SlideShare a Scribd company logo
1 of 18
Download to read offline
First results from the full-scale prototype for the 
Fluorescence detector Array of Single-pixel Telescopes	

Toshihiro Fujii (fujii@icrr.u-tokyo.ac.jp), Max Malacari, Justin Albury,
Jose A. Bellido, John Farmer, Aygul Galimova, Pavel Horvath, Miroslav
Hrabovsky, Dusan Mandat, Ariel Matalon, John N. Matthews, Maria
Merolle, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech,
Paolo Privitera, Petr Schovanek, Stan B. Thomas, Petr Travnicek 	

(FAST Collaboration, https://www.fast-project.org)	

July 17th 2017, ICRC 2017 in Busan	

1
Fluorescence detector Array of Single-
pixel Telescopes (FAST) 	

Ø  Target:  1019.5 eV, ultrahigh-energy cosmic rays
(UHECRs) and neutral particles (γ-rays, neutrinos)	

	

Ø  Huge target volume ⇒ Fluorescence detector array	

2	

Fine pixelated camera	
  
Low-cost, a few pixels telescope	
  
Too expensive to cover a huge area.	
  
Shower profile reconstruction
using given geometry	
  
Fluorescence detector Array of Single-
pixel Telescopes (FAST) 	

3	

Ø  Each telescope: 4
PMTs, 30°×30° field of
view (FoV).	

²  Reference design: 1
m2 aperture, 15°×15°
FoV per PMT	

Ø  Each station: 12
telescopes, 48 PMTs,
30°×360° FoV.	

Ø  Deploy on a triangle
grid with 20 km
spacing, like “Surface
Detector Array”.	

Ø  500 stations ⇒ 150,000
km2	

Ø  Geometry: radio,
surface detector or
coincidence of three
stations.
UHECR measurements with FAST prototypes	

Ø  Confirmed milestones with EUSO-TA
optics + FAST camera	

²  Stable operation under high night sky
backgrounds.	

²  UHECR detections.	

o  T. Fujii et al., Astropart.Phys. 74 (2016)
64-72, arXiv: 1504.00692	

Ø  Next milestones with the full-scale
FAST prototype 	

²  Establish the FAST sensitivity.	

²  Detect a shower profile including Xmax
with FAST.	

4	

FAST - today
Accepted for publication
in Astroparticle Physics
EUSO-TA optics	
  
+ FAST camera	

Full-scale FAST
prototype	
  
Cosmic ray	

~1018.0 eV	
  
Vertical Laser	

~1019.3 eV	
  
Joint laboratory of optics, Czech republic,
Olomouc
Full-scale FAST prototype	

FAST - progress in design and construction
UV Plexiglass Segmented primary mirror8 inch PMT camera
(2 x 2)
1m2 aperture
FOV = 25°x 25°
variable
tilt
Joint Laboratory of Optics Olomouc – Malargue November 20153
Prototype - October 2015
15°
45°
UV band-pass
filter
5	

Ø  4 PMTs (8 inch, R5912-03MOD, base
E7694-01), UV band-pass filter
(ZWB3)	

Ø  Segmented mirror of 1.6 m diameter	

PMT installation	

UV band-pass filter	
  
Mirror assembly	
  
Time lapse movies produced by Max Malacari, Dusan Mandat
6	

Telescope Array site
at Utah	

①	

②	

③	

④	

⑤	

⑥	

⑦	

⑩	

⑪	

⑨	

⑧
FAST DAQ Setup	

Ø  DAQ synchronized with the
external trigger of TA FD	

² 12 bit, 50 MHz sampling	

² Sum up 5 adjacent bins to be 10
MHz	

² 80 µs trigger window	

Ø  Field-of-view of this prototype
is set to detect a vertical UV
laser signal at a distance of
20.85 km. 	

