SlideShare a Scribd company logo
1 of 19
Download to read offline
Toshihiro Fujii (Kyoto University)
fujii@cr.scphys.kyoto-u.ac.jp
Fluorescence technique - FAST
Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Hidetoshi Kubo, Jiri Kvita,
Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav Michal, Xiaochen Ni, Seiya Nozaki, Libor Nozka, Tomohiko Oka,
Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Francesco Salamida, Radomir Smida, Stan Thomas, Akimichi Taketa,
Kenta Terauchi, Petr Travnicek, Martin Vacula, Seokhyun Yoo
(FAST Collaboration)
Global Cosmic Ray Observatory (GCOS) workshop, May 2021
UHECR sky
2
→ Extragalactic cosmic rays
NASA/DOE/Fermi Collaboration
GAIA Collaboration
J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019)
A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour
"Ankle" energies (EAuger>8.86 EeV, ETA>10 EeV)
Optical
γ-rays
UHECR sky above cutoff
3
"Cutoff" energies (EAuger>40 EeV: 842 events in 13.3 yr, ETA>52.3 EeV: 127 events in 9 yr)
● Intermediate anisotropy, as possible sources,
● Jet in active galactic nuclei, like Centaurus A, by rescaling SS433
● Superwind in starburst galaxies, like M82, by rescaling Cygnus cocoon
● No excess from the Virgo cluster, Virgo scandal
● Challenges to mass composition and galactic/extragalactic magnetic fields
→ Need more statistic with mass composition sensitivity to identify UHECR sources
J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019)
A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour
Fine pixelated camera
Low-cost and simplified telescope
✦ Target : > 1019.5 eV, ultrahigh-energy cosmic rays, neutrino and gamma rays
✦ Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
4
Smaller optics and single or few pixels
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
5
10
− 5
− 0 5 10
x [km]
10
−
5
−
0
5
10
y[km]
Simulation
40 EeV,
θ = 50°
20 km FAST telescope
4 PMTs,
1 m2 aperture (UV-pass filter)
Segmented mirror
in 1.6 m diameter
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
80
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
50
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
80
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
50
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
40
−
20
−
0
20
40
60
80
100
120
140
160
180
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
40
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
40
−
20
−
0
20
40
60
80
100
120
140
160
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
50
−
0
50
100
150
200
250
300
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
20
−
0
20
40
60
/
100
ns
pe
N
Segmented mirror telescope
Variable angles of elevation – steps.
construction is still in development
15 deg 45 deg
Joint Laboratory of Optics Olomouc – March 2014
7
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
30
−
20
−
10
−
0
10
20
30
/
100
ns
pe
N
0 200 400 600 800 1000
Time bin [100 ns]
40
−
20
−
0
20
40
60
80
/
100
ns
pe
N
12 telescopes / station
500 stations
→ 150,000 km2
Time
p.e. 100 µs
Fluorescence detector Array of Single-pixel Telescopes
Field measurements to validate the FAST concept
6
1
in Astroparticle Physics
T. Fujii et al., Astroparticle Physics 74 (2016) 64-72
P. Privitera in UHECR 2012
EUSO-TA optics
+
Single-pixel camera
Time (100 ns)
0 100 200 300 400 500 600 700 800
/
(100
ns)
p.e.
N
0
50
100
150
200
250
300
350
Data
Simulation
Time (100 ns)
0 100 200 300 400 500 600 700 800
/
(100
ns)
p.e.
N
-20
0
20
40
60
80
Cosmic Ray
(1 EeV, 2 km)
Vertical laser
(~ 30 EeV)
Feb. 2012
Sep. 2017
Apr. 2014
Oct. 2016
Oct. 2018
Apr. 2019
FAST@TA FAST@Auger
M. Malacari et al., Astroparticle Physics 119 (2020) 102430
D. Mandat et al., JINST 12, T07001 (2017)
@TA
@Auger
Atmospheric monitoring studies
7
A distant laser detected with FAST
Star extinctions measured with all sky camera
L. Chytka et al. (FAST Collaboration), JINST 15 T10009 (2020)
er photo-multiplier tubes at the detector plane and a segmented mirror of 1.6 m in
er. In October 2016, September 2017, and September 2018 three such prototypes
stalled at the Black Rock Mesa (BRM) site of the Telescope Array experiment
al Utah, USA [3, 4]. All three telescopes have been steadily taking data since
tion. Collected data include measurements of air showers, as well as vertical
aces from the Telescope Array’s Central Laser Facility (CLF) [5]. The cloud
e and atmospheric transparency are two of the largest systematic uncertainties
fluorescence technique, making robust atmospheric monitoring an essential task
xt-generation cosmic ray observatory [6]. We present an instrument capable of
