- Multinomial logistic regression predicts categorical membership in a dependent variable based on multiple independent variables. It is an extension of binary logistic regression that allows for more than two categories.
- Careful data analysis including checking for outliers and multicollinearity is important. A minimum sample size of 10 cases per independent variable is recommended.
- Multinomial logistic regression does not assume normality, linearity or homoscedasticity like discriminant function analysis does, making it more flexible and commonly used. It does assume independence between dependent variable categories.