAFD trigger
frame of 12.8 µs.
New FAST Prototype being Constructed
11Joint Laboratory of Optics in Olomouc, Czech Republic
✦ Confirmed milestones
by EUSO-TA Telescope
✦ Stable operation
under high night sky
backgrounds.
✦ UHECR detection.
✦ Next milestones by new
FAST prototype
✦ Establish the FAST
sensitivity.
✦ Detect a shower
profile including
Xmax with FAST
4 PMTs, 30°×30° FoV
15
FAST components
UV PMMA „window“
in octagonal aperture
4 PMTs
camera
8 inch
UV filter
glass
cover = black shroud
DUST and STRAY LIGHT protection
cabling
electronics
mirrors
4
Building - ground plan – required dimensions
Cca3000mm
Cca 3500 mm
600mm
FOV
5Cca3000mm
Cca 3500 mm
FOV
Building height – elevation 15°
required dimensions
Cca 1000 mm
Design of Hut and Shutter
12
shutter – like sectional garrage doors
closed
open
roof „window“
Possible solution of building
4000mm
Cca3000mm
closed
open
✦ Adjustable elevation 15° or 45°,
like HEAT and TALE, to enlarge
the FoV of the current FD.
✦ Robust design for maintenance free
and stand-alone observation.
✦ Install FAST at Auger and TA for a cross calibration.
✦ Profile reconstruction with geometry given by SD (1° in direction, 100 m
in core location).
✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV
✦ Independent check of Energy and Xmax scale between Auger and TA
Possible Application of FAST Prototype
13
1. Introduction
The hybrid detector of the Pierre Auger Observatory [1] consists of 1600
surface stations – water Cherenkov tanks and their associated electronics – and
24 air fluorescence telescopes. The Observatory is located outside the city of
Malarg¨ue, Argentina (69◦
W, 35◦
S, 1400 m a.s.l.) and the detector layout is
shown in Fig. 1. Details of the construction, deployment and maintenance of
the array of surface detectors are described elsewhere [2]. In this paper we will
concentrate on details of the fluorescence detector and its performance.
Figure 1: Status of the Pierre Auger Observatory as of March 2009. Gray dots show the
positions of surface detector stations, lighter gray shades indicate deployed detectors, while
a r t i c l e i n f o
Article history:
Received 25 December 2011
Received in revised form
25 May 2012
Accepted 25 May 2012
Available online 2 June 2012
Keywords:
Ultra-high energy cosmic rays
Telescope Array experiment
Extensive air shower array
a b s t r a c t
The Telescope Array (TA) experiment, located in the western desert of Utah, USA,
observation of extensive air showers from extremely high energy cosmic rays. The
surface detector array surrounded by three fluorescence detectors to enable simulta
shower particles at ground level and fluorescence photons along the shower trac
detectors and fluorescence detectors started full hybrid observation in March, 2008
describe the design and technical features of the TA surface detector.
& 2012 Elsevier B.V.
1. Introduction
The main aim of the Telescope Array (TA) experiment [1] is to
explore the origin of ultra high energy cosmic rays (UHECR) using
their energy spectrum, composition and anisotropy. There are two
major methods of observation for detecting cosmic rays in the
energy region above 1017.5
eV. One method which was used at the
High Resolution Fly’s Eye (HiRes) experiment is to detect air
fluorescence light along air shower track using fluorescence
detectors. The other method, adopted by the AGASA experiment,
is to detect air shower particles at ground level using surface
detectors deployed over a wide area ( $ 100 km
2
).
The AGASA experiment reported that there were 11 events
above 1020
eV in the energy spectrum [2,3]. However, the
existence of the GZK cutoff [4,5] was reported by the HiRes
experiment [6]. The Pierre Auger experimen
suppression on the cosmic ray flux at energy a
[7] using an energy scale obtained by fluores
scopes (FD). The contradiction between results f
detectors and those from surface detector arrays
be investigated by having independent ener
both techniques. Hybrid observations with SD
us to compare both energy scales. Information ab
and impact timing from SD observation impro
reconstruction of FD observations. Observatio
detectors have a nearly 100% duty cycle, which
especially for studies of anisotropy. Correlations
directions of cosmic rays and astronomical objec
region should give a key to exploring the origin o
their propagation in the galactic magnetic field.
Fig. 1. Layout of the Telescope Array in Utah, USA. Squares denote 507 SDs. There are three subarrays controlled by three communication towers den
three star symbols denote the FD stations.
T. Abu-Zayyad et al. / Nuclear Instruments and Methods in Physics Research A 689 (2012) 87–9788
Pierre Auger Collaboration, NIM-A (2010)
]2
[g/cmmaxReconstructed X
400 500 600 700 800 900 1000 1100 1200 1300 1400
Entries
0
100
200
300
400
500
600
eV19.5
10
f = 1.17
Proton EPOS
Iron EPOS
Including Xmax
resolution
ProtonIron
Telescope Array Collaboration NIM-A (2012)
Identical
simplified FD
Telescope Array
Experiment
Pierre Auger Observatory
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
Efficiency
0
0.2
0.4
0.6
0.8
1 Proton
Iron
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
EnergyResolution[%]
0
5
10
15
20
25
Proton
Iron
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
]2
Resolution[g/cmmaxX
0
20
40
60
80
100
Proton
Iron
Energy
Xmax
Summery and Future Plans
✦ A novel technique to observe UHECRs: Low-cost simplified and
optimized FD array.
✦ Confirmed milestones from the first field test of FAST concept
using EUSO-TA telescope:
✦ Laser shots and UHECR candidates detected.
✦ Stable operation under large night sky backgrounds.
✦ Very successful example among Pierre Auger, Telescope Array,
JEM-EUSO Collaborations.
✦ Next milestones: detect a shower profile of UHECRs including
Xmax with new FAST prototype being constructed.
✦ New collaborators are welcome.
14arXiv: 1504.00692PoS (ICRC2015) 323
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
350
Data
Simulation
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
0
20
40
60
80
Laser
UHECR

