SlideShare a Scribd company logo
_____tt~--- MassachusettsInstituteofTechnologyMITVideoCOurseVideoCourseStudyGuideFiniteElementProceduresforSolidsandStructuresLinearAnalys isKlaus-JOrgenBatheProfessorofMechanicalEngineering,MITPublishedbyMITCenterforAdvancedEngineeringstudyReorderNo672-2100
PREFACETheanalysisofcomplexstaticanddynamicproblemsinvolvesinessencethreestages: selectionofamathematicalmodel,analysisofthemodel,andinterpretationoftheresults. Duringrecentyearsthefiniteelementmethodimplementedonthedigitalcomputerhasbeenusedsuccessfullyinmodelingverycomplexproblemsinvariousareasofengineeringandhassignificantlyincreasedthepossibilitiesforsafeandcosteffectivedesign. However,theefficientuseofthemethodisonlypossibleifthebasicassumptionsoftheproceduresemployedareknown,andthemethodcanbeexercisedconfidentlyonthecomputer. Theobjectiveinthiscourseistosummarizemodernandeffectivefiniteelementproceduresforthelinearanalysesofstaticanddynamicproblems.Thematerialdiscussedinthelecturesincludesthebasicfiniteelementformulationsemployed, theeffectiveimplementationoftheseformulationsincomputerprograms,andrecommendationsontheactualuseofthemethodsinengineeringpractice.Thecourseisintendedforpracticingengineersandscientistswhowanttosolveproblemsusingmodemandefficientfiniteelementmethods. Finiteelementproceduresforthenonlinearanalysisofstructuresarepresentedinthefollow-upcourse,FiniteElementProceduresforSolidsandStructures-NonlinearAnalysis. Inthisstudyguideshortdescriptionsofthelecturesandtheviewgraphsusedinthelecturepresentationsaregiven. Belowtheshortdescriptionofeachlecture,referenceismadetotheaccompanyingtextbookforthecourse:FiniteElementProceduresinEngineeringAnalysis,byK.J.Bathe,PrenticeHall, Inc.,1982. Thetextbooksectionsandexamples,listedbelowtheshortdescriptionofeachlecture,provideimportantreadingandstudymaterialtothecourse.
ContentsLecturesl.Somebasicconceptsofengineeringanalysis1-12.Analysisofcontinuoussystems;differentialandvariationalformulations2-13.Formulationofthedisplacement-basedfiniteelementmethod_3-14.Generalizedcoordinatefiniteelementmodels4-15.Implementationofmethodsincomputerprograms; examplesSAp,ADINA5-16.Formulationandcalculationofisoparametricmodels6-17.Formulationofstructuralelements7-18.Numericalintegrations,modelingconsiderations8-19.Solutionoffiniteelementequilibriumequationsinstaticanalysis9-110.Solutionoffiniteelementequilibriumequationsindynamicanalysis10-11l.Modesuperpositionanalysis;timehistory11-112.Solutionmethodsforcalculationsoffrequenciesandmodeshapes12-1
SOMEBASICCONCEPTSOFENGINEERINGANALYSISLECTURE146MINUTESI-I
SolIebasicccnaceplsofeugiDeeriDgualysisLECTURE1Introductiontothecourse.objectiveoflecturesSomebasicconceptsofengineeringanalysis. discreteandcontinuoussystems.problemtypes:steady-state.propagationandeigenvalueproblemsAnalysisofdiscretesystems: exampleanalysisofaspringsystemBasicsolutionrequirementsUseandexplanationofthemoderndirectstiffnessmethodVariationalformulation TEXTBOOK:Sections:3.1and3.2.1.3.2.2.3.2.3.3.2.4Examples:3.1.3.2.3.3.3.4.3.5.3.6.3.7.3.8.3.9.3.10.3.11.3.12.3.13.3.141-2
Somebasicconcepts01engineeringaulysisINTRODUCTIONTOLINEARANALYSISOFSOLIDSANDSTRUCTURES•Thefiniteelementmethodisnowwidelyusedforanalysisofstructuralengineeringproblems. •'ncivil,aeronautical,mechanical, ocean,mining,nuclear,biomechanical,... engineering•Sincethefirstapplicationstwodecadesago, -wenowseeapplicationsinlinear,nonlinear,staticanddynamicanalysis. -variouscomputerprogramsareavailableandinsignificantuseMyobjectiveinthissetoflecturesis: •tointroducetoyoufiniteelementmethodsforthelinearanalysisofsolidsandstructures. ["Iinear"meaninginfinitesimallysmalldisplacementsandlinearelasticmaterialproeerties( Hooke'slawapplies)j•toconsider-theformulationofthefiniteelementequilibriumequations-thecalculationoffiniteelementmatrices-methodsforsolutionofthegoverningequations-computerimplementations.todiscussmodernandeffectivetechniques,andtheirpracticalusage. 1·3
SomebasicconceptsofengineeringanalysisREMARKS•Emphasisisgiventophysicalexplanationsratherthanmathematicalderivations• TechniquesdiscussedarethoseemployedinthecomputerprogramsSAPandADINASAP== StructuralAnalysisProgramADINA=AutomaticDynamicIncrementalNonlinearAnalysis•Thesefewlecturesrepresentaverybriefandcompactintroductiontothefieldoffiniteelementanalysis•WeshallfollowquitecloselycertainsectionsinthebookFiniteElementProceduresinEngineeringAnalysis, Prentice-Hall,Inc. (byK.J.Bathe). FiniteElementSolutionProcessPhysicalproblemEstablishfiniteelement...--~modelofphysicalproblem1I:I,-__S_ol_v_e_th_e_m_o_d_el__ I~ ~---iL-_I_n_te_r.;..p_re_t_t_h_e_re_s_u_lt_S_....JRevise(refine) themodel? 1-4
SolIebasicconceptsofengiDeeringanalysis10ft15ftI12at15°,. Analysisofcoolingtower. K~~~~~-~,-Fault(norestraintassumed) Altered'gritE=toEc., Analysisofdam. 1·5
SomebasicconceptsofengineeringanalysisB. t Wo E~~;;C=-------_........ FFiniteelementmeshfortireinflationanalysis. 1·6
SolDebasicconceptsofengineeringanalysisSegmentofasphericalcoverofalaservacuumtargetchamber. l,WppPINCHEDCYLINDRICALSHELLOD;:...,...----.---~~~~~~CEtW-50P-100-150•16x16MESH-200- DISPLACEMENTDISTRIBUTIONALONGDCOFPINCHEDCYLINDRICALSHELL•16x16MESH-0.2Mil""=0.1~CBENDINGMOMENTDISTRIBUTIONALONGDCOFPINCHEDCYLINDRICALSHELL1-7
SoBlebasicconcepts01engineeringanalysisIFiniteelementidealizationofwindtunnelfordynamicanalysisSOMEBASICCONCEPTSOFENGINEERINGANALYSISTheanalysisofanengineeringsystemrequires: -idealizationofsystem-formulationofequilibriumequations- solutionofequations-interpretationofresults1·8
SYSTEMSSomebasicconceptsofengineeringanalysisDISCRETEresponseisdescribedbyvariablesatafinitenumberofpointssetofalgebraic-- equationsCONTINUOUSresponseisdescribedbyvariablesataninfinitenumberofpointssetofdifferentialequationsPROBLEMTYPESARE• STEADY-STATE(statics) •PROPAGATION(dynamics) •EIGENVALUEFordiscreteandcontinuoussystemsAnalysisofcomplexcontinuoussystemrequiressolutionofdifferentialequationsusingnumerica lproceduresreductionofcontinuoussystemtodiscreteformpowerfulmechanism: thefiniteelementmethods, implementedondigitalcomputersANALYSISOFDISCRETESYSTEMSStepsinvolved: -systemidealizationintoelements-evaluationofelementequilibriumrequirements-elementassemblage-solutionofresponse1·9
SomebasicconceptsofengineeringanalysisExample: steady-stateanalysisofsystemofrigidcartsinterconnectedbyspringsPhysicallayoutELEMENTSU1U3I~:~l)..F(4)..31F(4) k,u1-F(')1-1]["1].[F14']-, '4[1u2-11UF(4) 33-F(2) F(2)---2, '2[1-1]["I]fF}]1uF(2)--122F(S)F(S) 23u,u2-t][F(5l]'5[1k3F(3)1u2=F1S)-1-----233F(3),-r1]fPl]'3[] -11uF(3) 221·10
SolIebasiccOIceplsofengineeringanalysisElementinterconnectionrequirements: F(4)+F(S)=R333TheseequationscanbewrittenintheformKU=E. EquilibriumequationsKU=R(a) +k4k1+k2+k3~-k2-k3UT=[u-1RT=[R-1 ·· ···: -k4....'"...............................·.·.. K=-k2-k3~k2+k3+kS~-kS·...................•................•.....•........·.·.1·11
Somebasicconceptsofengineeringanalysisandwenotethat~=t~(i) i=1where::] o0etc... ThisassemblageprocessiscalledthedirectstiffnessmethodThesteady-stateanalysisiscompletedbysolvingtheequationsin(a) 1·12
Somebasicconcepls01engineeringanalysisu,· .................::............... ·. ·.~....·.·.·.·.·.·.·u, K1....::............... ·. K= ·.....·.·.·: U1...............................:. K~•••~~.~•••••••••~~•••••••••••:...............~1---.JI.lfl--r/A~,111~~r/A1·13
SOlDebasicconceptsofengineeringanalysis ·....::.·.·u, ·.•'O••••••••••••••••••••••••••••••••••••••••••••••·.·.·. K= u, +K4; K1+K2+K3;-K2-K3·.'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O:'O'O'O'O'O'O'O'O'O'O'O'O'O'O:'O'O'O'O'O'O'O'O'O'O'O'O'O'O•·.·. K= ·.'O'O••••••••••••••••••••••••••••••••••••••••••••••·.··. . +K4; K1+K2+K3~-K2-K3-K4'O'O••••••••••••••••••••••••••••••••••••••••••••• K=-K2-K3~K2+K3+K5-K5'O'O•••••••••••••••:••••••••••••••••••••••••••••• u, IK1·14
SomebasicconceptsofengineeringanalysisInthisexampleweusedthedirectapproach;alternativelywecouldhaveusedavariationalapproach. Inthevariationalapproachweoperateonanextremumformulation: u=strainenergyofsystemW=totalpotentialoftheloadsEquilibriumequationsareobtainedfroman-0(b)~- 1IntheaboveanalysiswehaveU=~UT!!! W=UTRInvoking(b)weobtainKU=RNote:toobtainUandWweagainaddthecontributionsfromallelements1·15
SOlDebasicconceptsofengineeringanalysisPROPAGATIONPROBLEMSmaincharacteristic:theresponsechangeswithtime~needtoincludethed'Alembertforces: Fortheexample: m,aaM=am2aaam3EIGENVALUEPROBLEMSweareconcernedwiththegeneralizedeigenvalueproblem(EVP) Av=ABv!l,.!laresymmetricmatricesofordernvisavectorofordernAisascalarEVPsariseindynamicandbucklinganalysis1·16
SomebasicconceptsofengineeringanalysisExample:systemofrigidcarts~lU+KU=OLetU=<psinW(t-T) Thenweobtain_w2~~sinW(t-T) +K<psinW(t-T)=0--- HenceweobtaintheequationThereare3solutionsw,,~, (l)2'~2eigenpairsw3'~3Ingeneralwehavensolutions1·17
ANALYSISOFCONTINUOUSSYSTEMS; DIFFEBENTIALANDVABIATIONALFOBMULATIONSLECTURE259MINUTES2-1
Analysis01continnoussystems;differentialandvariationallonnDlationsLECTURE2BasicconceptsintheanalysisofcontinuoussystemsDifferentialandvariationalformulationsEssentialandnaturalboundaryconditionsDefinitionofem-IvariationalproblemPrincipleofvirtualdisplacementsRelationbetweenstationarityoftotalpotential,theprincipleofvirtualdisplacements,andthedifferentialformulationWeightedresidualmethods, Galerkin,leastsquaresmethodsRitzanalysismethodPropertiesoftheweightedresidualandRitzmethodsExampleanalysisofanonuniformbar,solutionaccuracy,introductiontothefiniteelementmethodTEXTBOOK:Sections:3.3.1,3.3.2,3.3.3Examples:3.15,3.16,3.17,3.18,3.19,3.20,3.21,3.22,3.23,3.24,3.252·2
Analysisofcontinuoussystems;differentialandvariationalformulationsBASICCONCEPTSOFFINITEELEMENTANALYSISCONTINUOUSSYSTEMS• Wediscussedsomebasicconceptsofanalysisofdiscretesystems•SomeadditionalbasicconceptsareusedinanalysisofcontinuoussystemsCONTINUOUSSYSTEMSdifferentialformulationtWeightedresidualmethods Galerkin_.._-----41~_ leastsquaresvariationalformulationRitzMethod.... finiteelementmethod2·3