ng monitoring of these important atmospheric parameters.
Figure 1. Left: The FASCam installed atop one of the FAST telescope huts at the
Black Rock Mesa site of the Telescope Array experiment in central Utah, USA. The
small instrument in the plastic tube next to the FASCam is a Sky Quality Monitor
(SQM-LE). Right: The field of view of the FASCam with the FAST telescope field
of view indicated. The grid splits the image into 30◦
× 30◦
regions in azimuth and
elevation.
FASCam
ASCam is an astronomical cooled CCD camera equipped with a 360◦
× 90◦
h and elevation) lens and a set of filters installed in the internal filter wheel
Johnson R, Johnson V, Johnson B, Baader UV). The camera is mounted in a
oof UV-resistant housing and connected to an IP65 plastic box located inside
ST hut that includes the electronics (PC, heating, power source). The FASCam
s nightly full-sky images, along with measurements of the cloud coverage and
atmospheric extinction. The FASCam UV filter transmittance is similar to that
FASCam 5
FASCam 4
Figure 2. The waterproof body of the FASCam is built from aluminum sheets
equipped with a glass UV-VIS transparent lens cover at the top of the box (top-left
and center image). The G2-4000 astronomical camera is placed inside the aluminum
box (top- right) and the cables are routed out of the box using IP65 stainless electrical
glands. The G2-4000 camera is equipped with an internal five position filter wheel and
mechanical shutter (bottom-left). The lens of the FASCam is a Sigma 4.5/2.8 EX DC
(bottom-center). The readout electronics and power source is installed in a plastic box
and includes a Raspberry Pi single board computer and storage disc (bottom-right).
Figure 3. The transmittance of the Johnson BVR and UV filters installed in the
FASCam, together with the FASCam CCD quantum efficiency graph. The QE plot
Automated all-sky camera
-2018/05/15
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
0
50
100
150
200
250
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
150 200 250 300 350 400 450 500
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
4 / 9
Cherenkov dominated event with "top-down" reconstruction
8
FAST waveforms + Expected signals from top-down reconstruction
(Data, Simulation by the best-fit parameters)
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV
TA FD
(Preliminary)
Energy: 19.0 EeV
Rp: 6.1 km
Fluorescence dominated event
9
Event 2: SD: 15.8 EeV, Zen: 36.15◦
, Azi: 18.0◦
, Core(5.002,
-4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV,
Zen: 33.2◦
, Azi: 35.8◦
, Core(6.12, -5.26), Date: 20190110,
Time: 063617.657398690
Event 4: SD: 1.32 EeV, Zen: 39.07◦
, Azi: -4.84◦
, Core(9.045,
-2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV,
Zen: 33.9◦
, Azi: 10.0◦
, Core(9.8, -3.91), Date: 20190110, Time:
070221.485723180
FAST top-down reconstruction (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV
FAST result
TA result
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 100
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 100
/
100
ns
pe
N
30
−
20
−
10
−
0
10
20
30
40
50
Data
Simulation
TA SD (Preliminary)
Zenith Azimuth Core(X) Core(Y) Energy
36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV
TA FD (Preliminary)
33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV
FAST@TA
Reconstructing UHECRs with FAST@TA
10
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
1
10
2
10
Impact
parameter
[km]
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
✦ Data period: 2018/Mar/19 - 2019/Oct/14, 225 hours, 3 telescopes mode
✦ Event number: 964 (TA FD) -> 179 (Single-hit with FAST, S/N > 6σ, Δt > 500 ns) -> 59 (Multi-hit)
✦ The shower parameters are reconstructed by TA FD monocular result
✦ Use top-down reconstruction for events with multi-hit PMTs above 1 EeV
✦ First-guess geometry given from the TA FD
18
10 19
10
(eV)
E
400
500
600
700
800
900
1000
1100
]
2
[g/cm
max
X
Preliminary
FAST
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
2
10
3
10
4
10
5
10
s]
µ
Time-average
brightness
[pe/
TA FD events
Single-hit PMT (FAST)
Multi-hit PMTs
Updates on reconstruction methods
11
✦ Top-down reconstruction
✦ Use all available information from individual pixel
traces
✦ Computationally expensive
✦ Need a reliable first-guess geometry
✦ Neural network first guess reconstruction
✦ 3 input per PMT: total signal, centroid time and
pulse hight
✦ Kares/Tensorflow in Python, two hidden layers
✦ 6 outputs: Xmax, energy, geometry (θ, φ, x, y)
✦ Very fast reconstruction
Inputs
3 feature per PMT with S/N > 5σ
on
n