7	

PMT1	
   PMT3	
  
PMT2	
   PMT4	
  
Laser event
Department of Physics, University of Chicago
FIG. 12. SPE peak height distribution used to set discrimi-
nator threshold value. The pedestal ends at around a height
of 350 ADC counts. Dividing this by the 4095 dynamic range
of the FADC gives a discriminator threshold of ⇡ 85 mV.
in wavelength. A NIST calibrated photodiode provides
the absolute calibration for the incident light flux, deter-
mining N through a powermeter readout. The flux is
reduced to the SPE level measurable by the PMT using
an integrating sphere of known transmission and incorpo-
rating the light attenuation coe cient of the apparatus13
,
↵ = (5.828 ± 0.018) ⇥ 10 4
. Eq. 5 can thus be rewritten:
✏ =
Npe
N
= Npe ⇥
hc
Pt ↵
(6)
where is the wavelength, P is the powermeter read-
ing, and t is the read out time for each step. Typical
Wavelength [nm]
0 100 200 300 400 500 600 700
Efficiency[%]
0
2
4
6
8
10
12
14
16
18
20
22
Detection Efficiency: FAST PMTs
Hamamatsu (Scaled)
PMT ZS0025
PMT ZS0024
PMT ZS0022
PMT ZS0018
18. HV = 2169V, Disc = 38mV, x20 Amp
22. HV = 2252V, Disc = 50mV, x20 Amp
24. HV = 2266V, Disc = 85mV, x20 Amp
25. HV = 2000V, Disc = 44mV, x20 Amp
FIG. 13. Detection e ciency results with Hamamatsu m
surement for comparison.
the powermeter and monochromator initialized, any
maining lights in the lab are switched o↵. The comp
in the lab is accessed remotely to begin data acqu
tion. The DAQ program controls the monochrom
and powermeter. It obtains and averages 10,000 re
ings from the powermeter over 10 s for a given step;
error, P , is calculated in quadrature from Poisson sta
tics on both powermeter readings, lamp signal and b
ground. The lamp background corresponds to when
powermeter values are read out while the monochro
tor shutter is kept closed; the lamp signal is obtained
an open shutter. The final power value used in ca
lating detection e ciency is the di↵erence between th
(P = Plamp,sig Plamp,bkd). The PMT rate, R, is ca
lated in a similar way, with open and closed shutters
responding to signal and background, respectively.
detection e ciency is calculated using Eq. 6, and
statistical error is given by Eq. 7, 8, 9:
P = P ⇥
s
(
Plamp,sig
Plamp,sig
)2 + (
Plamp,bkd
Plamp,bkd
)2
s
Rsig 2 Rbkd 2
PMT Calibrations	

8	

used in AIRFLY experiment
Astropart.Phys. 42 (2013)
90–102	

ement
MOD PMTs used consist
in base, and have a HV
of the PMTs is prefixed
T number. We test the
obtaining a single photo-
ement. We place a single
tput of the dual-channel
t of the PMT. The LED
kHz; typical LED ampli-
V and ⇡ 100 ns.
PMT is connected to the
lifier; the two resulting
he FADC input and first
ctively. The PMT anode
DC converts the signal to
0 to 4095 (12-bit range).
Time (2 ns)
1000 1200 1400
Time (2 ns)
1000 1200 1400
Time (2 ns)
1000 1200 1400
PE event (top); SPE signal
PMT	ZS0018	 PMT	ZS0022	
Sigma 28.6±1254
Integrated counts
0 2000 4000 6000 8000 10000 12000
20
40
60
80
100
120
Sigma 28.6±1254
Integrated counts
−200 −100 0 100 200
0
20
40
60
80
100
Sigma 44.7±1641
Integrated counts
−2000 0 2000 4000 6000 800010000120001400016000
0
50
100
150
200
Sigma 44.7±1641
PMT	ZS0024	 PMT	ZS0025	
Entries 23504
Mean 2111
RMS 2691
/ ndf2
175.6 / 85
Constant 2.3±184.8
Mean 30.6±4582
Sigma 21.9±1933
Integrated counts
0 5000 10000 15000 20000 25000
Entries
200
400
600
800
1000
1200
1400
Entries 23504
Mean 2111
RMS 2691
/ ndf2
175.6 / 85
Constant 2.3±184.8
Mean 30.6±4582
Sigma 21.9±1933
Entries 23504
Mean 0.857
RMS 55.09
/ ndf2
0 / −3
Constant 1.4±184.8
Mean 1.4±4582
Sigma 8350.8±1933
Integrated counts
−200 −150 −100 −50 0 50 100 150
Entries
0
20
40
60
80
100
120
140
160
Entries 23504
Mean 0.857
RMS 55.09
/ ndf2
0 / −3
Constant 1.4±184.8
Mean 1.4±4582
Sigma 8350.8±1933
Entries 43157
Mean 4210
RMS 6062
/ ndf2
263.4 / 104
Constant 2.1±161.5
Mean 34.5±9949
Sigma 42.9±2982
Integrated counts
0 5000 10000 15000 20000 25000
Entries
200
400
600
800
1000
1200
Entries 43157
Mean 4210
RMS 6062
/ ndf2
263.4 / 104
Constant 2.1±161.5
Mean 34.5±9949
Sigma 42.9±2982
FIG. 7. Integrated count distribution of SPE signa
ing pedestal (left peak) and SPE peak fitted to a
for all PMTs.
After specifying the signal region for the aver
signal, we obtain a SPE integrated count dis
sometimes displayed as a charge distribution. S
events will have no photoelectrons (i.e. no ch
expect a peak centered around zero, called the
We then have a SPE peak that we fit to a Ga
extract a mean SPE value (Fig 7). This parame
for other characterization measurements. The
the range in which the tail end of the pedestal
the tail end of the SPE peak. A discriminato
introduced to remove the pedestal, leaving only
spectrum. Fig. 8 shows logic for the SPE meas
Characteristics like the peak-to-valley (P:V)
Single photo
electron	
  
Detection efficiency 	

(QE×CE)	
  