AnalysisofcontinuoussysteDlS;differentialand,arialionalIOl'llulali. Example-DifferentialformulationaAI+A~aIdx-aAIxxoXX/ Young'smodulus,E~Lt:)massdensity, cross-sectionalarea,AR..~------- TheproblemgoverningdifferentialequationisDerivationofdifferentialequationTheelementforceequilibriumrequirementofatypicaldiffer entialelementisusingd'Alembert'sprincipler~.-;+~~dxI~ AreaA,massdensityp2=pAau~ Theconstitutiverelationisaua=EaxCombiningthetwoequationsaboveweobtain2 ·4
baIysis01COitiDlOUsystems;differatialaDdvariationaliOl'lDDlatiODSTheboundaryconditionsareu(O,t}=° EA~~(L,t)=ROwithinitialconditionsu(x,O}=° ~(xO)=°at' 9essential(displ.)B.C. 9natural(force)B.C. Ingeneral,wehavehighestorderof(spatial)derivativesinproblem- governingdifferentialequationis2m. highestorderof(spatial)derivativesinessentialb. c.is(m-1) highestorderofspatialderivativesinnaturalb. c.is(2m-1) Definition: WecallthisproblemaCm-1variationalproblem. 2·5
Analysis01continuoussystems;differentialandvariatioD,a1fOl'llolatiODSExample-VariationalformulationWehaveingeneralII=U-WFortherodfLII=J}EAoandiLau2B(--)dx-ufdx-uRaxLou=0oandwehave0II=0Thestationarycondition6II=0givesrLauaurL.BJO(EAax)(6ax)dx-)06ut-dx-6uLR=0Thisistheprincipleofvirtualdisplacementsgoverningtheproblem.Ingeneral,wewritethisprincipleasor(seealsoLecture3) 2·6
lIiIysisof..IiDIGUSsystems;differentialandvariatiooallormulatioDSHowever,wecannowderivethedifferentialequationofequilibriumandtheb.c.atx=l. Writinga8ufor8au,re-axaxcallingthatEAisconstantandusingintegrationbypartsyieldsdx+[EA~Iaxx=L-EA~dXx=oSinceQUOiszerobutQUisarbitraryatallotherpoints,wemusthaveandauIEAax-x=L=RBa2uAlsof=-Ap-and,at2hencewehave2·7
AnalysisofcODtiDaoassyst_diIIereatialandvariatioulfOlllalatiODSTheimportantpointisthatinvokingoIT=0andusingtheessentialb.c.onlywegenerate•theprincipleofvirtualdisplacements•theproblem-governingdifferentialaquatio!) •thenaturalb.c.(theseareinessence"containedin"IT, i.e.,inW). Inthederivationoftheproblemgoverningdifferentialequationweusedintegrationbyparts• thehighestspatialderivativeinITisoforderm. •Weuseintegrationbypartsm-times. TotalPotentialITIUseoIT=0andessential"b.c. ~ 2·8PrincipleofVirtualDisplacementsIIntegrationbyparts~ DifferentialEquationofEquilibriumandnaturalb.c. _solveproblem_solveproblem
balysisofaDa.syst-:diBerentialandvariatiouallnaiatiOlSWeightedResidualMethodsConsiderthesteady-stateproblem(3.6) withtheB.C. B.[</>]=q.,i=1,2,••• 11atboundary(3.7) Thebasicstepintheweightedresidual(andtheRitzanalysis) istoassumeasolutionoftheform(3.10) wherethefiarelinearlyindependenttrialfunctionsandtheaiaremultipliersthataredeterminedintheanalysis. Usingtheweightedresidualmethods, wechoosethefunctionsfiin(3.10) soastosatisfyallboundaryconditionsin(3.7)andwethencalculatetheresidual, nR=r-L2mCLa·f.](3.11) 1=111ThevariousweightedresidualmethodsdifferinthecriterionthattheyemploytocalculatetheaisuchthatRissmall. InalltechniqueswedeterminetheaisoastomakeaweightedaverageofRvanish. 2·9
Analysis01C.tinnoDSsystems;differentialandvariational10000nlationsGalerkinmethodInthistechniquetheparametersaiaredeterminedfromthenequationsff.RdD=O;=1,2,•••,nD1Leastsquaresmethod(3.12) Inthistechniquetheintegralofthesquareoftheresidualisminimizedwithrespecttotheparametersai'aaa. 1;=1,2,•••,n[Themethodscanbeextendedtooperatealsoonthenaturalboundaryconditions,ifthesearenotsatisfiedbythetrialfunctions.] RITZANALYSISMETHODLetnbethefunctionaloftheem-1variationalproblemthatisequivalenttothedifferentialformulationgivenin(3.6)and(3.7). IntheRitzmethodwesubstitutethetrialfunctions<pgivenin(3.10) intonandgeneratensimultaneousequationsfortheparametersaiusingthestationaryconditiononn, 2·10an0aa.= 1;=1,2,•••,n(3.14)
Analysisofcontinuoussystems;differentialandvariationalformulationsProperties•ThetrialfunctionsusedintheRitzanalysisneedonlysatisfytheessentialb.c. •SincetheapplicationofoIl=0generatestheprincipleofvirtualdisplacements,weineffectusethisprincipleintheRitzanalysis. •Byinvoking0II=0weminimizetheviolationoftheinternalequilibriumrequirementsandtheviolationofthenaturalb.c. •Asymmetriccoefficientmatrixisgenerated,offormKU=RExampleR=100N2Area=1em( ........_-x,u----------~---r;;;-==-e- .F---.;;B;",.,.CI-...--~~---·-I-..--------·-I100em80emFig.3.19.Barsubjectedtoconcentratedendforce. 2·11
AnalysisofCOitiDlOISsystems;differeatialad,ariali"fOllDaialiODSHerewehave1180IT=1EA(~)2dx2axo-100uIx=180andtheessentialboundaryconditionisuIx=O=0LetusassumethedisplacementsCase1u=a1x+a2iCase2~ u=I1JO0<x<100100<x<180WenotethatinvokingoIT=0weobtain1180oIT=(EA~~)o(~~)dx-100OUIx=180o=0ortheprincipleofvirtualdisplacements£180(~~u)(EA~~)dx=100OUIx=180oJETTdV=IT.F. --11V2·12
Analysisofcontinuoussystems;differentialandvariationalformulationsExactSolutionUsingintegrationbypartsweobtain~(EA~)=0axaxEA~=100axx=180Thesolutionisu=1~Ox;0<x<100100<x<180Thestressesinthebararea=100;0<x<100a=100;100<x<180(l+x-l00)2402·13
Analysisofcontinuoussystems;differentialandvariationalformulationsPerformingnowtheRitzanalysis: Case1f180dx+I(1+x-l00)2240100Invokingthatorr=0weobtainE[0.4467116and11634076128.6a1=---=E=---a-0.3412--EHence,wehavetheapproximatesolutionu=12C.60.341Ex-E2x2·14a=128.6-0.682x
Analysisofcontinuoussystems;differentialandvariationalformulationsCase2Herewehave100EJ12n=2(100uB) af180dx+I(1+x-l00)2240100Invokingagainon=0weobtainE[15.4-13][~:]=[~oo]240-1313Hence,wenowhave1000011846.2U=EUcEBando=1000<x<1001846.2=23.08x>100o=802-15
AulysisofCOilinDmassystems;diUerenliaiandvarialiOlla1I01'1BDlaIiGlSuEXACT~------::.:--~~~.-.-. "Solution2---..I~..,-__--r-__--.,r---~X15000E10000E5000-E- 100180CALCULATEDDISPLACEMENTS(J50100-I=:::==-==_==_:=os:=_=_=,==_=_== ""EXACT"I~ ~SOLUTION1I-<,JSOLUTION2L._._.~._._ -+---,~--------r-------~X100180CALCULATEDSTRESSES2·18
balysisofcoatiDloassystms;diBerenlialudvariationalfonnllatioasWenotethatinthislastanalysiseweusedtrialfunctionsthatdonotsatisfythenaturalb.c. ethetrialfunctionsthemselvesarecontinuous,butthederivativesarediscontinuousatpointB. 1foraem-variationalproblemweonlyneedcontinuityinthe(m-1)stderivativesofthefunctions; inthisproblemm=1. edomainsA-BandB-earefiniteelementsandWEPERFORMEDAFINITEELEMENTANALYSIS. 2·17
FORMULATIONOFTHEDISPLACEMENT-BASEDFINITEELEMENTMETHODLECTURE358MINUTES3·1
Formulationofthedisplacement-basedfiniteelementmethodLECTURE3Generaleffectiveformulationofthedisplacement- basedfiniteelementmethodPrincipleofvirtualdisplacementsDiscussionofvariousinterpolationandelementmatricesPhysicalexplanationofderivationsandequationsDirectstiffnessmethodStaticanddynamicconditionsImpositionofboundaryconditionsExampleanalysisofanonunifor mbar.detaileddiscussionofelementmatricesTEXTBOOK:Sections:4.1.4.2.1.4.2.2Examples:4.1.4.2.4.3.4.43·2
Formulationofthedisplacement-basedfiniteelementmethodFORMULATIONOFTHEDISPLACEMENTBASEDFINITEELEMENTMETHOD- Averygeneralformulation-Providesthebasisofalmostallfiniteelementanalysesperformedinpractice- TheformulationisreallyamodernapplicationoftheRitz/ Gelerkinproceduresdiscussedinlecture2-Considerstaticanddynamicconditions,butlinearanalysisFig.4.2.Generalthree-dimensionalbody. 3·3
FOl'DlulationofthedisplaceDlent·basedfinitee1mnentlDethodTheexternalforcesarefBf~FiXXfB=fBfS=fSFi=Fi(4.1)yyyfBfSFiZZZThedisplacementsofthebodyfromtheunloadedconfigurationaredenotedbyU,whereuT=[uVw] ThestrainscorrespondingtoUare, (4.2) ~T=[EXXEyyEZZYXyYyZYZX](4.3) andthestressescorrespondingto€ are3·4
Formulationofthedisplacement-basedfiniteelementmethodPrincipleofvirtualdisplacementswhereITT=[ITIfw](4.6) Fig.4.2.Generalthree-dimensionalbody. 3·5
Formulationofthedisplaceaenl-basedfililee1eDlenl.ethodx,u,, "" FiniteelementForelement(m)weuse: !!(m)(x,y,z)=!:!.(m)(x,y,z)0(4.8) "T!!=[U,V,W,U2V2W2•••UNVNWN] "T!!=[U,U2U3...Un](4.9) §.(m)(x,y,z)=~(m)(x,y,z)!!(4.'0) !.(m)=f(m)~(m)+-rI(m)(4.'1) 3·&
'OI'IIalationofthedisplaceDlenl-basedfilileeleDlenlmethodRewrite(4.5)asasumofintegrationsovertheelements(4.12) Substituteinto(4.12)fortheelementdisplacements,strains,andstresses, using(4.8),to(4.10),____---..ll.c=~~-------(m)Tj-I--£ 'iTl~1B(m)Tc(m)B(m)dv(m)jU=If~v(m)-l--£1----~(m)=f.(m)~(m) j[IT(m)j(-£)(m)=B(m)l..u·) TLl(m)!!(m)1.BdV(m)--- I1mVI()T_",._~m:,.Lf. m)!!sCm)Tim)dScmljy:(m)=!!(m)~ _m_JV...:........<,==~I______(m)TElB(m)TTI(m)dv(m)j-USm;rm)---(m)T-___.r__.........1------....~ "<I::: (4.13) 3·7
Formulationofthedisplacement-basedfiniteelement.ethodWeobtainKU=Rwhere(4.14) R=.Ba+Rs-R1+~(4.15) K=~fB(m)Tc(m)B(m)dV(m) -mJV(m)----(4.16) R="'1.H(m)TfB(m)dV(m)(4.17) ~~lm)-- R="'1HS(m)Tfs(m)dS(m)(4.18) -S~~m)-- R="'1B(m)TT1(m)dV(m)(4.19) -1~V(m)-- R=F~- Indynamicanalysiswehavef(m)T-B(m) ~B=~V(m).!:!.[1. _p(m).!:!.(m)~]dV(m) MD+KU=R(4.21) (4.22) (4.20) B(m)-B(m)••(m) 1.=1.-p!! 3·8
Formulationofthedisplacement-basedfiniteelementmethodToimposetheboundaryconditions, weuse~a~b~a~b+ ~at!t>b-~ =(4.38) .... ~a~+~a~=~-~b~-~b~ (4.39) ~=~a~+~b~+~a~+~b~ (4.40) ransformedegreesofeedomiA!•VTId!-fGlobaldegreesoffreedom;-VC,-:~:e)~I(restrained~ rl'fuL[ COSaT= sina-sina] cosa'/..U=TITFig.4.10.Transformationtoskewboundaryconditions3·9
Formulationofthedisplacement-basedfiniteelementmethodForthetransformationonthetotaldegreesoffreedomweusesothat.. Mu+Ku=Rwhere.th.th1Jcolumn!1.••j(4.41)ithrow1cosa.-sina. T= }h1(4.42)sina.cosa. 1LFig.4.11.Skewboundaryconditionimposedusingspringelement. Wecannowalsousethisprocedure(penaltymethod) SayUi=b,thentheconstraintequationis___3·10kU.=kb, wherek»k.. " (4.44)
FormDlationofthedisplacement·basedfiniteelementmethodExampleanalysis80xzy100Finiteelementsarea=1element® 100area=9J~ I"100-I80~I3·11
Formulationofthedisplacement·basedfiniteelementmethodElementinterpolationfunctions1.0I... L--IDisplacementandstraininterpolationmatrices: H(l}=[(l-L)ya]-100100v(m}=H(m}U!:!.(2}=[a(1-L):0]80!!(l)=[11a] 100100av=B(m}U!!(2)=[11ay-- a8080] 3·12
FOI'IDDlationofthedisplacement·basedfiniteelementmethodstiffnessmatrix-11005.=(1HEllOl~O[-l~Ol~Oo}YaaU1-80180HenceE[2.4-2.4=240-2.415.4a-13SimilarlyforM'.!!B'andsoon. Boundaryconditionsmuststillbeimposed. 3·13