l
T
Outputs
Energy, Xmax, geometry(θ, φ, x, y)
Work: Justin Albury
Performance with the FAST array
12
10
− 5
− 0 5 10
x [km]
10
−
5
−
0
5
10
y[km]
✦ Training data: Energy of 1 - 100 EeV, Xmax of 500 - 1200 g/cm2, uniform
✦ Night sky background: σ=10 p.e./100 ns, based on field measurements at TA and Auger sites
✦ Test data: Xmax distributions based on CORSIKA-Conex simulations
✦ 4 species (P, He, N, Fe) with 3 interaction models (EPOS-LHC, QGSJetII-04, Sibyll 2.3c)
Incircle of the triangle
3-fold trigger
efficiency
100% above
1019.3 eV
ϵ =
Ni(Etrue
trigger)
Ni(Etrue
thrown)
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
0
0.2
0.4
0.6
0.8
1
Efficiency
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Preliminary
Resolution at 40 - 50 EeV (Proton, EPOS-LHC)
13
0 5 10 15 20 25 30
Angular resolution (deg)
0
200
400
600
800
1000
1200
Entries
0 500 1000 1500 2000 2500 3000
Core resolution (m)
0
200
400
600
800
1000
Entries
Constant 26.8
±
1898
Mean 0.00080
±
0.02198
−
Sigma 0.0007
±
0.0758
1
− 0.8
− 0.6
− 0.4
− 0.2
− 0 0.2 0.4 0.6 0.8 1
)
true
/Energy
reco
ln(Energy
0
200
400
600
800
1000
1200
1400
1600
1800
2000
Entries
Constant 26.8
±
1898
Mean 0.00080
±
0.02198
−
Sigma 0.0007
±
0.0758
10000
− 5000
− 0 5000 10000
Core X (m)
10000
−
5000
−
0
5000
10000
Core
Y
(m)
10000
− 5000
− 0 5000 10000
Core X (m)
10000
−
5000
−
0
5000
10000
Core
Y
(m)
Constant 28.7
±
1930
Mean 0.311
±
5.593
Sigma 0.30
±
29.22
400
− 300
− 200
− 100
− 0 100 200 300 400
)
2
(g/cm
true
max
- X
reco
max
X
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
Entries
Constant 28.7
±
1930
Mean 0.311
±
5.593
Sigma 0.30
±
29.22
True
Reconstructed
✦ Arrival direction: 4.2 degrees, Core: 465 m, Energy: 8% Xmax: 30 g/cm2 (without quality cuts)
Reconstructed Xmax distributions at 40 - 50 EeV
14
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
true
max
X
0
0.05
0.1
0.15
0.2
0.25
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
True Reconstructed
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Preliminary
Preliminary
True Xmax rails
15
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
600
650
700
750
800
850
900
950
)
2
>
(g/cm
true
max
X
<
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
0
20
40
60
80
100
120
140
160
)
2
)
(g/cm
true
max
X
(
σ
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Preliminary
Preliminary
Reconstructed Xmax rails
16
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
reco
E
log(
0
20
40
60
80
100
120
140
160
)
2
)
(g/cm
reco
max
X
(
σ
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
reco
E
log(
600
650
700
750
800
850
900
950
)
2
>
(g/cm
reco
max
X
<
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Preliminary
Preliminary
500 600 700 800 900 1000 1100 120
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 120
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
500 600 700 800 900 1000 1100 1200
)
2
(g/cm
reco
max
X
0
0.02
0.04
0.06
0.08
0.1
0.12
)
2
Events
/
(10
g/cm
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Reconstructed Xmax distributions (Preliminary)
17
10 - 20 EeV 20 - 30 EeV 30 - 40 EeV 40 - 50 EeV
50 - 60 EeV 60 - 70 EeV 70 - 80 EeV 80 - 90 EeV
A lot of remaining works to optimize quality cuts, neural network, trigger condition....
Pros and Cons of fluorescence technique
✦ Pros
✦ Calorimetric energy determination
✦ Mass composition sensitive to measure Xmax
✦ Less dependent on hadronic interaction models
✦ Sensitive to UHE neutrinos and gamma-rays
✦ Cons
✦ Lower duty cycle, 10 - 20%
✦ A lot of calibration components: PMT gains,
Optics, atmospheric parameters, telescope
direction
✦ Understanding directional exposure in the sky
✦ Challenge to be stand-alone operation in the field
18
● 4 mirror optical design presen
process
10 eV 以上のフラックス回復を確認するには、
約10年観測が必要
q 全天雲モニターカメラ
視野内に検出できる星の数と明るさより、雲の量と
大気透明度を推定する
q FAST解析手法の開発・解析結果
機械学習によるTop Down Reconstructionの初期値推定
TA FD結果を初期値とし、エネルギーとXmax を
FASTのデータで独立に推定
<今後の予定>
q 遠隔地での検出器デザイン
低電力化・自動稼働
→FADC、Amplifier、HVモジュールを開発中
→光学系のデザインのさらなる最適化
q Augerサイトに2台目の設置予定(2021年予定)
q 陽子と鉄から期待される平均Xmaxの値を見積もる(質量組成推定) 9
E3・J[km
-2
yr
-1
sr
100年
1
3
2
4
Augerサイト3台目
Fit 20-feet container
New electronics development
MIO module
GPS
RTC
ID
T/H
LED
USB
LAN
SFP
DCDC
ROM
Selectable PHY chip for ethernet
Selectable USB HOST/TARGET
GPS/RTC for 1PPS
To be optimized for FAST telescope
GPIO
SoC module (or SoM)
SoC SDRAM
DCDC
FMC
JTAG
mSD
DCDC MODE
System on Module with Xilinx SoC
(XC7Z030-1FFG676I)
Many purpose
HPC -FMC (80 diff line) compatible, 4ch GBT
All MIO pin is connected
PMOD
On/
Off
RST
FADC module
SoC
To
Analog
F/E
Heat
Sink
HDMI
FADC
To
SoM
CLK
F/O
SSD
Dual 32ch FADC (ADS52J90), 64ch FADC a
Some of input can be bypassed for TDC us
FADC has 7 operation mode
10bit 200/100/50 MSPS 8/16/32
12bit 80/40 MSPS 16/32
14bit 65/32.5 MSPS 16/32
M.2 SSD “can be” used, if we can buy firm
I2C SPI bridge for slow control
64 ch analog input can be connected to an
In this case, 48ch FADC/TDC, 14 bit 32.5M
DCDC
FADC
I2C
SPI
AMP module
Con
To
FADC
I2C
F/O
AMP
DAC
> 2000 R/C !!
Discr
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
reco
E
log(
600
650
700
750
800
850
900
950
)
2
>
(g/cm
reco
max
X
<
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20
(eV))
true
E
log(
0
0.2
0.4
0.6
0.8
1
Efficiency
EPOS-LHC
QGSJetII-04
Sibyll 2.3c
Proton Helium Nitrogen Iron
Summary and future plan
19
✦ Fluorescence detector Array of Single-pixel
Telescopes (FAST)
✦ Low-cost fluorescence telescope array
✦ Promising concept as next-generation cosmic
ray observatory to fulfill requirements
✦ Preliminary performance estimation
✦ 100% efficiency above 1019.3 eV
✦ Resolution of neural network reconstruction
✦ Arrival direction: 4.2 deg, Core: 465 m
✦ Energy: 8%, Xmax: 30 g/cm2 (ΔlnA ~ 1)
✦ Next step and challenges
✦ Stand-alone operation of FAST "array" in field
FAST@TA FAST@Auger
Preliminary
Preliminary
https://www.fast-project.org