KICP, Univ. of Chicago	
  
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
200
400
600
800
1000
1200
PMT 1
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
200
400
600
800
1000
1200
PMT 3
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
200
400
600
800
1000
1200
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
200
400
600
800
1000
1200
PMT 4
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-40
-30
-20
-10
0
10
20
30
40
PMT 1
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-40
-30
-20
-10
0
10
20
PMT 3
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
PMT 4
YAP pulser (YAlO3:Ce
scintillator + 241Am
source) attached on
each PMT surface	

Ultraviolet
LED
illuminating
the front of
the camera	

Wavelength [nm]
Telescope alignments and Raytracing simulation	

2017JIN
Wavelength [nm]
260 280 300 320 340 360 380 400 420
Efficiency[%]
0
10
20
30
40
50
60
70
80
90
100
Mirror reflectivity
Filter transmission
Total efficiency
The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along with the
ansmission of the UV band-pass filter. The resultant total optical e ciency is shown in black.
9	

Further information in poster 140, PoS (ICRC2017) 389 on July 18-19th, 	

or recently published paper, D. Mandat et al., JINST 12, T07001 (2017) 	
  
11
Optical simulation status
FAST Simulation - example
- PSF (7.5deg diagonal) aperture input 0.5W 0.43W/PMT1, 0.001W/PMT234 (eff: 86%)
Telescope alignment w/ stars	
   Mirror alignment
by 2 LEDs	
  
Mirror reflectance and
filter transmittance	
  
Raytrace simulation
for spot sizes and
angular responses	

PMT2	
   PMT4	
  
focal plane 50 mm offset	
  
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
40
PMT 1
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
40
PMT 3
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
40
PMT 4
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
5
10
15
20
PMT 1
PMT 2
PMT 3
PMT 4
Distant vertical laser comparison in Data/MC	

10	

Single event	
  
Average of 284 triggers	
  
Ø  Ultraviolet vertical laser at a distance
of 20.85 km, E = 4.4 mJ, λ = 355 nm, 	

Ø  Every 30 minutes during a clear
night, equivalent to a UHECR with
~1019.5 eV	

Ø  Calculate expected signal by
simulation and good agreement with
observed data. 	

Ø  Monitoring the transparency of the
atmosphere.	

Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
5
10
15
20
25
PMT1
PMT2
PMT3
PMT4
Simulation (Preliminary)
Event data with the full-scale FAST prototype	

Ø  Data on Oct.5th
2016	

Ø  62194 triggers	

²  PMT1,2,3,4	

²  Circle size =
significance	

Ø  Remove airplane
(35 µs) and
laser events (time
information).	

Ø  Two significant
signal in PMTs	

Ø  90 events
survived 	

Ø  2 events found as
candidates.	

Ø  Check TAFD
reconstruction.	

	

11	

Time (100 ns)
0 100 200 300 400 500 600 700 800
pN
-20
0
20
40
60
Time (100 ns)
0 100 200 300 400 500 600 700 800
pN
-30
-20
-10
0
10
20
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
0
20
40
60
80
100
120
140
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
40
PMT 4
Airplane	

 Laser	

All triggers	

Selected triggers
First lights from UHECRs 	

12	

Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-40
-20
0
20
40
60
PMT 1
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
40
PMT 3
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-40
-30
-20
-10
0
10
20
30
40
50
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
40
PMT 4
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
500
1000
1500
2000
PMT 1
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
350
PMT 3
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
200
400
600
800
1000
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
50
100
150
200
250
300
PMT 4
Event 387: log10(E(eV)): 18.68, Zen: 61.0◦
, Azi: 63.3◦
,
Core(11.86, -11.50), Rp: 3.52, Psi: 42.8◦
, Xmax: 1113 g/cm2
FoV(1407 - 1769), Date: 20161005, Time: 06:07:38.800548560
Event 388: log10(E(eV)): 17.96, Zen: 38.8◦
, Azi: -19.6◦
,
Core(8.90, -17.03), Rp: 9.44, Psi: 82.6◦
, Xmax: 768 g/cm2
FoV(498 - 1017), Date: 20161005, Time: 06:30:06.947113522
Event 389: log10(E(eV)): 17.83, Zen: 4.7◦
, Azi: 115.2◦
,
Core(14.23, -5.41), Rp: 7.18, Psi: 86.7◦
, Xmax: 656 g/cm2
FoV(473 - 850), Date: 20161005, Time: 06:35:10.462924009
Event 393: log10(E(eV)): 18.14, Zen: 31.6◦
, Az
Core(6.02, -6.69), Rp: 11.96, Psi: 102.1◦
, Xmax: 76
FoV(373 - 991), Date: 20161005, Time: 06:51:48.29284
Event 394: log10(E(eV)): 18.69, Zen: 61.2◦
, Azi
Core(9.58, -20.15), Rp: 9.27, Psi: 57.3◦
, Xmax: 102
FoV(829 - 1221), Date: 20161005, Time: 06:53:27.0113
Event 395: log10(E(eV)): 18.26, Zen: 17.7◦
, Azi:
Core(13.53, -2.14), Rp: 10.39, Psi: 98.2◦
, Xmax: 76
FoV(303 - 890), Date: 20161005, Time: 06:53:43.90953
① 2016/10/05 06:37:49.525424540	