GENERALIZEDCOORDINATEFINITEELEMENTMODELSLECTURE457MINUTES4·1
GeneralizedcoordinatefiniteelementmodelsLECTURE4Classificationofproblems:truss,planestress,planestrain,axisymmetric,beam,plateandshellconditions: correspondingdisplacement,strain,andstressvariablesDerivationofgeneralizedcoordinatemodelsOne-,two-,three-dimensionalelements,plateandshellelementsExampleanalysisofacantileverplate,detailedderivationofelementmatricesLumpedandconsistentloadingExampleresultsSummaryofthefiniteelementsolutionprocessSolutionerrorsConvergencerequirements,physicalexplanations, thepatchtestTEXTBOOK:Sections:4.2.3,4.2.4,4.2.5,4.2.6Examples:4.5,4.6,4.7,4.8,4.11,4.12,4.13,4.14,4.15,4.16,4.17,4.184-2
GeneralizedcoordinatefiniteeleDlentmodelsDERIVATIONOFSPECIFICFINITEELEMENTS•Generalizedcoordinatefiniteelementmodels~(m)=iB(m)TC(m)B(m)dV(m) V(m) aW)=JH(m)TLB(m)dV(m) V(m) R(m)=fHS(m)TfS(m)dS(m) !!S(m)-- Setc. Inessence,weneedH(m)B(m)C(m)-,-'- •ConvergenceofanalysisresultsAAcrosssectionA-A: TXXisuniform. Allotherstresscomponentsarezero. Fig.4.14.Variousstressandstrainconditionswithillustrativeexamples. (a)Uniaxialstresscondition:frameunderconcentratedloads. 4·3
Ge.raJizedcoordiDalefiniteelementlDOIIeIsHale I6I --1ZI TXX'Tyy,TXYareuniformacrossthethickness. Allotherstresscomponentsarezero. Fig.4.14.(b)Planestressconditions: membraneandbeamunderin-planeactions. u(x,y),v(x,y) arenon-zerow=0,Ezz=0Fig.4.14.(e)Planestraincondition: longdamsubjectedtowaterpressure. 4·4
GeneralizedcoordinatefiniteelementmodelsStructureandloadingareaxisymmetric. j( I III,I I-- Allotherstresscomponentsarenon-zero. Fig.4.14.(d)Axisymmetriccondition: cylinderunderinternalpressure. (beforedeformation) (afterdeformation) / SHELLFig.4.14.(e)Plateandshellstructures. 4·5
GeneralizedcoordinatefiniteelementmodelsProblemBarBeamPlanestressPlanestrainAxisymmetricThree-dimensionalPlateBendingDisplacementComponents uw u,vu,vu,vu,v,wwTable4.2(a)CorrespondingKinematicandStaticVariablesinVariousProblems. ProblemBarBeamPlanestressPlanestrainAxisymmetricThree-dimensionalPlateBendingStrainVector~T- (E"...,) [IC...,] (E"...,El'l')'"7) (E...,EJ"7)'..7) [E...,E"77)'''7Eu) [E...,E"77Eu)'''7)'76)'...,) (IC...,1(771("7) .auauauauNolallon:E..=ax'£7=a/)'''7=ay+ax'a1wa1wa1w•••,IC...,=-dxZ'IC77=-OyZ,IC..,=20xoyTable4.2(b)CorrespondingKinematicandStaticVariablesinVariousProblems. 4·&
ProblemBarBeamPlanestressPlanestrainAxisymmetricThree-dimensionalPlateBendingGeneralizedcoordinatefiniteelementmodelsStressVector1:T[T;u,] [Mn] [TnTJIJIT"'JI] [TnTJIJIT"'JI] [TnTJIJIT"'JITn] [TnTYJITnT"'JITJI'Tu] [MnMJIJIM"'JI] Table4.2(e)CorrespondingKinematicandStaticVariablesinVariousProblems. ProblemMaterialMatrix.£ BarBeamPlaneStressEEl[ 1vEv11-1':&o01~.] Table4.3GeneralizedStress-StrainMatricesforIsotropicMaterialsandtheProblemsinTable4.2.4·7
GeneralizedcoordinatefiniteelementmodelsELEMENTDISPLACEMENTEXPANSIONS: Forone-dimensionalbarelementsFortwo-dimensionalelements(4.47) Forplatebendingelements2w(x,y)=Y,+Y2x+Y3Y+Y4xy+Y5x+•.. (4.48) Forthree-dimensionalsolidelementsu(x,y,z)=a,+Ozx+~Y+Ci4Z+~xy+... w(x,y,z)=Y,+y2x+y3y+y4z+y5xy+... (4.49) 4·8
Hence,ingeneralu=~exGeneralizedcoordinatefiniteelementmodels(4.50) (4.51/52) (4.53/54) Example(4.55) Y.VX.Vla)CantileverplaterNodalpoint6lp9Element0058CD@ Y.VV7147X.VV7(blFiniteelementidealizationFig.4.5.Finiteelementplanestressanalysis;i.e.TZZ=TZy=TZX=04·9
Generalizedcoordinatefiniteelementmodels2LJ2.=US--II--.......---------....~ element® Elementnodalpointno.4=structurenodalpointno.5. Fig.4.6.Typicaltwo-dimensionalfour-nodeelementdefinedinlocalcoordinatesystem. Forelement2wehave[ U{X,y)](2) =H(2)uv{x,y)-- whereuT=[U-14·10
GeneralizedcoordinateliniteelementmodelsToestablishH(2)weuse: or[ U(X,y)]=_~l!. v(x,y) where!=[~~}!=[1xyxy] andDefiningwehaveQ=Aa. HenceH=iPA-14·11
GeneralizedcoordinatefiniteelementmodelsHenceH=fl-l4and(1+x)(Hy)::aI•••IIa::(1+x)(1+y): H'ZJ=[0-0Ull:HII:HZIUJVJUzt':u.v. U2U3U4UsU6U7UsU9U1aI0:HIJH17:HI.H16:00:HI.Hu: o:HZJH21:H::H:6:00:H..Ha: VI-elementdegreesoffreedomU12U13U14UIS-assemblagedegreesHIs:00zerosOJoffreedomHzs:00zerosO2x18(a)Elementlayout(b)Local-globaldegreesoffreedomFig.4.7.Pressureloadingonelement(m) 4·12
GeneralizedcoordinatefiniteelementmodelsInplane-stressconditionstheelementstrainsarewhereE-au.E_av._au+avxx-ax'yy-ay,Yxy-ayaxHencewhereI=[~10Iy'OI00010I01IX10I4·13
GeneralizedcoordinatefiniteelementmodelsACTUALPHYSICALPROBLEMGEOMETRICDOMAINMATERIALLOADINGBOUNDARYCONDITIONS1MECHANICALIDEALIZATIONKINEMATICS,e.g.trussplanestressthree-dimensionalKirchhoffplateetc. MATERIAL,e.g.isotropiclinearelasticMooney-Rivlinrubberetc. LOADING,e.g.concentratedcentrifugaletc. BOUNDARYCONDITIONS,e.g.prescribed1displacementsetc. FINITEELEMENTSOLUTIONCHOICEOFELEMENTSANDSOLUTIONPROCEDURESYIELDS: GOVERNINGDIFFERENTIALEQUATIONSOFMOTIONe.g. ..!..(EA.!!!)=-p(x)axaxYIELDS: APPROXIMATERESPONSESOLUTIONOFMECHANICALIDEALIZATIONFig.4.23.FiniteElementSolutionProcess4·14
GeneralizedcoordinatefiniteelementmodelsSECTIONERRORERROROCCURRENCEINdiscussingerrorDISCRETIZATIONuseoffiniteelement4.2.5interpolationsNUMERICALevaluationoffinite5.8.1INTEGRATIONelementmatricesusing6.5.3INSPACEnumericalintegrationEVALUATIONOFuseofnonlinearmaterial6.4.2CONSTITUTIVEmodelsRELATIONSSOLUTIONOFdirecttimeintegration,9.2DYNAMICEQUILI-.modesuperposition9.4BRIUMEQUATIONSSOLUTIONOFGauss-Seidel,Newton-8.4FINITEELEr1ENTRaphson,Quasi-Newton8.6EQUATIONSBYmethods,eigenso1utions9.5ITERATION10.4ROUND-OFFsetting-upequationsand8.5theirsolutionTable4.4FiniteElementSolutionErrors4·15
GeneralizedcoordinatefiniteelementmodelsCONVERGENCEAssumeacompatibleelementlayoutisused, thenwehavemonotonicconvergencetothesolutionoftheproblemgoverningdifferentialequation, providedtheelementscontain: 1)allrequiredrigidbodymodes2)allrequiredconstantstrainstates~compatibleLWlayoutCDincompatiblelayout~ t:=no.ofelementsIfanincompatibleelementlayoutisused,theninadditioneverypatchofelementsmustbeabletorepresenttheconstantstrainstates.Thenwehaveconvergencebutnon-monotonicconvergence. 4·16
Geuralizedcoordinatefinitee1eJDeDtmodels7" /"'r->,; / ( ""1----- ,I IIII IIiI (a)Rigidbodymodesofaplanestresselement......~_QIIII(b)AnalysistoillustratetherigidbodymodeconditionRigidbodytranslationandrotation; elementmustbestressfree. Fig.4.24.Useofplanestresselementinanalysisofcantilever4·17
Generalizedcoordinatefiliteelellent.adels------- RigidbodymodeA2=0Poisson'sratio"0.30Young'sr------, modulus=1.0II 10-l II I II _1RigidbodymodeAl=0ItIII 01I II •I1. ...--,.".-~--      .J--- ('  ---   ,........... _-I--IIIIIIfRigidbodymodeA3=0.....I'JFlexuralmodeA4=0.57692Fig.4.25(a)Eigenvectorsandeigenvaluesoffour-nodeplanestresselement~- ......"   ...~-, ........~      .----"'"="""- --~ I'- FlexuralmodeAs=0.57692ShearmodeA.=0.76923r--------1IIIIIII: IIIIIIL.J,-----, IIIIIIIIIIIIIIIIIStretchingmodeA7=0.76923UniformextensionmodeAs=1.92308Fig.4.25(b)Eigenvectorsandeigenvaluesoffour-nodeplanestresselement4·18
(0®G) ®®-.® /@) @@ GeneralizedcoordiDatefiniteelementlDodels ·11~17'c. IT,I>~.f: 20ISa)compatibleelementmesh;2constantstressa=1000N/cmineachelement.YYb)incompatibleelementmesh; node17belongstoelement4, nodes19and20belongtoelement5,andnode18belongstoelement6. Fig.4.30(a)Effectofdisplacementincompatibilityinstressprediction0yystresspredictedbytheincompatibleelementmesh: PointOyy(N/m2) A1066B716C359D1303E1303Fig.4.30(b)Effectofdisplacementincompatibilityinstressprediction4·19
IMPLEMENTATIONorMETHODSINCOMPUTERPROGRAMS; EXAMPLESSAP,ADINALECTURE556MINUTES5·1
"pi_entationofmetllodsincomputerprograDlS;examplesSIP,ADlRALECTURE5ImplementationofthefiniteelementmethodThecomputerprogramsSAPandADINADetailsofallocationofnodalpointdegreesoffreedom.calculationofmatrices.theassemblageprocessExampleanalysisofacantileverplateOut- of-coresolutionEff&ctivenodal-pointnumberingFlowchartoftotalsolutionprocessIntroductiontodifferenteffectivefiniteelementsusedinone.two.three-dimensional.beam. plateandshellanalysesTEXTBOOK:AppendixA,Sections:1.3.8.2.3Examples:A.I.A.2.A.3.A.4.ExampleProgramSTAP5·2
l_pIg_talioaof_ethodsinCODIpDterprogram;mDlplesSAP,ADINAN=no.ofd.o.f. oftotalstructureTK(m)=1.B(m)C(m)B(m)dV(m) -V(m)--- R(m)=1.H(m)TfB(m)dV(m) -Bv(m)-- H(m)B(m)-- kxN.hNIMPLEMENTATIONOFTHEFINITEELEMENTMETHODWederivedtheequilibriumequationswhereInpractice, wecalculatecompactedelementmatrices. K=~K(m);R=~R(m) -m--Bm!..!B~,~B'nxnnxln=no.ofelementd.o.f. tl~ kxnR,xnThestressanalysisprocesscanbeunderstoodtoconsistofessentiallythreephases: 1.CalculationofstructurematricesK,M,C,andR,whicheverareapplicable. 2.Solutionofequilibriumequations. 3.Evaluationofelementstresses. 5·3
IDlpl_81taliolofDlethodsintoDlpulerprogrw;mDlplesSAP,ADIlIThecalculationofthestructurematricesisperformedasfollows: 1.Thenodalpointandelementinformationarereadand/ orgenerated. 2.Theelementstiffnessmatrices, massanddampingmatrices,andequivalentnodalloadsarecalculated. 3.ThestructurematricesK,M, C,andR,whicheverareapplicable,areassembled. lSz::6tW::3Zx/U::1/Sx::4r-----yV::2Sy::5Fig.A.1.Possibledegreesoffreedomatanodalpoint. I-nodalpoint_.-... -....iID(I,J)= Degreeoffreedom5·4
....taIiOiofIIeIWsincoaplerP....UUlplesSIP,ABilATemperatureattopfaceal00"CaOem<D® E=l(Jl1N/cm22E=2xl(Jl1NIcm2t.,-0.15t"=0.2084_17-7~TemperatureatDegreeofbottomface=70'Cfreedomnumberat659t~l1@4ElementE.2xl(Jl1Nlem2numberE·lOSN/em2t4II'"0.20t10.,-0.153825__-9NodeFig.A.2.Finiteelementcantileveridealization. 1nthiscasethe10arrayisgivenby11100000011100000010=1111111111111111111111111111111111]15·5
0.040.080.0] 0.00.00.0] 70.085.0100.0] IJDpleDIeDtatiODofmethodsinCODIpater.programs;examplesSAP,ADIIAandthen00013579110002468101210=000000000000000000000000000000000000AlsoXT=[0.00.00.060.060.060.0120.0120.0120.0] TY=[0.040.080.00.040.080.0TZ=[0.00.00.00.00.00.0TT=[70.085.0100.070.085.0100.05·6