More Related Content

What's hot (11)

FR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptxFR3T10-4-IGARSS_Aalto-1_Praks.pptx
FR3T10-4-IGARSS_Aalto-1_Praks.pptx
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
Pulsardetection
PulsardetectionPulsardetection
Pulsardetection
 
Goddard-DR-2010
Goddard-DR-2010Goddard-DR-2010
Goddard-DR-2010
 
Mission Concept Presentation for Project A.D.I.O.S.
Mission Concept Presentation for Project A.D.I.O.S.Mission Concept Presentation for Project A.D.I.O.S.
Mission Concept Presentation for Project A.D.I.O.S.
 
Embedded Systems & Open Source Mechatronics
Embedded Systems & Open Source MechatronicsEmbedded Systems & Open Source Mechatronics
Embedded Systems & Open Source Mechatronics
 
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and CosmologyP. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
P. Jovanovic/L. Popovic: Gravitational Lensing Statistics and Cosmology
 
Aspelmeyer
AspelmeyerAspelmeyer
Aspelmeyer
 
Wiggin dielectric
Wiggin dielectricWiggin dielectric
Wiggin dielectric
 
AnNguyen_MSThesis
AnNguyen_MSThesisAnNguyen_MSThesis
AnNguyen_MSThesis
 
Photoacoustic Imaging with Coherent Light - Emmanuel Bossy
Photoacoustic Imaging with Coherent Light - Emmanuel BossyPhotoacoustic Imaging with Coherent Light - Emmanuel Bossy
Photoacoustic Imaging with Coherent Light - Emmanuel Bossy
 

Similar to Fluorescence technique - FAST

High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
Sérgio Sacani
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster Revised
Alejandro Cota
 

Similar to Fluorescence technique - FAST (20)

Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
 
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
 
Biomimetics : Compound eyes
Biomimetics : Compound eyesBiomimetics : Compound eyes
Biomimetics : Compound eyes
 
A giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringA giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ring
 
GAIA @SpaceUpParis
GAIA @SpaceUpParisGAIA @SpaceUpParis
GAIA @SpaceUpParis
 
Collective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric ScienceCollective Power of Science: High-Energy Atmospheric Science
Collective Power of Science: High-Energy Atmospheric Science
 
AstroSat observation of the magnetar SGR J1830−0645 during its first detected...
AstroSat observation of the magnetar SGR J1830−0645 during its first detected...AstroSat observation of the magnetar SGR J1830−0645 during its first detected...
AstroSat observation of the magnetar SGR J1830−0645 during its first detected...
 