 ② 2016/10/05 10:25:50.781802380	

TAFD reconstruction 	

logE = 18.08, Rp = 2.40 km	

Too close, Cherenkov
dominated event.
Remote operation with FAST	

13	

18 events found by January (120 hours)	
  
Ø  Fully remote operation	

²  Automated shutdown procedure	

²  Monitor a shutter by an infrared
camera	

o  IP camera(PIC1008WN), relay
module (ETH002) 	

Ø  Total operation time reaches 201
hours by July.	

Open Close	

Highest event, E=1018.55 eV,
Rp=3.0 km by TA FD	

Remote operation	

Operation at site
Data analysis and simulation study	

14	

Geometry (given
by TASD)	

Shower Profile
(FAST)	

✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5
eV. Independent cross-check of energy
and Xmax scale of TA/Auger	

Simula(on	
  32	
  EeV	
  
+	
  
FAST only reconstruction	

FAST hybrid reconstruction	

✦ Fluorescence detector array with
a 20 km spacing. Reconstruct
geometry and profile	

56 EeV Simulation
Summary and future plans	

Ø  Installed the full-scale FAST prototype at
Telescope Array site and started remote
operation.	

²  Detect a distant vertical laser.	

²  Detect UHECRs.	

²  Stable observation with remote controlling.	

Ø  We will continue to operate the prototype
and search for UHECR in coincidence with
the TA detectors.	

Ø  We plan to install two more telescopes in
September 2017.	

²  Total FoV will be 75 degree × 25 degrees	

²  Upgrade the electronics for self trigger with
FAST.	

Ø  Install all sky camera to check the weather for
automated operation. 	

Ø  Plan to install at Auger site in the future for
cross calibration between experiments.	

Ø  New collaborators and applications are
welcome.	

15	

Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
5
10
15
20
PMT 1
PMT 2
PMT 3
PMT 4
Rain	
   Snow	
   Fog	
  
Backup	

16
17
Size as a reference 	

Ø  100,200 km²	

18

More Related Content

What's hot

The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -Toshihiro FUJII
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Forward2025
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Toshihiro FUJII
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FASTToshihiro FUJII
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告Toshihiro FUJII
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorSon Cao
 
Quantum storage and manipulation of heralded single photons in atomic quantum...
Quantum storage and manipulation of heralded single photons in atomic quantum...Quantum storage and manipulation of heralded single photons in atomic quantum...
Quantum storage and manipulation of heralded single photons in atomic quantum...Pin ju Tsai
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processingSolo Hermelin
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...Cristian Randieri PhD
 
Park Systems Pin point presentation
Park Systems Pin point presentationPark Systems Pin point presentation
Park Systems Pin point presentationKeibock Lee
 
Aeroacoustic simulation of bluff body noise using a hybrid statistical method
Aeroacoustic simulation of bluff body noise using a hybrid statistical methodAeroacoustic simulation of bluff body noise using a hybrid statistical method
Aeroacoustic simulation of bluff body noise using a hybrid statistical methodCon Doolan
 
Second Sight Presentation
Second Sight PresentationSecond Sight Presentation
Second Sight PresentationWill Yang
 
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAMFlow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAMCon Doolan
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systemsSolo Hermelin
 
The MU-RAY project - PhD_defence
The MU-RAY project - PhD_defenceThe MU-RAY project - PhD_defence
The MU-RAY project - PhD_defenceLuigi Cimmino
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaborationahmad bassiouny
 

What's hot (20)

The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary Detector
 
Quantum storage and manipulation of heralded single photons in atomic quantum...
Quantum storage and manipulation of heralded single photons in atomic quantum...Quantum storage and manipulation of heralded single photons in atomic quantum...
Quantum storage and manipulation of heralded single photons in atomic quantum...
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
Park Systems Pin point presentation
Park Systems Pin point presentationPark Systems Pin point presentation
Park Systems Pin point presentation
 
Test
TestTest
Test
 
Aeroacoustic simulation of bluff body noise using a hybrid statistical method
Aeroacoustic simulation of bluff body noise using a hybrid statistical methodAeroacoustic simulation of bluff body noise using a hybrid statistical method
Aeroacoustic simulation of bluff body noise using a hybrid statistical method
 
Second Sight Presentation
Second Sight PresentationSecond Sight Presentation
Second Sight Presentation
 
SMR_defence_sep3
SMR_defence_sep3SMR_defence_sep3
SMR_defence_sep3
 
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAMFlow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems
 
The MU-RAY project - PhD_defence
The MU-RAY project - PhD_defenceThe MU-RAY project - PhD_defence
The MU-RAY project - PhD_defence
 
present
presentpresent
present
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaboration
 