Implementationofmethodsincomputerprograms;examplesSAP,ADINAFortheelementswehaveElement1:nodenumbers:5,2,1,4; materialpropertyset:1Element2:nodenumbers:6325·I,,, materialpropertyset:1Element3:nodenumbers:8547·,,,, materialpropertyset:2Element4:nodenumbers:9658-,,,, materialpropertyset:2CORRESPONDINGCOLUMNANDROWNUMBERSForcompactedImatrix12345678For!1..,4000012oJLMT=[34000012] 5·7
Implementationofmethodsincomputerprograms;examplesSAP,ADINASimilarly,wecanobtaintheLMarraysthatcorrespondtotheelements2,3,and4.Wehaveforelement2, LMT=[56000034] forelement3, LMT=[910341278] andforelement4, LMT=[11125634910] JSkYline.~000"o000"------m=3ok36'006'- k45k460"0(a)ActualstiffnessmatrixksskS6k6612461012161822A(21)storeskS8Fig.A.3.Storageschemeusedforatypicalstiffnessmatrix. A(17) A(16) A(15tA(14) A(13) A(12) A(91A(8) A(7) A(6)A(lllA(lO) Symmetric(b)ArrayAstoringelementsofK. A(l)A(3) A(2)A(S) A(4) ,.mK=3·1"kllk120k14knk230k33k34K= k44A= 5·8
_pl••taiioooflDeIJaodsinCOIDpaterprograJDS;eDIIIplesSAP,ADINAx=NONZEROELEMENT0=ZEROELEMENT.--,COLUMNHEIGHTSIIIX00010010o000:00:0xixx0100xXIX001000XIX00X00X0X1000IxxlxXIOxixXiXSYMMETRICIXXlXXIXIXELEMENTSINORIGINALSTIFFNESSMATRIXFig.10.Typicalelementpatterninastiffnessmatrixusingblockstorage. BLOCK1BLOCK2~---~ IX0X0XIXXiXXiXIX~_BLOCK4ELEMENTSINDECOMPOSEDSTIFFNESSMATRIXFig.10.Typicalelementpatterninastiffnessmatrixusingblockstorage. 5·9
IIIlpl••tationofmethodsincomputerprograms;examplesSAP,ABilA203~1234567891011121,141516171819~21222324252627282930313233322283033(b)Goodnodalpointnumbering, mk+1=16. Fig.A.4.Badandgoodnodalpointnumberingforfiniteelementassemblage. (a)Badnodalpointnumbering, mk+1=46.911141619212426293164512712172227~, ,3810131518202355·10
"pI••tationofIlethodsincOIlpulerprogram;exallplesSAP,ADINASTARTREADNEXTDATACASEReadnodalpointdata(coordinates,boundaryconditions)andestablishequationnumbersinthe10array. Calculateandstoreloadvectonforallloadcases. Read.generate.andstoreelementdata.Loopoverallelementgroups. Readelementgroupdata,andassembleglobalstructurestiffnessmatrix.Loopoverallelementgroups. Calculate.b..Q..!:.Tfactorizationofglobalstiffnessmatrix(·) FOREACHLOADCASEReadloadvectorandcalculatenodalpointdisplacements.~---1Readelementgroupdataandcalculateelementstresses. Loopoverallelementgroups. ENDFig.A.5.FlowchartofprogramSTAP.*SeeSection8.2.2.5-11
Implementationofmethodsincomputerprograms;examplesSAP,ADINAzONE-DIMENSIONALELEMENTI-'-------4!RINGELEMENTx;--.-------------...yFig.12.Trusselementp.A.42.5-12z23Fig.13.Two-dimensionalplanestress,planestrainandaxisymmetricelements. p..A.43. y
yImplementationofmetbodsincomputerprograms;examplesSAP,ADINA2---5x~------Fig.14.Three-dimensionalsolid-------....~ andthickshellelementp.A.44. zyFig.15.Three-dimensionalbeamelementpA.45.5·13
Implementationofmethodsincomputerprograms;examplesSAP,ADINA3-16NODESTRANSITIONELEMENT• • ----.__e_ ---L~-----• yxFig.16.Thinshellelement(variable-number-nodes) p.A.46.5·14
FOBMULATIONANDCALCULATIONOFISOPABAMETBICMODELSLECTURE657MINUTES6·1
FOl'DlolationandcalculationofisoparmetricmodelsLECTURE6FormulationandcalculationofisoparametriccontinuumelementsTruss.plane-stress.plane-strain.axisymmetricandthree-dimensionalelementsVariable-number-nodeselements.curvedelementsDerivationofinterpolations. displacementandstraininterpolationmatrices.theJacobiantransformationVariousexamples:shiftingofinternalnodestoachievestresssingularitiesforfracturemechanicsanalysisTEXTBOOK: Sections:5.1.5.2.5.3.1.5.3.3.5.5.1Examples:5.1.5.2.5.3.5.4.5.5.5.6.5.7.5.8.5.9.5.10.5.11,5.12.5.13.5.14.5.15.5.16.5.176·2
FOI'DlDlatiOludcalculationofisopariUHbicmodelsFORMULATIONANDCALCULATIONOFISOPARAMETRICFINITEELEMENTSinterpolationmatricesandel ementmatrices-Weconsideredearlier(lecture4)generalizedcoordinatefiniteelementmodels-WenowwanttodiscussamoregeneralapproachtoderivingtherequiredisoparametricelementslsoparametricElementsBasicConcept:(ContinuumElements) InterpolateGeometryNx=Li=lh.x.; IINy=Li=1h.y.; IINz=Li=lh.z. IIInterpolateDisplacementsNu=1: i=1h.u. IINv=Li==1h.v. IINw=Li=1h.w. IIN=numberofnodes&·3
Formulationandcalculationofisoparametricmodels1/0ElementTruss2/0ElementsPlanestressContinuumPlanestrainElementsAxisymmetricAnalysis3/0ElementsThree-dimensionalThickShell(a)Trussandcableelements(b)Two-dimensionalelementsFig.5.2.Sometypicalcontinuumelements6·4
FOI'IlalationandcalcalatioD01isoparametricmodels(c)Three-dimensionalelementsFig.5.2.SometypicalcontinuumelementsConsiderspecialgeometriesfirst: ~~==-=l======~I=-==r======r==~1Truss,2unitslong6·5
F..utioaandcalculationofisoparalDebiclDodelsSIll( 11~J~ll(- 11- r1-DElement2Nodes: 2/Delement,2x2unitsSimilarly3/Delement2x2x2units(r-s-taxes) -11.0~~-+-.._h1=%(1+r) 2-r1-r
Formulationudcalculation01isoparUletriclIodeis1.0----...-e_----......:::::...::::=---..:...::-:::;.h2=Y.z(1-r)-Y.z(1-r2) 2312-0Element4Nodes: 3Similarlyh2=%(1-r)(1+5) h3=%(1-r)(1-5) h4=%(1+r)(1-s) /-r-r----+~~-rh1=~(1+r)(1+5) 46-7
Formulationandcalculationofisoparametricmodels6·833ConstructionofSnodeelement(2dimensional) firstobtainhS: ....--+-+--+~_.....1-+--+-I--I--I---I--------I--.._rThenobtainh1andh2: tfF--.-~-_-_-~-r~~_------..1L...4.!1.01h1=%(1+r)(1+s) -%hSSim.h2=%(1-r)(1+s) -%hS4
Formulationandcalculationofisoparametricmodelsr=+1y63  r=-1 ---;q-----   r=0s=o---.. 8rx(a)Fourto9variable-number-nodestwo-dimensionalelementFig.5.5.Interpolationfunctionsoffourtoninevariable-number-nodestwo-dimensionalelement. -~hs·1·.-~hs-~hs-;h6...-~h6-~h7Includeonlyifnodeiisdefinedh,=~(l+r)(l+s) h2=~(l-r)(l+s) h3=~(l-r)(1-s) h.=~(1+r)(l-s) hs=~(1-r2)(1+s) 'h6=~(1-S2)(1-r) h7=~(1-r2)(1-s) hs=i(1-s2)(1+r) h~::(1-r"")(1-S'") i=5i=6i=7i=8I::r-~her-~h<j-ihq-~hq-ihq-1h<j-th" -th<f(b)InterpolationfunctionsFig.5.5.Interpolationfunctionsoffourtoninevariable-number-nodestwo-dimensionalelement: 6·9
FonnulationandcalculationofisoparametricmodelsHavingobtainedthehiwecanconstructthematricesHand!!: -TheelementsofHarethe·h· -I(orzero) -TheelementsofBarethederivativesofthehi(orzero), Becauseforthe2x2x2elements~wecanuse1:;'=~ x==ry==sz==tEXAMPLE4node2dim.element6·10
Formulationandcalculationofisoparametricmodelsah10ah40araru1[ Erlah1ah4v100ESSasasu2Yrsah1ah13h4ah4asat'asarv4..Iv- BWenoteagainr==xs=yGENERALELEMENTSY,vsr=+1s=+1r---t---4_r• 6·11
FormulationandcalculationofisoparametricmodelsDisplacementandgeometryinter- polationasbefore,but[:]=[:::]l~]Aside:asasasaycannotuseoraaar---ax+...axaraa-=Jax(ingeneral)ar- a_J-1a(5.25)a-x-arUsing(5.25)wecanfindthematrix.!!.ofgeneralelementsThe!:!andJ!matricesareafunctionofr,s,t;fortheintegrationthususedv=detJdrdsdt6·12
FOI'Dlalationudcalculationofisoparmebic.odelsFig.5.9.Sometwo-dimensionalelementsElement1z.._----+----......-"·r+-3,'4- """1--1-----------t..~16em. XElement22. ... J= +--_1<'0'II=> 1+3.....-------.....; cDG-W o112132&-13
FormulationandcalculationofisoparametricmodelsElement3c.1V (1+5)] (3+r) 2cl"l12. I• -+---~~--,c:'3,.~'t'.....,.. .I. ...L...3-"' 1------14--, 1c.W'I3r=-INaturalspace3 •I I,-.-I'L/4ActualphysicalspaceFig.5.23.Quarter-pointonedimensionalelement. 6·14
FormulationandcalculationofisoparametricmodelsHerewehave3x=L: i=1henceL2h.x.9x=-4(1+r) 11J=[!:..+!'-LJ-22andorSincer=2.Jf-1Wenote1singularityatX=0! /x6·15
FormulationandcalculationofisoparaDlebicDlodelsNumericalIntegrationGaussIntegrationNewton-CotesFormulasK='"a··kF··k-!:JIJ-IJI,J,kxx6·16
FORMULATIONOFSTRUCTURALELEMENTSLECTURE752MINUTES7·1
FormulationofstructuralelementsLECTURE7FormulationandcalculationofisoparametricstructuralelementsBeam,plateandshellelementsFormulationusingMindlinplatetheoryandunifiedgeneJ," alcontinuumformulationAssumptionsusedincludingsheardeformationsDemonstrativeexamples:two-dimensionalbeam, plateelementsDiscussionofgeneralvariable-number-nodeselementsTransitionelementsbetweenstructuralandcontinuumelementsLow- versushigh-orderelementsTEXTBOOK:Sections:5.4.1,5.4.2,5.5.2,5.6.1Examples:5.20,5.21,5.22,5.23,5.24,5.25,5.26,5.277·2
FORMULATIONOFSTRUCTURALELEMENTS•beam,plateandshellelements•isoparametricapproachforinterpolationsContinuumApproachFOI'IIDlati....slnclDraie1U11DIsStrengthofMaterialsApproach•straightbeamelementsusebeamtheoryincludingsheareffects•plateelementsuseplatetheoryincludingsheareffects(ReissnerIMindlin) "particlesremainonastraightlineduringdeformation" Usethegeneralprincipleofvirtlialdisplacements,but--excludethestresscomponentsnotapplicable--usekinematicconstraintsforparticlesonsectionsoriginallvnormaltothemidsurfacee. g. beame.g. shell7·3
Formulationofstructuralelements.. xNeutralaxisBeamsectionBoundaryconditionsbetweenbeamelementsDeformationofcross-sectionwi=wi;-0+0xxdw_dwdx-0-dx+0xxa)BeamdeformationsexcludingsheareffectFig.5.29.BeamdeformationmechanismsNeutralaxisBeamsectionDeformationofcross-sectionWI-Wix-Ox+OBoundaryconditionsbetweenbeamelements./ b)BeamdeformationsincludingsheareffectFig.5.29.Beamdeformationmechanisms7·4
FormulationofstructuralelementsWeusedwS=--ydx(5.48) (5.49) _(LJpwdxoL-LmSdxo(5.50) L+GAkJ(~~-S)o(~~-S)dxoL-ipoWdxoL-imoSdx=0o(5.51) 7·5
Formulationofstructuralelements(a)BeamwithappliedloadingE=Young'smodulus,G=shearmodulus3k=§..A=abI=ab6',12Fig.5.30.Formulationoftwodimensionalbeamelement( b)Two,three-andfour-nodemodels; 0i={3i'i=1,...,q(InterpolationfunctionsaregiveninFig.5.4) Fig.5.30.Formulationoftwodimensionalbeamelement7 ·6
FormulationofstructuralelementsTheinterpolationsarenowqW=~h.w.L..J11i=, qB=~h.e.L..J11i=, (5.52) w=HU'B=HU1-/-'.:...:.s- dW=BU'~=BUdX1-/-'dX~- WhereTQ.=[w,Wq8,8qJ~=[h,hq0OJ~=[00h,hqJ(5.53) (5.54) and!!w=J-1[:~l...:>0...0] __,f,dh,dhq] ~-JLO...adr'...ar(5.55) 7·7
FormulationofstructuralelementsSothatK=E1f1T~~detJdr-1and+GAkt-1T(~-tla)(~-~)detJdr(5.56) R=f~pdetJdr-1+/~mdetJdr(5.57) -1Consideringtheorderofinterpolationsrequired, westudyGAk(5.60) ex.=ITHence-useparabolic(orhigher-order) elements.discreteKirchhofftheory-reducednumericalintegration7-8
FormulationofstructuralelementsFig.5.33.Three-dimensionalmoregeneralbeamelementHereweuse(5.61) qQ,z(r,s,t)=Lk=lq+~'bhQ,Vk2L.-kksxk=lqqQ,y(r,s,t)=LhkQ,Yk+iLakhkQ,V~yk=lk=lq+~'"bhQ,Vk2LJkksyk=lqhkQ,Zk+iLakhkQ,V~Zk=lq+~2'"bh£VkLJkkszk=l7·9