Deep Impact Poster Revised
Deep Impact Poster RevisedDeep Impact Poster Revised
Deep Impact Poster Revised
 
Eis meeting talk
Eis meeting talkEis meeting talk
Eis meeting talk
 
New Frontiers in LAE Science with MUSE
New Frontiers in LAE Science with MUSENew Frontiers in LAE Science with MUSE
New Frontiers in LAE Science with MUSE
 
Matter ejections behind the highs and lows of the transitional millisecond pu...
Matter ejections behind the highs and lows of the transitional millisecond pu...Matter ejections behind the highs and lows of the transitional millisecond pu...
Matter ejections behind the highs and lows of the transitional millisecond pu...
 
ASICs for particle and radiation detection
ASICs for particle and radiation detectionASICs for particle and radiation detection
ASICs for particle and radiation detection
 

More from Toshihiro FUJII

FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
Toshihiro FUJII
 

More from Toshihiro FUJII (9)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
 

Recently uploaded

HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
Warming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxWarming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptx
GlendelCaroz
 

Recently uploaded (20)

EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdf
 
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
Soil and Water Conservation Engineering (SWCE) is a specialized field of stud...
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptx
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPTHIV AND INFULENZA VIRUS PPT HIV PPT  INFULENZA VIRUS PPT
HIV AND INFULENZA VIRUS PPT HIV PPT INFULENZA VIRUS PPT
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdf
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptx
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
Warming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxWarming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptx
 
Adaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloAdaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte Carlo
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENSANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
ANITINUTRITION FACTOR GYLCOSIDES SAPONINS CYANODENS
 