More Related Content

What's hot

Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV LaboratoryMultilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
Joakim Laksman
 
tw1979_current_topics_paper
tw1979_current_topics_papertw1979_current_topics_paper
tw1979_current_topics_paper
Thomas Wigg
 
IGARSS2011_05072011_HO.ppt
IGARSS2011_05072011_HO.pptIGARSS2011_05072011_HO.ppt
IGARSS2011_05072011_HO.ppt
grssieee
 
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
grssieee
 
Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109
Avinash Warankar
 

What's hot (20)

Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE Photon
 
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
GAIA @SpaceUpParis
GAIA @SpaceUpParisGAIA @SpaceUpParis
GAIA @SpaceUpParis
 
Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV LaboratoryMultilayer based soft-x-ray polarimeter at MAX IV Laboratory
Multilayer based soft-x-ray polarimeter at MAX IV Laboratory
 
1374 bae[1]
1374 bae[1]1374 bae[1]
1374 bae[1]
 
Cosmology Research in China
Cosmology Research in ChinaCosmology Research in China
Cosmology Research in China
 
Imaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleImaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black Hole
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
tw1979_current_topics_paper
tw1979_current_topics_papertw1979_current_topics_paper
tw1979_current_topics_paper
 
Grossan grbtelescope+bsti
Grossan grbtelescope+bstiGrossan grbtelescope+bsti
Grossan grbtelescope+bsti
 
Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
IGARSS2011_05072011_HO.ppt
IGARSS2011_05072011_HO.pptIGARSS2011_05072011_HO.ppt
IGARSS2011_05072011_HO.ppt
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
 
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
Distributed Data Processing using Spark by  Panos Labropoulos_and Sarod Yataw...Distributed Data Processing using Spark by  Panos Labropoulos_and Sarod Yataw...
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
 
Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109
 

Similar to First results from a prototype for the Fluorescence detector Array of Single-pixe Telescopes

Why radiodetection of UHECR still matters ? Karlsruhe Institute of Technol...
Why radiodetection of UHECR still matters ?    Karlsruhe Institute of Technol...Why radiodetection of UHECR still matters ?    Karlsruhe Institute of Technol...
Why radiodetection of UHECR still matters ? Karlsruhe Institute of Technol...
Ahmed Ammar Rebai PhD
 
Detection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri eDetection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri e
Sérgio Sacani
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
Cristian Randieri PhD
 
The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...
The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...
The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...
Ahmed Ammar Rebai PhD
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOS
Roman Hodson
 
Grb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterGrb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monster
Sérgio Sacani
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumAn absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
Sérgio Sacani
 
Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...
Thomas Actn
 
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
Sérgio Sacani
 

Similar to First results from a prototype for the Fluorescence detector Array of Single-pixe Telescopes (20)

First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experiment
 
Why radiodetection of UHECR still matters ? Karlsruhe Institute of Technol...
Why radiodetection of UHECR still matters ?    Karlsruhe Institute of Technol...Why radiodetection of UHECR still matters ?    Karlsruhe Institute of Technol...
Why radiodetection of UHECR still matters ? Karlsruhe Institute of Technol...
 