FormulationofstructuralelementsSothat10u(r,s,t)=x-xv(r,s,t)=ly_0y(5.62) 10w(r,s,t)=z-zqv(r,s,t)=L: k=landqtqku(r,s,t)=L:hkuk+"2L:akhkVtxk=lk=lq+t.EbkhkV~xk=ltqhkvk+2Lk=lq+tL: k=lqw(r,s,t)=L: k=l(5.63) 7·10
FormulationofstructuralelementsFinally,weexpressthevectorsV~ andV~intermsofrotationsabouttheCartesianaxesx,y,z, kakv=ex'is...:..s~ whereekxe=ek~yekz(5.65) (5.66) Wecannowfind£nnqYni;=~!4~(5.67) k=lYnl;; whereuT=[Ukvkwkekekek](5.68)~xyzandthenalsohaveTnnEaa£nnTn~=aGkaYn~ TnI';;0aGkYnl;; (5.77) 7-11
Formulationofstructuralelementsandw=w(x,y) ....------ (5.78) HenceFig.5.36.DeformationmechanismsinanalysisofplateincludingsheardeformationsEXXdl dXdSEyy=z_-.1.(5.79)dyYxydSX_dSydydXdWSyYyzdy- =(5.80) dWYzx-+SdXx7·12
FormulationofstructuralelementsandLXX1vaLyy=z_E_v1a2l-vaal-vLxy2(5.81) awLyzay-ByE(5.82)=2(1+v) LZXaw+BaxxThetotalpotentialfortheelementis: 1II=- 2LxydzdA+~ 2ffh/yyZYzx]~yzJdxdAA-h/2~zx-fwPdAA(5.83) 7·13
FormulationofstructuralelementsorperformingtheintegrationthroughthethicknessIT=tiT.<q,.<dA+t//f,;ydAAA-I:PdA(5.84) AwhereK= as_.-J.- ayasx_~ ayax;y= aw+saxx(5.86) 1v0Eh310C=.v~12(l-v2)1-v0027·14[ 1Ehkf.s=2{1+v)0(5.87)
FormulationofstructuralelementsUsingtheconditionc5TI=0weobtaintheprincipleofvirtualdisplacementsfortheplateelement. -fwpdA=0A(5.88) Weusetheinterpolationsqw=~h.w.LJ11i=lqS=~h.eiyLJ1xi=landqx=~h.x.LJ11i=l(5.89) qY=~h.y.LJ11;=17·15
FormulationofstructuralelementssMid-surfacer....-~-----t~ Fig.5.38.9-nodeshellelementForshellelementsweproceedasintheformulationofthegeneralbeamelements, (5.90) 7·16
FormulationofstructuralelementsTherefore, whereToexpressY~intermsofrotationsatthenodal-pointkwedefine(5.91) (5.92) °V1k=(exOvk)/Iex°Vkl(5.93a)--y-n-y-nthenVk°Vk°VkS..:...n=-~O',k+-1k(5.94) 7·17
Finally,weneedtorecognizetheuseofthefollowingstress-strainlawl=~h~(5.100) 1vaaaa1aaaaJlaaaT(1_~2)!2sh~h=~h1-vaa-2- 1-va-2- symmetric1-v2(5.101) 16·nodeparentelementwithcubicinterpolationI-2-I5•• 2•• Somederivedelements: 64£>-[> 000o'.'. Variable-number-nodesshellelement7·18
Formnlalionofstructuralelementsa)Shellintersections• b)SolidtoshellintersectionFig.5.39.Useofshelltransitionelements7·19
NUMERICALINTEGRATIONS, MODELINGCONSIDERATIONSLECTURE847MINUTES8·1
Numericalintegrations,modelingconsiderationsLECTURE8EvaluationofisoparametricelementmatricesNumercialintegrations.Gauss.Newton-CotesformulasBasicconceptsusedandactualnumericaloperationsperformedPracticalconsiderationsRequiredorderofintegration. simpleexamplesCalculationofstressesRecommendedelementsandintegrationordersforone-,two-.three-dimensionalanalysis.andplateandshellstructuresModelingconsiderationsusingtheelements. TEXTBOOK:Sections:5.7.1.5.7.2.5.7.3.5.7.4.5.8.1.5.8.2.5.8.3Examples:5.28.5.29.5.30.5.31.5.32.5.33.5.34.5.35.5.36.5.37.5.38.5.398·2
Numericalintegrations.modelingconsiderationsNUMERICALINTEGRATION. SOMEMODELINGCONSIDERATIONS•Newton-Cotesformulas•Gaussintegration•Practicalconsiderations•ChoiceofelementsWehadK=fBTCBdV(4.29) -V--- M=JpHTHdV(4.30) -V-- R=fHTfBdV(4.31) ~V-- TR=fHSfSdS(4.32)-sS-- Rr=f~T!.rdV(4..33) V8·3
Numericalintegrations,modelingconsiderationsInisoparametricfiniteelementanalysiswehave: -thedisplacementinterpolationmatrixt:!(r,s,t) -thestrain-displacementinterpolationmatrix~(r,s,t) Wherer,s,tvaryfrom-1to+1. Henceweneedtouse: dV=det.4drdsdtHence,wenowhave,forexampleintwo-dimensionalanalysis: +1+1!$=ff~T~~detAdrds-1-1+1+1M=ffptlTttdetJdrds-1-1etc... 8·4
Numericalintegrations,modelingconsiderationsTheevaluationoftheintegralsiscarriedouteffectivelyusingnumericalintegration,e.g.: K=L~a.·.F..-.4JlJ-lJ1Jwherea... IJF··-IJi,jdenotetheintegrationpoints=weightcoefficients=B··TCB··detJ··-IJ--IJ~J-r-r=±O.5775=±O.577r=±O.7755=±0.775r=05=0,  2x2-pointintegration8·5
Numericalintegrations.modelingcoDSideratiODSzL.-----.~Y3x3-pointintegrationConsiderone-dimensionalintegrationandtheconceptofaninterpolatingpolynomial. 1storderinterpolating---"'--polynomialinx. .-8a II a+b-2- xb
Numericalintegrations,modelingconsiderationsIactualfunctionF2ndorderinterpolating~~~~polynomialinx. aa+b2betc.... InNewton-Cotesintegrationweusesamplingpointsatequaldistances, andbn{F(r)dr=(b-a)~C.nF.+RJLJ11na;=0(5.123) n=numberofintervalsCin=Newton-Cotesconstantsinterpolatingpolynomialisofordern. 8·7
Numericalintegrations,modelingconsiderationsUpperBoundonErrorR.asNumberofaFunctionofIntervalsnqqCncnqC·CntheDerivativeofF23561110-I(b-a}lF"(r)"2T214110-3(b-a)5PV(r)6"6"6" 313311O-3(b-a)5F'V(r)"8"8"8"847321232710-6(b-a)7FVI(r)9090909090519755050751910-6(b-a)7Fv'(r)288288US288ill288641216272722721641lO-'(b-a)'FVIU(r)840840840840840840840Table5.1.Newton-Cotesnumbersanderrorestimates. InGaussnumericalintegrationweusebfF(r)dr"U1F(r1)+u2F(r2)+••. a+0.F(r)+Rnnn(5.124) whereboththeweightsa1•...•anandthesamplingpointsr1•...•~ arevariables. Theinterp(llatingpolynomialisnowoforder2n-1.8·8
Numericalintegrations,modelingconsiderationsnrj/X, 1O.(I5zeros)2.(I5zeros) 2±0.5773502691896261.0ססoo0ססoo0ססoo3±0.7745966692414830.5555555555555560.0ססoo0ססoo0ססoo0.8888888888888894±0.8611363115940530.347854845137454±0.3399810435848560.6521451548625465±0.9061798459386640.236926885056189±0.5384693101056830.4786286704993660.0ססoo0ססoo0ססoo0.5688888888888896±0.9324695142031520.171324492379170±0.6612093864662650.360761573048139±0.2386191860831970.467913934572691Table5.2.SamplingpointsandweightsinGauss-Legendrenumeri- calintegration. Nowlet, ribeasamplingpointandelibethecorrespondingweightfortheinterval-1to+1. Thentheactualsamplingpointandweightfortheintervalatobarea+b+b-ar.andb-ael. -2-212IandtheriandelicanbetabulatedasinTable5.2.8·9
Numericalintegrations,modelingconsiderationsIntwo-andthree-dimensionalanalysisweuse+1+1ffF(r,s)drds=I:"1-1-11or+1fF(ri's)ds-1(5.131) +1+1ffF(r,s)drds=I:,,;,,/(ri'sj) -1-1i,j(5.132) andcorrespondingto(5.113), a·IJ•=a.a.,wherea.anda. IJIJaretheintegrationweightsforone-dimensionalintegration. Similarly, +1+1+1ff1F(r,s,t}drdsdt-1-1-1=~a.·a.·a.kF(r.,s.,tk)LJ1J1Ji,j,k(5.133) anda··k=a.Q.Qk.IJIJ8·10
Numericalintegrations,modelingconsiderationsPracticaluseofnumericalintegration.Theintegrationorderrequiredtoevaluateaspecificelementmatrixexactlycanbeevaluatedbystudyingthefunctionftobeintegrated. •Inpractice,theintegrationisfrequentlynotperformedexactly, butthe·integrationordermustbehighenough. Consideringtheevaluationoftheelementmatrices,wenotethefollowingrequirements: a)stiffnessmatrixevaluation: (1)theelementmatrixdoesnotcontainanyspuriouszeroenergymodes(i.e.,therankoftheelementstiffnessmatrixisnotsmallerthanevaluatedexactly);and(2)theelementcontainstherequiredconstantstrainstates. b)massmatrixevaluation: thetotalelementmassmustbeincluded. c)forcevectorevaluations: thetotalloadsmustbeincluded. 8·11
Numericalintegrations,modelingconsiderationsDemonstrativeexample2x2Gaussintegration"absurd"results3x3GaussintegrationcorrectresultsFig.5.46.8-nodeplanestresselementsupportedatBbyaspring. Stresscalculations(5.136) •stressescanbecalculatedatanypointoftheelement. •stressesare,ingeneral,discontinuousacrosselementboundaries. 8-12
Numericalintegrations.modelingconsiderationsthickness=1cmA-p3xl0721~[E=N/cm<3>e.CD)=0.3I1>p300N=c· :.....,--of3c.m.3Coft'1. A8... '100N!Crrt'l. / (a)Cantileversubjectedtobendingmomentandfiniteelementsolutions. Fig.5.47.Predictedlongitudinalstressdistributionsinanalysisofcantilever. =a. 8·13
NumericalintegratiODS.modelingcoDSideratioDS'?,A, ~@B<D4l, ,C. I,s_a~"? v=0.3P=lOON"" 8&<DCo174+/lA/e-t'- CoAA ®B8<DCoc~I".00"'Ie-." (b)Cantileversubjectedtotip-shearforceandfiniteelementsolutionsFig.5.47.Predictedlongitudinalstressdistributionsinanalysisofcantilever. SomemodelingconsiderationsWeneed•aqualitativeknowledgeoftheresponsetobepredicted•athoroughknowledgeoftheprinciplesofmechanicsandthefiniteelementproceduresavailable•parabolic/undistortedelementsusuallymosteffective8-14
Numericalintegrations,modelingconsiderationsTable5.6Elementsusuallyeffectiveinanalysis. TYPEOFPROBLEMTRUSSORCABLETWO-DIMENSIONALPLANESTRESSPLANESTRAINAXISYMMETRICTHREE-DIMENSIONALELEMENT2-node8-nodeor9-node20-node DD 3-DBEAM-=~ 3-nodeor4-node-/..... PLATESHELL9-node9-nodeor16-nodeL7~~ 8·15
Numericalintegrations,modelingconsiderations4/'1odeIelEJmerrt1SnodegI'oole..~kl'7ll'"t~ e1er1l(1'It.iJII a)4-nodeto8-nodeelementtransitionregion84-Ioc:(e4nodeele,"~"t. eIemtnt"" A4-nodeel....~I"tc119BU.sVAA'Ve-llA~ CU, ConstraintuA=(uC+uB)/2equations: vA=(vC+vB)/2b)4-nodeto4-nodeelementtransition/. ! c)8-nodetofiner8-nodeelementlayouttransitionregionFig.5.49.Sometransitionswithcompatibleelementlayouts8·16
SOLUTIONOFFINITEELEMENTEQUILIBRIUMEQUATIONSINSTATICANALYSISLECTURE960MINUTES9·1
SolutionofIiDilee1eDleulequilihrilllequationsiuslaticaaalysisLECTURE9SolutionoffiniteelementequationsinstaticanalysisBasicGausseliminationStaticcondensationSubstructuringMulti-levelsubstructuringFrontalsolutiontl>tT-factorization(columnreductionscheme) asusedinSAPandADINACholeskyfactorizationOut-of-coresolutionoflargesystemsDemonstrationofbasictechniquesusingsimpleexamplesPhysicalinterpretationofthebasicoperationsusedTEXTBOOK:Sections:8.1.8.2.1.8.2.2.8.2.3.8.2.4. Examples:8.1.8.2.8.3.8.4.8.5.8.6.8.7.8.8.8.9.8.109·2
SoJutiODoffililee1emenlequilihrillDequationsinslaticanalysisSOLUTIONOFEQUILIBRIUMEQUATIONSINSTATICANALYSIS•Iterativemethods, e.g.Gauss-8eidel•DireetmethodsthesearebasicallyvariationsofGausselimination-staticcondensation-substructuring-frontalsolution-.LQ..bTfactorization-Choleskydecomposition-Crout-columnreduction(skyline)solverTHEBASICGAUSSELIMINATIONPROCEDUREConsidertheGausseliminationsolutionof5-4,0U,0-46-4,U2, =(8.2),-46-4U300,-45U409·3
SolationoffiniteelementeqailihriUlequationsinstaticanalysisSTEP1:Subtractamultipleofequation1fromequations2and3toobtainzeroelementsinthefirstcolumnofK. r------------ oll!16I5-5 II oI_~29:55Io:-45-41o1-45(8.3) 5-4oo9·4ooo14165-5r-------- 0:~_20I77I0:_2065I714I=(8.4)
SolationoffiniteelementeqailillriUlequationsinstaticanalysisSTEP3: 5-410U10014161U21S-s1520.-8(8.5) 007-TU3"7r--- 7000I5U4I"6"6II Nowsolvefortheunknownsu4, U3'U2andU,: 12=5(8.6) 1-(-156)U3-(1)U4_13U=--------:;-;;-----214-S519367o-(-4)35-(1)15-(0)"5_8U=----~----15-"59·5