Fluorescence technique - FAST

  • 1. Toshihiro Fujii (Kyoto University) fujii@cr.scphys.kyoto-u.ac.jp Fluorescence technique - FAST Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Hidetoshi Kubo, Jiri Kvita, Max Malacari, Dusan Mandat, Massimo Mastrodicasa, John Matthews, Stanislav Michal, Xiaochen Ni, Seiya Nozaki, Libor Nozka, Tomohiko Oka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Francesco Salamida, Radomir Smida, Stan Thomas, Akimichi Taketa, Kenta Terauchi, Petr Travnicek, Martin Vacula, Seokhyun Yoo (FAST Collaboration) Global Cosmic Ray Observatory (GCOS) workshop, May 2021
  • 2. UHECR sky 2 → Extragalactic cosmic rays NASA/DOE/Fermi Collaboration GAIA Collaboration J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019) A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour "Ankle" energies (EAuger>8.86 EeV, ETA>10 EeV) Optical γ-rays
  • 3. UHECR sky above cutoff 3 "Cutoff" energies (EAuger>40 EeV: 842 events in 13.3 yr, ETA>52.3 EeV: 127 events in 9 yr) ● Intermediate anisotropy, as possible sources, ● Jet in active galactic nuclei, like Centaurus A, by rescaling SS433 ● Superwind in starburst galaxies, like M82, by rescaling Cygnus cocoon ● No excess from the Virgo cluster, Virgo scandal ● Challenges to mass composition and galactic/extragalactic magnetic fields → Need more statistic with mass composition sensitivity to identify UHECR sources J. Biteau, TF et al., EPJ Web of Conferences 210, 01005 (2019) A. di Matteo, TF et al., PoS ICRC2019 (2020) 439, using a different color contour
  • 4. Fine pixelated camera Low-cost and simplified telescope ✦ Target : > 1019.5 eV, ultrahigh-energy cosmic rays, neutrino and gamma rays ✦ Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 4 Smaller optics and single or few pixels Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 5. 5 10 − 5 − 0 5 10 x [km] 10 − 5 − 0 5 10 y[km] Simulation 40 EeV, θ = 50° 20 km FAST telescope 4 PMTs, 1 m2 aperture (UV-pass filter) Segmented mirror in 1.6 m diameter 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 80 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 50 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 80 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 50 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 40 − 20 − 0 20 40 60 80 100 120 140 160 180 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 40 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 40 − 20 − 0 20 40 60 80 100 120 140 160 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 50 − 0 50 100 150 200 250 300 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 20 − 0 20 40 60 / 100 ns pe N Segmented mirror telescope Variable angles of elevation – steps. construction is still in development 15 deg 45 deg Joint Laboratory of Optics Olomouc – March 2014 7 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 30 − 20 − 10 − 0 10 20 30 / 100 ns pe N 0 200 400 600 800 1000 Time bin [100 ns] 40 − 20 − 0 20 40 60 80 / 100 ns pe N 12 telescopes / station 500 stations → 150,000 km2 Time p.e. 100 µs Fluorescence detector Array of Single-pixel Telescopes
  • 6. Field measurements to validate the FAST concept 6 1 in Astroparticle Physics T. Fujii et al., Astroparticle Physics 74 (2016) 64-72 P. Privitera in UHECR 2012 EUSO-TA optics + Single-pixel camera Time (100 ns) 0 100 200 300 400 500 600 700 800 / (100 ns) p.e. N 0 50 100 150 200 250 300 350 Data Simulation Time (100 ns) 0 100 200 300 400 500 600 700 800 / (100 ns) p.e. N -20 0 20 40 60 80 Cosmic Ray (1 EeV, 2 km) Vertical laser (~ 30 EeV) Feb. 2012 Sep. 2017 Apr. 2014 Oct. 2016 Oct. 2018 Apr. 2019 FAST@TA FAST@Auger M. Malacari et al., Astroparticle Physics 119 (2020) 102430 D. Mandat et al., JINST 12, T07001 (2017) @TA @Auger
  • 7. Atmospheric monitoring studies 7 A distant laser detected with FAST Star extinctions measured with all sky camera L. Chytka et al. (FAST Collaboration), JINST 15 T10009 (2020) er photo-multiplier tubes at the detector plane and a segmented mirror of 1.6 m in er. In October 2016, September 2017, and September 2018 three such prototypes stalled at the Black Rock Mesa (BRM) site of the Telescope Array experiment al Utah, USA [3, 4]. All three telescopes have been steadily taking data since tion. Collected data include measurements of air showers, as well as vertical aces from the Telescope Array’s Central Laser Facility (CLF) [5]. The cloud e and atmospheric transparency are two of the largest systematic uncertainties fluorescence technique, making robust atmospheric monitoring an essential task xt-generation cosmic ray observatory [6]. We present an instrument capable of ng monitoring of these important atmospheric parameters. Figure 1. Left: The FASCam installed atop one of the FAST telescope huts at the Black Rock Mesa site of the Telescope Array experiment in central Utah, USA. The small instrument in the plastic tube next to the FASCam is a Sky Quality Monitor (SQM-LE). Right: The field of view of the FASCam with the FAST telescope field of view indicated. The grid splits the image into 30◦ × 30◦ regions in azimuth