Detection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri eDetection of an atmosphere around the super earth 55 cancri e
Detection of an atmosphere around the super earth 55 cancri e
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...
 
The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...
The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...
The shape radio_signals_wavefront_encountered_in_the_context_of_the_uhecr_rad...
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOS
 
Some recent results of the CODALEMA experiment
Some recent results of the CODALEMA experimentSome recent results of the CODALEMA experiment
Some recent results of the CODALEMA experiment
 
Grb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monsterGrb 130427a a_neraby_ordinary_monster
Grb 130427a a_neraby_ordinary_monster
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumAn absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
 
A comparative study of the scintillation detector na i(tl) in two sizes
A comparative study of the scintillation detector na i(tl) in two sizesA comparative study of the scintillation detector na i(tl) in two sizes
A comparative study of the scintillation detector na i(tl) in two sizes
 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...
 
ALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
ALMA Observations of the Extraordinary Carina Pillars: A Complementary SampleALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
ALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
 
Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...
 
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
 

More from Toshihiro FUJII

FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
Toshihiro FUJII
 

More from Toshihiro FUJII (8)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 

Recently uploaded

Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 

Recently uploaded (20)

module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Exploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfExploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdf
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Velocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.pptVelocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.ppt
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 

First results from a prototype for the Fluorescence detector Array of Single-pixe Telescopes