SolutionoffiniteelementeqDilihriDlDequationsinslaticanalysisSTATICCONDENSATIONPartitionmatricesinto[~a~-ac][!!a][Ba] .!Sea~-ec!!c=BeHenceand(8.28) (-1)-1~a-~ilC.!Sec.!Sea!!a=Ba-~c.!Sec~---------KaaExampleteer:~ aIU105I-410I---+------------ -46-41U21= 1-46-4U3001-45U40~c'---y----' ~aHence(8.30)gives~-,-- 6-4-4[1/5][-41Kaa=-46-411-450'---1....- 9·8sothat141615-5K=1629-4-a.a-550]1-45~- andwehaveobtainedthe3x3unreducedmatrixin(8.3)
SoIltiOloffiniteelemelteqlilihrilDlequationsinstaticaualysis5-40VI:1-46-4U21-46-4U3:101-45U414-!§U2"55-!§29-4U305-5-45V40Fig.8.1PhysicalsystemsconsideredintheGausseliminationsolutionofthesimplysupportedbeam. 9-7
SolutiouoffiniteelementeqDilihriomequationsinstaticanalysisSUBSTRUCTURING•Weusestaticcondensationontheinternaldegreesoffreedomofasubstructure•theresultisanewstiffnessmatrixofthesubstructureinvolvingboundarydegreesoffreedomonly-?-? -~-o--oe--c>---nl-650x50Example......--.-L32x32Fig.8.3.Trusselementwithlinearlyvaryingarea. Wehavefortheelement. 9·8[ 17~~-206L3-2048-28
SoIali.oIliDilee1emealeqailihrilDleqaaliODSiastalicaaalysisFirstrearrangetheequationsEA,['76"L3-20StaticcondensationofU2givesEA,Ir76L33][-20]-[lJ[-2025-2848orll.EA,[19L-1and9·9
SolutionoffiDileelemeulequilibrilllequati.inslaticaDalysisMulti-levelSubstructuringI'L'I'L~,L,I.L.1A2A4A,ISA,II16A, ,,'~-&-o=2:E~f'·'n-~-UUr;,U6U7UsUgIU2U3u.RsBarwithlinearlyvaryingarea-II1- U,-u3u2---I•.-U,u3(a)First-levelsubstructure---IIII1- U,-Usu3_II•I1- U,Us(b)Second-levelsubstructure_IIIIIIII1- U,-ugUs.Rr;,-.IIIIIII1- U,ug(c)Third-levelsubstructureandactualstructure. Fig.8.5.Analysisofbarusingsubstructuring. '-10
SolutionoffiDilee1eDleulequilihrioequti.illstaticanalysisFrontalSolutionElementqElementq+1Elementq+2Elementq+3-------- mm+3~IN:" Element1Element44WavefrontWavefrontfornode1fornode2Fig.8.6.Frontalsolutionofplanestressfiniteelementidealization. •Thefrontalsolutionconsistsofsuccessivestaticcondensationofnodaldegreesoffreedom. •Solutionisperformedintheorderoftheelementnumbering. •Samenumberofoperationsareperformedinthefrontalsolutionasintheskylinesolution,iftheelementnumberinginthewavefrontsolutioncorrespondstothenodalpointnumberingintheskylinesolution. 9·11
SolutionoffiniteelementequilibriumequationsinstaticanalysisLDLTFACTORIZATION-isthebasisoftheskylinesolu- tion(columnreductionscheme) -BasicStepL-1K=K--1--1Example: 5-4a5-4a4-46-4a~416555= 1a-46-4a_1629-4-555aaaa-45a-45Wenote44-1-5-5L=1~11-1aa5S- oaaaaa9·12
SolutionoffiniteelementequilibriumequationsinstaticanalysisProceedinginthesameway-1-11.21.1K:=SxxxxxxxxxSx.......xupper:=triangularxxmatrixxxHenceorAlso,because~issymmetricwhere0:=diagona1rnatrixd..:=s.. 11119·13
SolutionoffiniteeleJDentequilihriDIIequationsinstaticanalysisIntheCholeskyfactorization,weusewheret=LD~ SOLUTIONOFEQUATIONSUsing9·14K=L0LTwehaveLV=RoLTU=Vwhere-IV:=L--n-land(8.16) (8.17) (8.18) (8.19) (8.20)
SolutionoffiniteelementequilibrimnequationsinstaticanalysisCOLUMNREDUCTIONSCHEME5-416-416-45~ 4545-5514-414-4-556-46-455~ 541541-55-551481148575-715-415-4TT559·15
Solationoffiniteelementeqailihriameqaati.instaticanalysisX=NONZEROELEMENT0=ZEROELEMENT_~COLUMNHEIGHTSSYMMETRICo0000o0000'-----, X000Xo0000o0x00oX000XXXX0XXXXXXXXXELEMENTSINORIGINALSTIFFNESSMATRIXTypicalelementpatterninastiffnessmatrixSKYLINEo0000o0000L...-_ X000XX000XX0X0XXXX0XXXXXXXXXXXXXXXXELEMENTSINDECOMPOSEDSTIFFNESSMATRIXTypicalelementpatterninastiffnessmatrix9-16
SYMMETRICSolutionoffiniteelementequilibriumequationsinstaticanalysisx=NONZEROELEMENT0=ZEROELEMENTCOLUMNHEIGHTSIII-x000100:0o000:0010xixx0100xXlX001000xIx00x00x0XO00xxixXIOxixxixIxXlXxIxIxELEMENTSINORIGINALSTIFFNESSMATRIXTypicalelementpatterninastiffnessmatrixusingblockstorage. 9·17
SOLUTIONOFFINITEELEMENTEQUILIBRIUMEQUATIONSINDYNAMICANALYSISLECTURE1056MINUTES10·1
Solotionoffinitee1mnenteqoiIihrioequationsindynaDlicanalysisLECTURE10SolutionofdynamicresponsebydirectintegrationBasicconceptsusedExplicitandimplicittechniquesImplementationofmethodsDetaileddiscussionofcentraldifferenceandNewmarkmethodsStabilityandaccuracyconsiderationsIntegrationerrorsModelingofstructuralvibrationandwavepropagationproblemsSelectionofelementandtimestepsizesIRec ommendationsontheuseofthemethodsinpracticeTEXTBOOK:Sections:9.1.9.2.1.9.2.2.9.2.3.9.2.4.9.2.5.9.4.1.9.4.2.9.4.3.9.4.4Examples:9.1.9.2.9.3.9.4.9.5.9.1210·2
SolutionoffiniteelementequilihriDlequationsindyDalDicualysisDIRECTINTEGRATIONSOLUTIONOFEQUILIBRIUMEQUATIONSINDYNAMICANALYSISMU+CU+KU=R------- •explicit,implicitintegration•computationalconsiderations•selectionofsolutiontimestep(b.t) •somemodelingconsiderationsEquilibriumequationsindynamicanalysisMU+CU+KU=R(9.1) or10·3
SolutionoffiniteelelleulequilihrilllequatiolSindynaJDicanalysisLoaddescriptiontimetime-- Fig.1.EvaluationofexternallyappliednodalpointloadvectortRattimet. THECENTRALDIFFERENCEMETHOD(COM) to=_l_(_t-tltu+t+tltU)(9.4) -2tlt-- anexplicitintegrationscheme10·4
SolationoffiniteeleDlenteqailibrimnequationsindynanaicanalysisCombining(9.3)to(9.5)weobtain(-'-M+-'-c)t+~tu=tR_~K__2_M)tu2-2~t----2-- ~t~t-(-'-M_-'-c)t-~tu2-2~t--~t(9.6) wherewenote!t!!=(~!(mT!! =~(l5-(m)tlL)=~t£(m) Computationalconsiderations•tostartthesolution.use(9.7) •inpractice.mostlyusedwithlumpedmassmatrixandlow-orderelements. 10·5
SolutionoffiniteelementequilibriumequationsindynamicanalysisStabilityandAccuracyofCOM-l'Itmustbesmallerthanl'IterTnl'Iter=TI;Tn=smallestnaturalperiodinthesystemhencemethodisconditionallystable_inpractice,useforcontinuumelements, l'It<l'IL-ee=~ forlower-orderelementsL'lL=smallestdistancebetweennodesforhigh-orderelementsl'IL=(smallestdistancebetweennodes)/(rel.stiffnessfactor) •methodusedmainlyforwavepropagationanalysis•numberofoperationsexno.ofelementsandno.oftimesteps10·6
SolutionoffiniteelelDenteqoiIibriDIIeqoatiouindynandcanalysisTHENEWMARKMETHOD(9.28) {9.29Janimplicitintegrationschemesolutionisobtainedusing.Inpractice,weusemostlya.=la,0=~ whichistheconstant-average-accelerationmethod(Newmark'smethod) •methodisunconditionallystable•methodisusedprimarilyforanalysisofstructuraldynamicsproblems•numberofoperations==~nm2+2nmt10·7
SolutionoffiniteelementequilibriDIIequationsindynmicanalysisAccuracyconsiderations•timestep!'1tischosenbasedonaccuracyconsiderationsonly•Considertheequations~1U+KU=RandwhereK¢. --1Using¢"1K¢=0.22::w·~1<p. 1--1whereweobtainnequationsfromwhichtosolveforxi(t)(seelecture11) 10·8..2Tx.+w.x.=~.R111~1-i=l,...,n
Solution01finiteeleDlentequilibriDllequationsindynaDlicanalysisHence,thedirectstep-by-stepsolutionofr~O+KU=Rcorrespondstothedirectstep-bystepsolutionof.. 2x·+w.x·111withi=l,...,nnU=~<I>.x. -~-l1i=1Therefore,tostudytheaccuracyoftheNewmarkmethod,wecanstudythesolutionofthesingledegreeoffreedomequation..2x+wx=rConsiderthecase..2x+wx=ao·ax=0··2x=-w10·9
SolotionoffiniteelementeqoiIihriDlequationsindynandcanalysis19.019.015.0Houbolt15.0method § 11.011.0.. le....5-wE!:...Cle.g7.007.0'"~C/IC0> "iii'"u"85.0'"5.0"0.;:'"'""0Co~ '".~ C/IQ.:! 3.0E3.0c'"'"8.l:! tf:! c'.01~4t€'"1.~l:! '"Q" 1.01.0~PE0.060.100.140.180.060.100.140.18Fig.9.8(a)Percentageperiodelonga-Fig.9.8(b)Percentageperiodelonga- tionsandamplitudedecays.tionsandamplitudedecays. 4t-----r----:--r--r----r-----,...-----,-----, equation..2.2.tx+~wx+wx=S1npstaticresponse2131----+--f-+-+----t-----t-----.,t----'-1...o'0~ "t:JCtIoCJ'ECtIc:: >o123Fig. 9.4.Thedynamicloadfactor10·10
SoIIIi.offilile81••1eqailihrillDeqaaliOlSindJllillicanalysisD:.r•1.05-nYNAMICRESPONSE_..-STATICRESPONSE~=0.05g7T+gir.itz~~.:.::::7'--!2C' ~1-.j.'",fs! ,;1•1!T 8174-._--+---t-"---....__..--t----+-._--+_..-........-..._-.-1'c.oeo.."~fl.'JOn.7~I.00II,.,~. Responseofasingledegreeoffreedomsystem. DLF..0.50-DYNAMICRESPONSE---STATIc.:RESPONSE.f...=3.0w.... ....,-------.//' --~-----=~---':....;-,,---=__==_7'~---_.~~.:.--==---/-/"7--_____...... + g, ::i-+-~--+---+---"..-------t-----+---+I--t-__---+--+1~--+--+I::-:---+----,+1:::---+----,+1::-:---+------::+-'::-:---+-----:<' c.':;:C.25~.I)C:."L:.00:..?~I.SO1.752.002.252.502.753.00TIllEResponseofasingledegreeoffreedomsystem. 10·11
SolutionoffiniteelementequilibriumequationsindynamicanalysisModelingofastructuralvibrationproblem1)Identifythefrequenciescontainedintheloading, usingaFourieranalysisifnecessary. 2)Chooseafiniteelementmeshthataccuratelyrepresentsallfrequenciesuptoaboutfourtimesthehighestfrequencywcontainedintheloading. u3)Performthedirectintegrationanalysis.Thetimestep/':,tforthissolutionshouldequalabout120Tu,whereTu=2n/wu'orbesmallerforstabilityreasons. ModelingofawavepropagationproblemIfweassumethatthewavelengthisLw'thetotaltimeforthewavetotravelpastapointis(9.100) wherecisthewavespeed.Assumingthatntimestepsarenecessarytorepresentthewave,weuse(9.101) andthe"effectivelength"ofafiniteelementshouldbe10·12c/':,t(9.102)
SoIaliOi..filile81••1eqailihriDleqaali_indJUlDicualysisSUMMARYOFSTEP-BY-STEPINTEGRATIONS-INITIALCALCULATIONS--- 1.FormlinearstiffnessmatrixK, massmatrixManddampingmatrix~,whicheverapplicable; Calculatethefollowingconstants: Newmarkmethod:0>0.50,ex.2:.0.25(0.5+0)22aO=,/(aAt) a4=0/ex.-, as=-a3a,=O/(aAt) as=I1t(O/ex.-2)/2ag=I1t('-0) a3=,/(2ex.)-, a7=-a2Centraldifferencemethod: a,='/2I1t...0O·0·· 2.Inltlahze!!.,!!.,!!.; Forcentraldifferencemethodonly,calculateI1tufrominitialconditions:- 3.Formeffectivelinearcoefficientmatrix; inimplicittimeintegration: inexplicittimeintegration: M=a~+a,f. 10·13
Solutionoffiniteelementequilibriumequationsindynamicanalysis4.IndynamicanalysisusingimplicittimeintegrationtriangularizeR:. ---FOREACHSTEP--- (j)Formeffectiveloadvector; inimplicittimeintegration: inexplicittimeintegration: (ii)Solvefordisplacementincrements; inimplicittimeintegration: inexplicittimeintegration: 10·14
SoI.ti.offilileelOl.1equilihriDlequationsindynamicanalysisNewmarkMethod: CentralDifferenceMethod: 10·15
MODESUPERPOSITIONANALYSIS;TIMEBISTORYLECTURE1148MINUTES11·1