and elevation. FASCam ASCam is an astronomical cooled CCD camera equipped with a 360◦ × 90◦ h and elevation) lens and a set of filters installed in the internal filter wheel Johnson R, Johnson V, Johnson B, Baader UV). The camera is mounted in a oof UV-resistant housing and connected to an IP65 plastic box located inside ST hut that includes the electronics (PC, heating, power source). The FASCam s nightly full-sky images, along with measurements of the cloud coverage and atmospheric extinction. The FASCam UV filter transmittance is similar to that FASCam 5 FASCam 4 Figure 2. The waterproof body of the FASCam is built from aluminum sheets equipped with a glass UV-VIS transparent lens cover at the top of the box (top-left and center image). The G2-4000 astronomical camera is placed inside the aluminum box (top- right) and the cables are routed out of the box using IP65 stainless electrical glands. The G2-4000 camera is equipped with an internal five position filter wheel and mechanical shutter (bottom-left). The lens of the FASCam is a Sigma 4.5/2.8 EX DC (bottom-center). The readout electronics and power source is installed in a plastic box and includes a Raspberry Pi single board computer and storage disc (bottom-right). Figure 3. The transmittance of the Johnson BVR and UV filters installed in the FASCam, together with the FASCam CCD quantum efficiency graph. The QE plot Automated all-sky camera
  • 8. -2018/05/15 Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 0 50 100 150 200 250 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 0 50 100 150 200 Data Simulation Time bin [100 ns] 150 200 250 300 350 400 450 500 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 0 50 100 150 200 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation 4 / 9 Cherenkov dominated event with "top-down" reconstruction 8 FAST waveforms + Expected signals from top-down reconstruction (Data, Simulation by the best-fit parameters) FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV TA FD (Preliminary) Energy: 19.0 EeV Rp: 6.1 km
  • 9. Fluorescence dominated event 9 Event 2: SD: 15.8 EeV, Zen: 36.15◦ , Azi: 18.0◦ , Core(5.002, -4.461), Date: 20190110, Time: 063617.657363 FD: 19.95 EeV, Zen: 33.2◦ , Azi: 35.8◦ , Core(6.12, -5.26), Date: 20190110, Time: 063617.657398690 Event 4: SD: 1.32 EeV, Zen: 39.07◦ , Azi: -4.84◦ , Core(9.045, -2.982), Date: 20190110, Time: 070221.485684 FD: 1.86 EeV, Zen: 33.9◦ , Azi: 10.0◦ , Core(9.8, -3.91), Date: 20190110, Time: 070221.485723180 FAST top-down reconstruction (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 33.9 deg 19.3 deg 4.6 km -4.7 km 808 g/cm2 18.8 EeV FAST result TA result Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 100 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 100 / 100 ns pe N 30 − 20 − 10 − 0 10 20 30 40 50 Data Simulation TA SD (Preliminary) Zenith Azimuth Core(X) Core(Y) Energy 36.2 deg 18.0 deg 5.0 km -4.5 km 15.8 EeV TA FD (Preliminary) 33.2 deg 35.8 deg 6.1 km -5.3 km 20.0 EeV FAST@TA
  • 10. Reconstructing UHECRs with FAST@TA 10 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 1 10 2 10 Impact parameter [km] TA FD events Single-hit PMT (FAST) Multi-hit PMTs ✦ Data period: 2018/Mar/19 - 2019/Oct/14, 225 hours, 3 telescopes mode ✦ Event number: 964 (TA FD) -> 179 (Single-hit with FAST, S/N > 6σ, Δt > 500 ns) -> 59 (Multi-hit) ✦ The shower parameters are reconstructed by TA FD monocular result ✦ Use top-down reconstruction for events with multi-hit PMTs above 1 EeV ✦ First-guess geometry given from the TA FD 18 10 19 10 (eV) E 400 500 600 700 800 900 1000 1100 ] 2 [g/cm max X Preliminary FAST 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 2 10 3 10 4 10 5 10 s] µ Time-average brightness [pe/ TA FD events Single-hit PMT (FAST) Multi-hit PMTs
  • 11. Updates on reconstruction methods 11 ✦ Top-down reconstruction ✦ Use all available information from individual pixel traces ✦ Computationally expensive ✦ Need a reliable first-guess geometry ✦ Neural network first guess reconstruction ✦ 3 input per PMT: total signal, centroid time and pulse hight ✦ Kares/Tensorflow in Python, two hidden layers ✦ 6 outputs: Xmax, energy, geometry (θ, φ, x, y) ✦ Very fast reconstruction Inputs 3 feature per PMT with S/N > 5σ on n l T Outputs Energy, Xmax, geometry(θ, φ, x, y) Work: Justin Albury
  • 12. Performance with the FAST array 12 10 − 5 − 0 5 10 x [km] 10 − 5 − 0 5 10 y[km] ✦ Training data: Energy of 1 - 100 EeV, Xmax of 500 - 1200 g/cm2, uniform ✦ Night sky background: σ=10 p.e./100 ns, based on field measurements at TA and Auger sites ✦ Test data: Xmax distributions based on CORSIKA-Conex simulations ✦ 4 species (P, He, N, Fe) with 3 interaction models (EPOS-LHC, QGSJetII-04, Sibyll 2.3c) Incircle of the triangle 3-fold trigger efficiency 100% above 1019.3 eV ϵ = Ni(Etrue trigger) Ni(Etrue thrown) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 0 0.2 0.4 0.6 0.8 1 Efficiency EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Preliminary