  • 1. Toshihiro Fujii (KICP University of Chicago, ICRR University of Tokyo) fujii@kicp.uchicago.edu Max Malacari, Mario Bertaina, Marco Casolino, Bruce Dawson, Pavel Horvath, Miroslav Hrabovsky, Jiaqi Jiang, Dusan Mandat, Ariel Matalon, John N. Matthews, Pavel Motloch, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Yoshiyuki Takizawa, Stan B. Thomas, Petr Travnicek, Katsuya Yamazaki First results from a prototype for the Fluorescence detector Array of Single-pixel Telescopes arXiv: 1504.00692 PoS (ICRC2015) 323
  • 2. Physics Goal and Future Prospects 2 Origin and Nature of Ultra-high Energy Cosmic Rays (UHECRs) and Particle Interactions at the Highest Energies Exposure and Full Sky Coverage TA×4 + Auger JEM-EUSO : pioneer detection from space and sizable increase of exposure Detector R&D Radio, SiPM, Low-cost Fluorescence Detector (FD) “Precision” Measurements AugerPrime Low energy enhancement (Auger infill+HEAT+AMIGA, TALE+TA-muon+NICHE) 5 - 10 years Next Generation Observatories In space (100×exposure): Super-EUSO Ground (10×exposure with high quality events): 10 - 20 years
  • 3. Fine pixelated camera Low-cost and simplified/optimized FD ✦Target : > 1019.5 eV, UHE nuclei and neutral particles ✦Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 3 Single or few pixels and smaller optics Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 4. 4 20 km ✦ Each telescope: 4 PMTs, 30°×30° field of view (FoV). ✦ Reference design: 1 m2 aperture, 15°×15° FoV per PMT ✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV. ✦ Deploy on a triangle grid with 20 km spacing, like “surface detector array”. ✦ If 127 stations are installed, a ground coverage is ~ 40,000 km2. ✦ Geometry: Radio, SD, coincidence of three stations being investigated. UHECRs 16 56 EeV zenith 500 1 2 3 1 3 2 PhotonsatdiaphragmPhotonsatdiaphragm Photonsatdiaphragm Fluorescence detector Array of Single-pixel Telescopes
  • 5. Window of Opportunity at EUSO-TA 5 EUSO prototype Telescope Array site Black Rock Mesa station ✦ Temporally use the EUSO-TA optics at the TA site. ✦ Two Fresnel lenses (+ 1 UV acrylic plate in front for protection) ✦ 1 m2 aperture, 14°×14° FoV ≒ FAST reference design. ✦ Install FAST camera and DAQ system at EUSO-TA telescope. ✦ Milestones: Stable observation under large night sky backgrounds, UHECR detection with external trigger from TAFD. EUSO-TA telescope FAST camera ✦ 8 inch PMT (R5912-03, Hamamtsu) ✦ PMT base (E7694-01, Hamamatsu) ✦ Ultra-violet band pass filter (MUG6, Schott)
  • 6. 6 Start observation 1 2 3 4 5 6 7 8 9
  • 7. Laser Signal to Check Performance 7 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 350 Data Simulation FAST FOV Hit clouds Directional sensitivity by RayTrace of EUSO-TA telescope Efficiency TAFD FAST Np.e./(100ns) ✦ Vertical Ultra-Violet laser at 6 km from FAST ≒ ~1019.2 eV ✦ Expected signal TAFD/FAST: (7 m2 aperture × 0.7 shadow × 0.9 mirror) / (1 m2 aperture × 0.43 optics efficiency) ~10 ✦ TAFD Peak signal : ~3000 p.e. / 100 ns ✦ FAST Peak signal : ~300 p.e. / 100 ns. All shots are detected significantly. ✦ Agreement of signal shape with simulation.
  • 8. UHECR Signal Search FAST FoV ✦ Data set: April and June 2014 observation, 19 days, 83 hours. ✦ Stable observation. ✦ We searched for UHECR signal in coincidence between FAST and TAFD. 1. Search for TAFD signal crossing the field of view (FoV) with FAST. 2. Search for a significant signal (>5σ) with FAST waveform at the same trigger. ✦ 16 candidates found. ✦ Low energy showers as expected. log(E/eV)=18.0 Np.e./(100ns) 8 TAFD FAST
  • 9. Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 0 20 40 60 80 (E (eV))10 log 17 17.5 18 18.5 19 19.5 20 Impactparameter[km] 1 10 2 10 Preliminary Detectable Figure 14: Distribution of the impact parameter as a function of the primary energy recon- structed by TA for shower candidates detected by the FAST prototype. The line indicates the maximum detectable distance by the FAST prototype (not fitted). Distance vs Energy (from TAFD) for Candidates 9 FAST FoV Almost! log(E/eV)=19.1 log(E/eV)=18.0
  • 10. Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 40 50 60 (a) Data: Erec = 1017.2 eV Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -30 -20 -10 0 10 20 30 40 50 (b) Data: Erec = 1018.0 eV Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 10 20 30 40 50 60 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 10 20 30 40 50 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 40 50 60 (a) Data: Erec = 1017.2 eV Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -30 -20 -10 0 10 20 30 40 50 (b) Data: Erec = 1018.0 eV /(100ns)p.e.N 10 20 30 40 50 60 /(100ns)p.e.N 10 20 30 40 50 Comparison to Expected Signal from UHECRs 10 log(E/eV)=17.2 log(E/eV)=18.0 Simulation Data Simulation Data ✦ Geometry, Energy and Xmax was reconstructed by the TAFD monocular analysis. ✦ Based on these information, we calculate expected signal by FAST prototype. ✦ Size, shape and width are consistent with expectation. ✦ A signal location is fluctuated within the TAFD trigger frame of 12.8 µs.
  • 11. New FAST Prototype being Constructed 11Joint Laboratory of Optics in Olomouc, Czech Republic ✦ Confirmed milestones by EUSO-TA Telescope ✦ Stable operation under high night sky backgrounds. ✦ UHECR detection. ✦ Next milestones by new FAST prototype ✦ Establish the FAST sensitivity. ✦ Detect a shower profile including Xmax with FAST 4 PMTs, 30°×30° FoV