Similar to First results from the full-scale prototype for the Fluorescence detector Array of Single-pixel Telescopes

First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...Toshihiro FUJII
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Toshihiro FUJII
 
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発Toshihiro FUJII
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価Toshihiro FUJII
 
Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Thomas Actn
 
UV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.pptUV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.pptJgdishrathi
 
igarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptigarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptgrssieee
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Toshihiro FUJII
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentationShinichiro Yano
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013AREA Science Park
 
solar radiation
solar radiationsolar radiation
solar radiationmuza1988
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentAhmed Ammar Rebai PhD
 
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloTrends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloCPqD
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Dennis Dang
 
PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005David Dahan
 
Cunningham_Liang_Medina_Sagnac_Interferometer_2015_Writeup
Cunningham_Liang_Medina_Sagnac_Interferometer_2015_WriteupCunningham_Liang_Medina_Sagnac_Interferometer_2015_Writeup
Cunningham_Liang_Medina_Sagnac_Interferometer_2015_WriteupChristine Cunningham
 
Adaptive and inteligence
Adaptive and inteligenceAdaptive and inteligence
Adaptive and inteligenceFinitoTheEnd
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsEnrico Castro
 
Ippen nes osa 9-15-11
Ippen nes osa 9-15-11Ippen nes osa 9-15-11
Ippen nes osa 9-15-11nishmoh
 

Similar to First results from the full-scale prototype for the Fluorescence detector Array of Single-pixel Telescopes (20)

First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
 
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
Next-Generation Observatory: Fluorescence detector Array of Single Pixel Tele...
 
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
 
FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価FAST実験2:新型大気蛍光望遠鏡の性能評価
FAST実験2:新型大気蛍光望遠鏡の性能評価
 
Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...Optical interferometery to detect sound waves as an analogue for gravitationa...
Optical interferometery to detect sound waves as an analogue for gravitationa...
 
19 kröger
19 kröger19 kröger
19 kröger
 
UV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.pptUV-VIS SPECTRO final.ppt
UV-VIS SPECTRO final.ppt
 
igarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptigarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.ppt
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
solar radiation
solar radiationsolar radiation
solar radiation
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experiment
 
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloTrends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2
 
PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005
 
Cunningham_Liang_Medina_Sagnac_Interferometer_2015_Writeup
Cunningham_Liang_Medina_Sagnac_Interferometer_2015_WriteupCunningham_Liang_Medina_Sagnac_Interferometer_2015_Writeup
Cunningham_Liang_Medina_Sagnac_Interferometer_2015_Writeup
 
Adaptive and inteligence
Adaptive and inteligenceAdaptive and inteligence
Adaptive and inteligence
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
 
Ippen nes osa 9-15-11
Ippen nes osa 9-15-11Ippen nes osa 9-15-11
Ippen nes osa 9-15-11
 

More from Toshihiro FUJII

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...Toshihiro FUJII
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)Toshihiro FUJII
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究Toshihiro FUJII
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdfToshihiro FUJII
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Toshihiro FUJII
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsToshihiro FUJII
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectToshihiro FUJII
 

More from Toshihiro FUJII (8)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence DetectorsA Conceptual Design for a Large Ground Array of Fluorescence Detectors
A Conceptual Design for a Large Ground Array of Fluorescence Detectors
 
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) projectFluorescence detector Array of Single-pixel Telescopes (FAST) project
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
 

Recently uploaded

G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfWadeK3
 

Recently uploaded (20)

G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
 

First results from the full-scale prototype for the Fluorescence detector Array of Single-pixel Telescopes