  • 13. Resolution at 40 - 50 EeV (Proton, EPOS-LHC) 13 0 5 10 15 20 25 30 Angular resolution (deg) 0 200 400 600 800 1000 1200 Entries 0 500 1000 1500 2000 2500 3000 Core resolution (m) 0 200 400 600 800 1000 Entries Constant 26.8 ± 1898 Mean 0.00080 ± 0.02198 − Sigma 0.0007 ± 0.0758 1 − 0.8 − 0.6 − 0.4 − 0.2 − 0 0.2 0.4 0.6 0.8 1 ) true /Energy reco ln(Energy 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Entries Constant 26.8 ± 1898 Mean 0.00080 ± 0.02198 − Sigma 0.0007 ± 0.0758 10000 − 5000 − 0 5000 10000 Core X (m) 10000 − 5000 − 0 5000 10000 Core Y (m) 10000 − 5000 − 0 5000 10000 Core X (m) 10000 − 5000 − 0 5000 10000 Core Y (m) Constant 28.7 ± 1930 Mean 0.311 ± 5.593 Sigma 0.30 ± 29.22 400 − 300 − 200 − 100 − 0 100 200 300 400 ) 2 (g/cm true max - X reco max X 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Entries Constant 28.7 ± 1930 Mean 0.311 ± 5.593 Sigma 0.30 ± 29.22 True Reconstructed ✦ Arrival direction: 4.2 degrees, Core: 465 m, Energy: 8% Xmax: 30 g/cm2 (without quality cuts)
  • 14. Reconstructed Xmax distributions at 40 - 50 EeV 14 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm true max X 0 0.05 0.1 0.15 0.2 0.25 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c True Reconstructed 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c Preliminary Preliminary
  • 15. True Xmax rails 15 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 600 650 700 750 800 850 900 950 ) 2 > (g/cm true max X < EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 0 20 40 60 80 100 120 140 160 ) 2 ) (g/cm true max X ( σ EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Preliminary Preliminary
  • 16. Reconstructed Xmax rails 16 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) reco E log( 0 20 40 60 80 100 120 140 160 ) 2 ) (g/cm reco max X ( σ EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) reco E log( 600 650 700 750 800 850 900 950 ) 2 > (g/cm reco max X < EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Preliminary Preliminary
  • 17. 500 600 700 800 900 1000 1100 120 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 120 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c 500 600 700 800 900 1000 1100 1200 ) 2 (g/cm reco max X 0 0.02 0.04 0.06 0.08 0.1 0.12 ) 2 Events / (10 g/cm EPOS-LHC QGSJetII-04 Sibyll 2.3c Reconstructed Xmax distributions (Preliminary) 17 10 - 20 EeV 20 - 30 EeV 30 - 40 EeV 40 - 50 EeV 50 - 60 EeV 60 - 70 EeV 70 - 80 EeV 80 - 90 EeV A lot of remaining works to optimize quality cuts, neural network, trigger condition....
  • 18. Pros and Cons of fluorescence technique ✦ Pros ✦ Calorimetric energy determination ✦ Mass composition sensitive to measure Xmax ✦ Less dependent on hadronic interaction models ✦ Sensitive to UHE neutrinos and gamma-rays ✦ Cons ✦ Lower duty cycle, 10 - 20% ✦ A lot of calibration components: PMT gains, Optics, atmospheric parameters, telescope direction ✦ Understanding directional exposure in the sky ✦ Challenge to be stand-alone operation in the field 18 ● 4 mirror optical design presen process 10 eV 以上のフラックス回復を確認するには、 約10年観測が必要 q 全天雲モニターカメラ 視野内に検出できる星の数と明るさより、雲の量と 大気透明度を推定する q FAST解析手法の開発・解析結果 機械学習によるTop Down Reconstructionの初期値推定 TA FD結果を初期値とし、エネルギーとXmax を FASTのデータで独立に推定 <今後の予定> q 遠隔地での検出器デザイン 低電力化・自動稼働 →FADC、Amplifier、HVモジュールを開発中 →光学系のデザインのさらなる最適化 q Augerサイトに2台目の設置予定(2021年予定) q 陽子と鉄から期待される平均Xmaxの値を見積もる(質量組成推定) 9 E3・J[km -2 yr -1 sr 100年 1 3 2 4 Augerサイト3台目 Fit 20-feet container New electronics development MIO module GPS RTC ID T/H LED USB LAN SFP DCDC ROM Selectable PHY chip for ethernet Selectable USB HOST/TARGET GPS/RTC for 1PPS To be optimized for FAST telescope GPIO SoC module (or SoM) SoC SDRAM DCDC FMC JTAG mSD DCDC MODE System on Module with Xilinx SoC (XC7Z030-1FFG676I) Many purpose HPC -FMC (80 diff line) compatible, 4ch GBT All MIO pin is connected PMOD On/ Off RST FADC module SoC To Analog F/E Heat Sink HDMI FADC To SoM CLK F/O SSD Dual 32ch FADC (ADS52J90), 64ch FADC a Some of input can be bypassed for TDC us FADC has 7 operation mode 10bit 200/100/50 MSPS 8/16/32 12bit 80/40 MSPS 16/32 14bit 65/32.5 MSPS 16/32 M.2 SSD “can be” used, if we can buy firm I2C SPI bridge for slow control 64 ch analog input can be connected to an In this case, 48ch FADC/TDC, 14 bit 32.5M DCDC FADC I2C SPI AMP module Con To FADC I2C F/O AMP DAC > 2000 R/C !! Discr
  • 19. 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) reco E log( 600 650 700 750 800 850 900 950 ) 2 > (g/cm reco max X < EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 (eV)) true E log( 0 0.2 0.4 0.6 0.8 1 Efficiency EPOS-LHC QGSJetII-04 Sibyll 2.3c Proton Helium Nitrogen Iron Summary and future plan 19 ✦ Fluorescence detector Array of Single-pixel Telescopes (FAST) ✦ Low-cost fluorescence telescope array ✦ Promising concept as next-generation cosmic ray observatory to fulfill requirements ✦ Preliminary performance estimation ✦ 100% efficiency above 1019.3 eV ✦ Resolution of neural network reconstruction ✦ Arrival direction: 4.2 deg, Core: 465 m ✦ Energy: 8%, Xmax: 30 g/cm2 (ΔlnA ~ 1) ✦ Next step and challenges ✦ Stand-alone operation of FAST "array" in field FAST@TA FAST@Auger Preliminary Preliminary https://www.fast-project.org