ModeslperpClilionanalysis;lilliebistoryLECTURE11SolutionofdynamicresponsebymodesuperpositionThebasicideaofmodesuperpositionDerivationofdecoupledequations SolutionwithandwithoutdampingCaugheyandRayleighdampingCalculationofdampingmatrixforgivendampingratiosSelectionofnumberofmodalcoordinatesErrorsanduseofstaticcorrectionPracticalconsiderationsTEXTBOOK:Sections:9.3.1.9.3.2.9.3.3Examples:9.6.9.7.9.8.9.9.9.10.9.1111·2
Modesuperpositionanalysis;timehistoryModeSuperpositionAnalysisBasicideais: transformdynamicequilibriumequationsintoamoreeffectiveformforsolution, using!L=1:.!(t) nxlnxnnxlP=transformationmatrix!(t)=generalizeddisplacementsUsing!L(t)=1:.!(t) onMU+c0+KU=Rweobtain(9.30) (9.1) ~R(t)+fi(t)+R!(t)~(t) (9.31) whereCfT~f; R=PTR(9.32) 11·3
(9.34) ModesDperJMlilionualysis;tiDlehistoryAneffectivetransformationmatrixfisestablishedusingthedisplacementsolutionsofthefreevibrationequilibriumequationswi thdampingneglected, M0+KU=0Usingweobtainthegeneralizedeigenproblem, (9.36) withtheneigensolutions(w~,p..,), 22(ul2'~),...,(wn'.P.n),and11·4T1==0'<P1"M'""-_.:t:..Ji=ji.,j2<W-n(9.37) (9.38)
Modesuperpositionanalysis;timehistoryDefining(9.39) wecanwriteandhave(9.40) Nowusing!L(t)=!~Jt) ¢TM¢=I(9.41) (9.42) weobtainequilibriumequationsthatcorrespondtothemodalgeneralizeddisplacements!(t)+!T~!!(t)+r;i~(t)=!T!S.(t) (9.43) Theinitialconditionson~(t)areobtainedusing(9.42)andtheM-orthonormalityof¢;i.e., attime0wehave(9.44) 11·5
ModeSUperpClitiODaualysis;tilDebisloryAnalysiswithDampingNeglected(9.45) i.e.,nindividualequationsoftheform2.x.(t)+w.x.(t)=r.(t)1111wherewithTaX'I=lj).MU1-1--t=O•.TO'X'I=-'--cp.MU1-1--t=Oi=',2,...,n(9.46) (9.47) UsingtheDuhamelintegralwehave=-'jtr1·(T)sinw.(t-T)dTw.110(9.48) +a..sinw.t+8.cosw·t1111wherea.iand8iaredeterminedfromtheinitialconditionsin(9.47). Andthen11-& (9.49)
ModesDperp.itionanalysis;timehistory4f----..-----:--..--r----,..----~---_r_---..., equation••2.2.x+E;,wx+WX=S1nPtstaticresponse~=-031-__-+__+--+-+-__+-__-+-+-__--., 02.... 0..... uCtI..... -0CtI0uECtIr::::: >- 023Fig.9.4.ThedynamicloadfactorHenceweuseuP=~¢.x·(t) --~--l1i=1whereuP-UTheerrorcanbemeasuredusing(9.50) 11·7
Modesuperpositionanalysis;timehistoryStaticcorrectionAssumethatweusedpmodestoobtain~p,thenletn~_=LriUl~) i=1HenceTr.=¢.R1-1- ThenandKflUfiRAnalysiswithDampingIncludedRecall,wehave!(t)+!Tf!i(t)+fi!(t)=!T~(t) (9.43) IfthedampingisproportionalT¢.C(po=2w.E;,.cS.. -1---J111Jandwehave(9.51) x.(t)+2w.E;,.x.(t)+w~x.(t)=r1 ·(t) 111111i=l,...,n(9.52) 11·8
Modesuperpositionanalysis;timehistoryAdampingmatrixthatsatisfiestherelationin(9.51)isobtainedusingtheCaugheyseries, (9.56) wherethecoefficientsak'k=,,•••,p, arecalculatedfromthepsimultane- ousequationsAspecialcaseisRayleighdamping, C=a~1+BK----- example: Assume~,=0.02w,=2calculateaandBWeuse(9.55) or'/ a+Bw:-2w.~. --1112w.~. 1111·9
Modesuperpositionanalysis;timehistoryUsingthisrelationforwl'[,1andw2'[,2'weobtaintwoequationsforaand13: a+4ii=0.08a+913=0.60Thesolutionisa=-0.336and13=O.104.ThusthedampingmatrixtobeusedisC=-0.336M+0.104KNotethatsince2a+13w.=2w.[,. 111foranyi,wehave,onceaand13havebeenestablished, E,.= 12a+SW. 12w. 1a13=-+-w2w.2i111·10
ModesDperp.itionanalysis;timehistoryResponsesolutionAsinthecaseofnodamping. wesolvePequationsx.+2w.E,.x·+w~x.=r. 1111111withr·1ITOxit=0"--.!i!i.!:L•ITO'xit=0=!if1.!:LandthenPuP~¢.x.(t)LJ-11i=1Practicalconsiderationsmodesuperpositionanalysisiseffective-whentheresponseliesinafewmodesonly,P«n-whentheresponseistobeobtainedovermanytimeintervals( orthemodalresponsecanbeobtainedinclosedform). e.g.earthquakeengineeringvibrationexcitation-itmaybeimportanttocalculateEp(t)orthestaticcorrection. 11·11
SOLUTIONMETHODSFORCALCULATIONSOFFREQUENCIESANDMODESBAPESLECTURE1258MINUTES12·1
SolutionmethodsforcalculationsoffrequenciesandmodeshapesLECTURE12SolutionmethodsforfiniteelementeigenproblemsStandardandgeneralizedeigenproblemsBasicconceptsofvectoriterationmethods. polynomialiterationtechniques.Sturmsequencemethods.'transformationmethodsLargeeigenproblemsDetailsofthedeterminantsearchandsubspaceiterationmethodsSelectionofappropriatetechnique.practicalconsiderationsTEXTBOOK:Sections:12.1.12.2.1.12.2.2.12.2.3.12.3.1.12.3.2.12.3.3.12.3.4.12.3.6(thematerialinChapter11isalsoreferredto) Examples:12.1.12.2.12.3.12.412·2
SolatiumethodsforcalculationsoffrequenciesandmodeshapesSOLUTIONMETHODSFOREIGENPROBLEMSStandardEVP: r!=! nxnGeneralizedEVP: !sP.-=!i!-(=w2) QuadraticEVP: MostemphasisonthegeneralizedEVPe.g.earthquakeengineering"LargeEVP"n>500m>601p=l,...,3"nIndynamicanalysis,proportionaldampingrsP.-=w2!i! Ifzerofreq.arepresentwecanusethefollowingprocedurersP.-+)1IisP.-=(w2+~r)!isP.- or(r+)1!i)sP.-=!isP.= w2+)1or2W=-)112·3
SolationlIethodslorcalcalatiouoIlreqa.ciesandlIodeshapesp(A) p(A)=det(K-A~) Inbucklinganalysis.!$.!=A~! wherep(A)=det(~-A~) p(A) 12·4
SolutionmethodsforcalculationsoffrequenciesandmodeshapesRewriteproblemas: andsolveforlargestK: ....---~ (~-~~)!=n.K2£. TraditionalApproach:TransformthegeneralizedEVPorquadraticEVPintoastandardform, thensolveusingoneofthemanytechniquesavailablee.g. .Ki=;!iiM=I::I::Ti=hTjJhence~:t=;i;K=1::-1K[-TorM=W02WTetc... 12·5
SolotiOl.elhodslorcalcolationsoIlreqoeaciesud.odesllapesDirectsolutionismoreeffective. ConsidertheGen.EVP!!=AM! with1.3...1neigenpairs(Ai'1.i) arerequiredori=l,,pi=r,,sThesolutionproceduresinuseoperateonthebasicequationsthathavetobesatisfied. 1)VECTORITERATIONTECHNIQUESEquation: e.g.InverseIt. ~P_=A~~ !~+l=M~ ~+l•ForwardIteration•RayleighQuotientIterationcanbeemployedtocalculateoneeigenvalueandvector, deflatethentocalculateadditionaleigenpairConvergenceto"aneigenpair", whichoneisnotguaranteed(convergencemayalsobeslow) 12·6
Solutionmethodsforcalculationsoffrequenciesandmodeshapes2)POLYNOMIALITERATIONMETHODS!~=A~~~(K-AM)¢0Hencep(A)det(~-A!:1)=0,,, NewtonIterationp(A)2naO+alA+a2A+...+anAbO(A-Al)(A-A2)'"(A-An) Implicitpolynomialiteration: Explicitpolynomialiteration: eExpandthepolynomialanditerateforzeros. eTechniquenotsuitableforlargerproblems-muchworktoobtainai's-unstableprocessp(Pi)=det(IS.-Pi!y!) =detLDLT=IId.. ---.IIIeaccurate,providedwedonotencounterlargemultipliersewedirectlysolveforAl,... euseSECANTITERATION: Pi+l=Pi- edeflatepolynomialafterconvergencetoA112-7
Solutionmethodsforcalculationsoffrequenciesandmodeshapes]J.11- p(A)/(A-A,) II IIIConvergenceguaranteedtoA1'thenA2,etc.butcanbeslowwhenwecalculatemultipleroots. CareneedbetakeninLDLTfactorization. 12·8
SaI.liOi.6Jdsforcalculali.offreql8ciesiIIldoleshapes3)STURMSEQUENCEMETHODS1234t:::}·..... !<p=A!119·~;;.·....-....·..·...·.. NumberofnegativeelementsinDisequaltothenumberofeigenvaluessmallerthanJ.1S. 3rdassociatedconstraintproblem2ndassociatedconstraintproblem1stassociatedconstraintproblem12·9
SolutionlDethodslorcalculations01frequenciesudlDodeshapes3)STURMSEQUENCEMETHODSTCalculate~-].lS.~=hQh, CountnumberofnegativeelementsinQanduseastrategytoisolateeigenvalue(s). interval, ,, ,/ ].ls1].lS2Tf..•NeedtotakecareinLDLaetonzatlon--- •Convergencecanbeveryslow4)TRANSFORMATIONMETHODSj<PTK<P=A~!=A~!--T--< PM<P=I--- Construct<Piteratively: _ n=[Al...'n]<P=[~,...~J;HA-----...... " 12·10
5oI1tiOi.elhodsforcalculations01frequenciesad.odeshapesTTT~...~~lff1~...~-~ TTT~...~f1!if1~...~-le.g.generalizedJacobimethod•Herewecalculatealleigenpairssimultaneously•Expensiveandineffective(impossible)orlargeproblems. Forlargeeigenproblemsitisbesttousecombinationsoftheabovebasictechniques: •Determinantsearchtogetneararoot•Vectoriterationtoobtaineigenvectorandeigenvalue•Transformationmethodfororthogonalizationofiterationvectors. •Sturmsequencemethodtoensurethatrequiredeigenvalue(s)has(orhave)beencalculated12·11
SolutionmethodsforcalCl1atiouoffrequenciesandmodesJlapesTHEDETERMINANTSEARCHMETHODp(A) A1)IterateonpolynomialtoobtainshiftsclosetoA1P(l1;)=det(~-11;~) T=detLDL=nd.. ---;1111;+1=].1;-nP(l1;)-P(11;_1) 11;-11;_1nisnormally=1.0n=2.,4.,8.,...whenconvergenceisslowSameprocedurecanbeemployedtoobtainshiftnearA;,providedP(A)isdeflatedofA1'...,A;_12)UseSturmsequencepropertytocheckwhether11;+1islargerthananunknowneigenvalue. 12·12~-.. /...
.... .... .... SolutionlOethodsforcalculationsoffreqoBciesudlOodeshapes3)OncelJi+1islargerthananunknowneigenvalue,useinverseiterationtocalculatetheeigenvectorandeigenvaluelJi+1k=1,2,... •~+l~+l=-T-~ (~+l!i~+l) -Tp(~+l)= ~+l!i~k-T~ ~+l!i~+l4)Iterationvectormustbedeflatedofthepreviouslycalculatedeigenvectorsusing,e.g.GramSchmidtorthogonalization. IfconvergenceisslowuseRayleighquotientiteration12·13
SolutionmethodslorcalculationsoIlrequenciesudmodeshapesAdvantage: Calculatesonlyeigenpairsactuallyrequired;nopriortransformationofeigenproblemDisadvantage: Manytriangularfactorizations•EffectiveonlyforsmallbandedsystemsWeneedanalgorithmwithlessfactorizationsandmorevectoriterationswhenthebandwidthofthesystemislarge. SUBSPACEITERATIONMETHODIteratewithqvectorswher:'thelowestpeigenvaluesandeigenvectorsarerequired. inverse{K4+1=',14k=1,2,... iteration-- ~+1-TK-~+1=4+1~+1-T~14+1=4+1~+1~+1=~+1~+1~+14+1=~+1~+112·14
Solutionmethodsforcalculationsoffrequenciesandmodeshapes"Underconditions"wehaveCONDITION: startingsubspacespannedbyX,mustnotbeorthogonaltoleastdominantsubspacerequired. UseSturmsequencecheckeigenvaluepeigenvaluesT!5.-flSt1=~Q~ no.of-veelementsinDmustbeequaltop. Convergencerate: flSconvergencereachedwhen<tal12·15
SolutionmethodsforcalculationsoffrequenciesandmodeshapesStartingVectorsTwochoices1)~lx.=e., ~~ j=2,...,q-l2. x=randomvector42)LanczosmethodHereweneedtouseqmuchlargerthanp. Checksoneigenpairs1.Sturmsequencechecks11~!~Q,+1)_A~Q,+l)~!~Q,+1)[12E:.= 1[IK¢~9,+l)II--12importantin!!!.solutions. Reference:AnAcceleratedSubspaceIterationMethod,J.ComputerMethodsinAppliedMechanicsandEngineering,Vol.23, pp.313-331,1980.12·16
MIT OpenCourseWare 
http://ocw.mit.edu 
Resource: Finite Element Procedures for Solids and Structures 
Klaus-Jürgen Bathe 
The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource. 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More Related Content