  • 1. First results from the full-scale prototype for the Fluorescence detector Array of Single-pixel Telescopes Toshihiro Fujii (fujii@icrr.u-tokyo.ac.jp), Max Malacari, Justin Albury, Jose A. Bellido, John Farmer, Aygul Galimova, Pavel Horvath, Miroslav Hrabovsky, Dusan Mandat, Ariel Matalon, John N. Matthews, Maria Merolle, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Stan B. Thomas, Petr Travnicek (FAST Collaboration, https://www.fast-project.org) July 17th 2017, ICRC 2017 in Busan 1
  • 2. Fluorescence detector Array of Single- pixel Telescopes (FAST) Ø  Target: 1019.5 eV, ultrahigh-energy cosmic rays (UHECRs) and neutral particles (γ-rays, neutrinos) Ø  Huge target volume ⇒ Fluorescence detector array 2 Fine pixelated camera   Low-cost, a few pixels telescope   Too expensive to cover a huge area.   Shower profile reconstruction using given geometry  
  • 3. Fluorescence detector Array of Single- pixel Telescopes (FAST) 3 Ø  Each telescope: 4 PMTs, 30°×30° field of view (FoV). ²  Reference design: 1 m2 aperture, 15°×15° FoV per PMT Ø  Each station: 12 telescopes, 48 PMTs, 30°×360° FoV. Ø  Deploy on a triangle grid with 20 km spacing, like “Surface Detector Array”. Ø  500 stations ⇒ 150,000 km2 Ø  Geometry: radio, surface detector or coincidence of three stations.
  • 4. UHECR measurements with FAST prototypes Ø  Confirmed milestones with EUSO-TA optics + FAST camera ²  Stable operation under high night sky backgrounds. ²  UHECR detections. o  T. Fujii et al., Astropart.Phys. 74 (2016) 64-72, arXiv: 1504.00692 Ø  Next milestones with the full-scale FAST prototype ²  Establish the FAST sensitivity. ²  Detect a shower profile including Xmax with FAST. 4 FAST - today Accepted for publication in Astroparticle Physics EUSO-TA optics   + FAST camera Full-scale FAST prototype   Cosmic ray ~1018.0 eV   Vertical Laser ~1019.3 eV   Joint laboratory of optics, Czech republic, Olomouc
  • 5. Full-scale FAST prototype FAST - progress in design and construction UV Plexiglass Segmented primary mirror8 inch PMT camera (2 x 2) 1m2 aperture FOV = 25°x 25° variable tilt Joint Laboratory of Optics Olomouc – Malargue November 20153 Prototype - October 2015 15° 45° UV band-pass filter 5 Ø  4 PMTs (8 inch, R5912-03MOD, base E7694-01), UV band-pass filter (ZWB3) Ø  Segmented mirror of 1.6 m diameter PMT installation UV band-pass filter   Mirror assembly   Time lapse movies produced by Max Malacari, Dusan Mandat
  • 6. 6 Telescope Array site at Utah ① ② ③ ④ ⑤ ⑥ ⑦ ⑩ ⑪ ⑨ ⑧
  • 7. FAST DAQ Setup Ø  DAQ synchronized with the external trigger of TA FD ² 12 bit, 50 MHz sampling ² Sum up 5 adjacent bins to be 10 MHz ² 80 µs trigger window Ø  Field-of-view of this prototype is set to detect a vertical UV laser signal at a distance of 20.85 km. 7 PMT1   PMT3   PMT2   PMT4   Laser event
  • 8. Department of Physics, University of Chicago FIG. 12. SPE peak height distribution used to set discrimi- nator threshold value. The pedestal ends at around a height of 350 ADC counts. Dividing this by the 4095 dynamic range of the FADC gives a discriminator threshold of ⇡ 85 mV. in wavelength. A NIST calibrated photodiode provides the absolute calibration for the incident light flux, deter- mining N through a powermeter readout. The flux is reduced to the SPE level measurable by the PMT using an integrating sphere of known transmission and incorpo- rating the light attenuation coe cient of the apparatus13 , ↵ = (5.828 ± 0.018) ⇥ 10 4 . Eq. 5 can thus be rewritten: ✏ = Npe N = Npe ⇥ hc Pt ↵ (6) where is the wavelength, P is the powermeter read- ing, and t is the read out time for each step. Typical Wavelength [nm] 0 100 200 300 400 500 600 700 Efficiency[%] 0 2 4 6 8 10 12 14 16 18 20 22 Detection Efficiency: FAST PMTs Hamamatsu (Scaled) PMT ZS0025 PMT ZS0024 PMT ZS0022 PMT ZS0018 18. HV = 2169V, Disc = 38mV, x20 Amp 22. HV = 2252V, Disc = 50mV, x20 Amp 24. HV = 2266V, Disc = 85mV, x20 Amp 25. HV = 2000V, Disc = 44mV, x20 Amp FIG. 13. Detection e ciency results with Hamamatsu m surement for comparison. the powermeter and monochromator initialized, any maining lights in the lab are switched o↵. The comp in the lab is accessed remotely to begin data acqu tion. The DAQ program controls the monochrom and powermeter. It obtains and averages 10,000 re ings from the powermeter over 10 s for a given step; error, P , is calculated in quadrature from Poisson sta tics on both powermeter readings, lamp signal and b ground. The lamp background corresponds to when powermeter values are read out while the monochro tor shutter is kept closed; the lamp signal is obtained an open shutter. The final power value used in ca lating detection e ciency is the di↵erence between th (P = Plamp,sig Plamp,bkd). The PMT rate, R, is ca lated in a similar way, with open and closed shutters responding to signal and background, respectively. detection e ciency is calculated using Eq. 6, and statistical error is given by Eq. 7, 8, 9: P = P ⇥ s ( Plamp,sig Plamp,sig )2 + ( Plamp,bkd Plamp,bkd )2 s Rsig 2 Rbkd 2 PMT Calibrations 8 used in AIRFLY experiment Astropart.Phys. 42 (2013) 90–102 ement MOD PMTs used consist in base, and have a HV of the PMTs is prefixed T number. We test the obtaining a single photo- ement. We place a single tput of the dual-channel t of the PMT. The LED kHz; typical LED ampli- V and ⇡ 100 ns. PMT is connected to the lifier; the two resulting he FADC input and first ctively. The PMT anode DC converts the signal to 0 to 4095 (12-bit range). Time (2 ns) 1000 1200 1400 Time (2 ns) 1000 1200 1400 Time (2 ns) 1000 1200 1400 PE event (top); SPE signal PMT ZS0018 PMT ZS0022 Sigma 28.6±1254 Integrated counts 0 2000 4000 6000 8000 10000 12000 20 40 60 80 100 120 Sigma 28.6±1254 Integrated counts −200 −100 0 100 200 0 20 40 60 80 100 Sigma 44.7±1641 Integrated counts −2000 0 2000 4000 6000 800010000120001400016000 0 50 100 150 200 Sigma 44.7±1641 PMT ZS0024 PMT ZS0025 Entries 23504 Mean 2111 RMS 2691 / ndf2 175.6 / 85 Constant 2.3±184.8 Mean 30.6±4582 Sigma 21.9±1933 Integrated counts 0 5000 10000 15000 20000 25000 Entries 200 400 600 800 1000 1200 1400 Entries 23504 Mean 2111 RMS 2691 / ndf2 175.6 / 85 Constant 2.3±184.8 Mean 30.6±4582 Sigma 21.9±1933 Entries 23504 Mean 0.857 RMS 55.09 / ndf2 0 / −3 Constant 1.4±184.8 Mean 1.4±4582 Sigma 8350.8±1933 Integrated counts −200 −150 −100 −50 0 50 100 150 Entries 0 20 40 60 80 100 120 140 160 Entries 23504 Mean 0.857 RMS 55.09 / ndf2 0 / −3 Constant 1.4±184.8 Mean 1.4±4582 Sigma 8350.8±1933 Entries 43157 Mean 4210 RMS 6062 / ndf2 263.4 / 104 Constant 2.1±161.5 Mean 34.5±9949 Sigma 42.9±2982 Integrated counts 0 5000 10000 15000 20000 25000 Entries 200 400 600 800 1000 1200 Entries 43157 Mean 4210 RMS 6062 / ndf2 263.4 / 104 Constant 2.1±161.5 Mean 34.5±9949 Sigma 42.9±2982 FIG. 7. Integrated count distribution of SPE signa ing pedestal (left peak) and SPE peak fitted to a for all PMTs. After specifying the signal region for the aver signal, we obtain a SPE integrated count dis sometimes displayed as a charge distribution. S events will have no photoelectrons (i.e. no ch expect a peak centered around zero, called the We then have a SPE peak that we fit to a Ga extract a mean SPE value (Fig 7). This parame for other characterization measurements. The the range in which the tail end of the pedestal the tail end of the SPE peak. A discriminato introduced to remove the pedestal, leaving only spectrum. Fig. 8 shows logic for the SPE meas Characteristics like the peak-to-valley (P:V) Single photo electron   Detection efficiency (QE×CE)   KICP, Univ. of Chicago   Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 200 400 600 800 1000 1200 PMT 1 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 200 400 600 800 1000 1200 PMT 3 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 200 400 600 800 1000 1200 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 200 400 600 800 1000 1200 PMT 4 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -40 -30 -20 -10 0 10 20 30 40 PMT 1 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -40 -30 -20 -10 0 10 20 PMT 3 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -30 -20 -10 0 10 20 30 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 PMT 4 YAP pulser (YAlO3:Ce scintillator + 241Am source) attached on each PMT surface Ultraviolet LED illuminating the front of the camera Wavelength [nm]
  • 9. Telescope alignments and Raytracing simulation 2017JIN Wavelength [nm] 260 280 300 320 340 360 380 400 420 Efficiency[%] 0 10 20 30 40 50 60 70 80 90 100 Mirror reflectivity Filter transmission Total efficiency The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along with the ansmission of the UV band-pass filter. The resultant total optical e ciency is shown in black. 9 Further information in poster 140, PoS (ICRC2017) 389 on July 18-19th, or recently published paper, D. Mandat et al., JINST 12, T07001 (2017)   11 Optical simulation status FAST Simulation - example - PSF (7.5deg diagonal) aperture input 0.5W 0.43W/PMT1, 0.001W/PMT234 (eff: 86%) Telescope alignment w/ stars   Mirror alignment by 2 LEDs   Mirror reflectance and filter transmittance   Raytrace simulation for spot sizes and angular responses PMT2   PMT4   focal plane 50 mm offset  