  • 12. 15 FAST components UV PMMA „window“ in octagonal aperture 4 PMTs camera 8 inch UV filter glass cover = black shroud DUST and STRAY LIGHT protection cabling electronics mirrors 4 Building - ground plan – required dimensions Cca3000mm Cca 3500 mm 600mm FOV 5Cca3000mm Cca 3500 mm FOV Building height – elevation 15° required dimensions Cca 1000 mm Design of Hut and Shutter 12 shutter – like sectional garrage doors closed open roof „window“ Possible solution of building 4000mm Cca3000mm closed open ✦ Adjustable elevation 15° or 45°, like HEAT and TALE, to enlarge the FoV of the current FD. ✦ Robust design for maintenance free and stand-alone observation.
  • 13. ✦ Install FAST at Auger and TA for a cross calibration. ✦ Profile reconstruction with geometry given by SD (1° in direction, 100 m in core location). ✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV ✦ Independent check of Energy and Xmax scale between Auger and TA Possible Application of FAST Prototype 13 1. Introduction The hybrid detector of the Pierre Auger Observatory [1] consists of 1600 surface stations – water Cherenkov tanks and their associated electronics – and 24 air fluorescence telescopes. The Observatory is located outside the city of Malarg¨ue, Argentina (69◦ W, 35◦ S, 1400 m a.s.l.) and the detector layout is shown in Fig. 1. Details of the construction, deployment and maintenance of the array of surface detectors are described elsewhere [2]. In this paper we will concentrate on details of the fluorescence detector and its performance. Figure 1: Status of the Pierre Auger Observatory as of March 2009. Gray dots show the positions of surface detector stations, lighter gray shades indicate deployed detectors, while a r t i c l e i n f o Article history: Received 25 December 2011 Received in revised form 25 May 2012 Accepted 25 May 2012 Available online 2 June 2012 Keywords: Ultra-high energy cosmic rays Telescope Array experiment Extensive air shower array a b s t r a c t The Telescope Array (TA) experiment, located in the western desert of Utah, USA, observation of extensive air showers from extremely high energy cosmic rays. The surface detector array surrounded by three fluorescence detectors to enable simulta shower particles at ground level and fluorescence photons along the shower trac detectors and fluorescence detectors started full hybrid observation in March, 2008 describe the design and technical features of the TA surface detector. & 2012 Elsevier B.V. 1. Introduction The main aim of the Telescope Array (TA) experiment [1] is to explore the origin of ultra high energy cosmic rays (UHECR) using their energy spectrum, composition and anisotropy. There are two major methods of observation for detecting cosmic rays in the energy region above 1017.5 eV. One method which was used at the High Resolution Fly’s Eye (HiRes) experiment is to detect air fluorescence light along air shower track using fluorescence detectors. The other method, adopted by the AGASA experiment, is to detect air shower particles at ground level using surface detectors deployed over a wide area ( $ 100 km 2 ). The AGASA experiment reported that there were 11 events above 1020 eV in the energy spectrum [2,3]. However, the existence of the GZK cutoff [4,5] was reported by the HiRes experiment [6]. The Pierre Auger experimen suppression on the cosmic ray flux at energy a [7] using an energy scale obtained by fluores scopes (FD). The contradiction between results f detectors and those from surface detector arrays be investigated by having independent ener both techniques. Hybrid observations with SD us to compare both energy scales. Information ab and impact timing from SD observation impro reconstruction of FD observations. Observatio detectors have a nearly 100% duty cycle, which especially for studies of anisotropy. Correlations directions of cosmic rays and astronomical objec region should give a key to exploring the origin o their propagation in the galactic magnetic field. Fig. 1. Layout of the Telescope Array in Utah, USA. Squares denote 507 SDs. There are three subarrays controlled by three communication towers den three star symbols denote the FD stations. T. Abu-Zayyad et al. / Nuclear Instruments and Methods in Physics Research A 689 (2012) 87–9788 Pierre Auger Collaboration, NIM-A (2010) ]2 [g/cmmaxReconstructed X 400 500 600 700 800 900 1000 1100 1200 1300 1400 Entries 0 100 200 300 400 500 600 eV19.5 10 f = 1.17 Proton EPOS Iron EPOS Including Xmax resolution ProtonIron Telescope Array Collaboration NIM-A (2012) Identical simplified FD Telescope Array Experiment Pierre Auger Observatory log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 Efficiency 0 0.2 0.4 0.6 0.8 1 Proton Iron log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 EnergyResolution[%] 0 5 10 15 20 25 Proton Iron log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 ]2 Resolution[g/cmmaxX 0 20 40 60 80 100 Proton Iron Energy Xmax
  • 14. Summery and Future Plans ✦ A novel technique to observe UHECRs: Low-cost simplified and optimized FD array. ✦ Confirmed milestones from the first field test of FAST concept using EUSO-TA telescope: ✦ Laser shots and UHECR candidates detected. ✦ Stable operation under large night sky backgrounds. ✦ Very successful example among Pierre Auger, Telescope Array, JEM-EUSO Collaborations. ✦ Next milestones: detect a shower profile of UHECRs including Xmax with new FAST prototype being constructed. ✦ New collaborators are welcome. 14arXiv: 1504.00692PoS (ICRC2015) 323 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 350 Data Simulation Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 0 20 40 60 80 Laser UHECR