  • 10. Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -30 -20 -10 0 10 20 30 40 PMT 1 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -30 -20 -10 0 10 20 30 40 PMT 3 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 40 PMT 4 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 5 10 15 20 PMT 1 PMT 2 PMT 3 PMT 4 Distant vertical laser comparison in Data/MC 10 Single event   Average of 284 triggers   Ø  Ultraviolet vertical laser at a distance of 20.85 km, E = 4.4 mJ, λ = 355 nm, Ø  Every 30 minutes during a clear night, equivalent to a UHECR with ~1019.5 eV Ø  Calculate expected signal by simulation and good agreement with observed data. Ø  Monitoring the transparency of the atmosphere. Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 5 10 15 20 25 PMT1 PMT2 PMT3 PMT4 Simulation (Preliminary)
  • 11. Event data with the full-scale FAST prototype Ø  Data on Oct.5th 2016 Ø  62194 triggers ²  PMT1,2,3,4 ²  Circle size = significance Ø  Remove airplane (35 µs) and laser events (time information). Ø  Two significant signal in PMTs Ø  90 events survived Ø  2 events found as candidates. Ø  Check TAFD reconstruction. 11 Time (100 ns) 0 100 200 300 400 500 600 700 800 pN -20 0 20 40 60 Time (100 ns) 0 100 200 300 400 500 600 700 800 pN -30 -20 -10 0 10 20 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 0 20 40 60 80 100 120 140 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 40 PMT 4 Airplane Laser All triggers Selected triggers
  • 12. First lights from UHECRs 12 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -40 -20 0 20 40 60 PMT 1 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 40 PMT 3 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -40 -30 -20 -10 0 10 20 30 40 50 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -30 -20 -10 0 10 20 30 40 PMT 4 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 500 1000 1500 2000 PMT 1 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 350 PMT 3 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 200 400 600 800 1000 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 50 100 150 200 250 300 PMT 4 Event 387: log10(E(eV)): 18.68, Zen: 61.0◦ , Azi: 63.3◦ , Core(11.86, -11.50), Rp: 3.52, Psi: 42.8◦ , Xmax: 1113 g/cm2 FoV(1407 - 1769), Date: 20161005, Time: 06:07:38.800548560 Event 388: log10(E(eV)): 17.96, Zen: 38.8◦ , Azi: -19.6◦ , Core(8.90, -17.03), Rp: 9.44, Psi: 82.6◦ , Xmax: 768 g/cm2 FoV(498 - 1017), Date: 20161005, Time: 06:30:06.947113522 Event 389: log10(E(eV)): 17.83, Zen: 4.7◦ , Azi: 115.2◦ , Core(14.23, -5.41), Rp: 7.18, Psi: 86.7◦ , Xmax: 656 g/cm2 FoV(473 - 850), Date: 20161005, Time: 06:35:10.462924009 Event 393: log10(E(eV)): 18.14, Zen: 31.6◦ , Az Core(6.02, -6.69), Rp: 11.96, Psi: 102.1◦ , Xmax: 76 FoV(373 - 991), Date: 20161005, Time: 06:51:48.29284 Event 394: log10(E(eV)): 18.69, Zen: 61.2◦ , Azi Core(9.58, -20.15), Rp: 9.27, Psi: 57.3◦ , Xmax: 102 FoV(829 - 1221), Date: 20161005, Time: 06:53:27.0113 Event 395: log10(E(eV)): 18.26, Zen: 17.7◦ , Azi: Core(13.53, -2.14), Rp: 10.39, Psi: 98.2◦ , Xmax: 76 FoV(303 - 890), Date: 20161005, Time: 06:53:43.90953 ① 2016/10/05 06:37:49.525424540 ② 2016/10/05 10:25:50.781802380 TAFD reconstruction logE = 18.08, Rp = 2.40 km Too close, Cherenkov dominated event.
  • 13. Remote operation with FAST 13 18 events found by January (120 hours)   Ø  Fully remote operation ²  Automated shutdown procedure ²  Monitor a shutter by an infrared camera o  IP camera(PIC1008WN), relay module (ETH002) Ø  Total operation time reaches 201 hours by July. Open Close Highest event, E=1018.55 eV, Rp=3.0 km by TA FD Remote operation Operation at site
  • 14. Data analysis and simulation study 14 Geometry (given by TASD) Shower Profile (FAST) ✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV. Independent cross-check of energy and Xmax scale of TA/Auger Simula(on  32  EeV   +   FAST only reconstruction FAST hybrid reconstruction ✦ Fluorescence detector array with a 20 km spacing. Reconstruct geometry and profile 56 EeV Simulation
  • 15. Summary and future plans Ø  Installed the full-scale FAST prototype at Telescope Array site and started remote operation. ²  Detect a distant vertical laser. ²  Detect UHECRs. ²  Stable observation with remote controlling. Ø  We will continue to operate the prototype and search for UHECR in coincidence with the TA detectors. Ø  We plan to install two more telescopes in September 2017. ²  Total FoV will be 75 degree × 25 degrees ²  Upgrade the electronics for self trigger with FAST. Ø  Install all sky camera to check the weather for automated operation. Ø  Plan to install at Auger site in the future for cross calibration between experiments. Ø  New collaborators and applications are welcome. 15 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 5 10 15 20 PMT 1 PMT 2 PMT 3 PMT 4 Rain   Snow   Fog  
  • 17. 17
  • 18. Size as a reference Ø  100,200 km² 18