What's hot

Full_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_ChildsFull_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_Childs
Russell Childs
 
Engineering simulations and testing by atoast
Engineering simulations and testing by atoastEngineering simulations and testing by atoast
Engineering simulations and testing by atoast
ATOA Scientific Technologies
 
On average case analysis through statistical bounds linking theory to practice
On average case analysis through statistical bounds  linking theory to practiceOn average case analysis through statistical bounds  linking theory to practice
On average case analysis through statistical bounds linking theory to practice
csandit
 
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICEON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
cscpconf
 
Course 06
Course 06Course 06
Course 06
Saravuth kong
 
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
VLSICS Design
 
Dj4201737746
Dj4201737746Dj4201737746
Dj4201737746
IJERA Editor
 
Introduction to networks simulation
Introduction to networks simulationIntroduction to networks simulation
Introduction to networks simulation
ahmed L. Khalaf
 
New books dec 2013
New books dec 2013New books dec 2013
New books dec 2013
maethaya
 
20320140507006 2-3
20320140507006 2-320320140507006 2-3
20320140507006 2-3
IAEME Publication
 
Analysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restrictionAnalysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restriction
iaemedu
 
Analysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive controlAnalysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive control
iaemedu
 
Control chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networksControl chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networks
ISA Interchange
 
Hybrid systems
Hybrid systemsHybrid systems
Hybrid systems
Dr. C.V. Suresh Babu
 
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation TechniquesReview on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
ijtsrd
 

What's hot (15)

Full_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_ChildsFull_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_Childs
 
Engineering simulations and testing by atoast
Engineering simulations and testing by atoastEngineering simulations and testing by atoast
Engineering simulations and testing by atoast
 
On average case analysis through statistical bounds linking theory to practice
On average case analysis through statistical bounds  linking theory to practiceOn average case analysis through statistical bounds  linking theory to practice
On average case analysis through statistical bounds linking theory to practice
 
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICEON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
 
Course 06
Course 06Course 06
Course 06
 
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
 
Dj4201737746
Dj4201737746Dj4201737746
Dj4201737746
 
Introduction to networks simulation
Introduction to networks simulationIntroduction to networks simulation
Introduction to networks simulation
 
New books dec 2013
New books dec 2013New books dec 2013
New books dec 2013
 
20320140507006 2-3
20320140507006 2-320320140507006 2-3
20320140507006 2-3
 
Analysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restrictionAnalysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restriction
 
Analysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive controlAnalysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive control
 
Control chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networksControl chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networks
 
Hybrid systems
Hybrid systemsHybrid systems
Hybrid systems
 
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation TechniquesReview on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
 

Viewers also liked

Introduction to-automata-theo
Introduction to-automata-theo Introduction to-automata-theo
Introduction to-automata-theo
baharn1
 
A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991
doctor_fadi
 
Chowtodoprogram solutions
Chowtodoprogram solutionsChowtodoprogram solutions
Chowtodoprogram solutions
Musa Gürbüz
 
The photoshop element book revised 2013 uk
The photoshop element book revised   2013  ukThe photoshop element book revised   2013  uk
The photoshop element book revised 2013 uk
Nasr Zaara
 
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Simona Belu
 
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
Ashish Arora
 

Viewers also liked (7)

Introduction to-automata-theo
Introduction to-automata-theo Introduction to-automata-theo
Introduction to-automata-theo
 
A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991
 
Chowtodoprogram solutions
Chowtodoprogram solutionsChowtodoprogram solutions
Chowtodoprogram solutions
 
The photoshop element book revised 2013 uk
The photoshop element book revised   2013  ukThe photoshop element book revised   2013  uk
The photoshop element book revised 2013 uk
 
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
 
Modern inorganic chemistry
Modern inorganic chemistryModern inorganic chemistry
Modern inorganic chemistry
 
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
 

Similar to Mitres2 002 s10_linear

Micro Electro Mechanical Systems (MEMS) - Lecture 05
Micro Electro Mechanical Systems (MEMS) - Lecture 05Micro Electro Mechanical Systems (MEMS) - Lecture 05
Micro Electro Mechanical Systems (MEMS) - Lecture 05
Manipal Institute of Technology
 
Application of CI in Motor Modeling
Application of CI in Motor ModelingApplication of CI in Motor Modeling
Application of CI in Motor Modeling
Yousuf Khan
 
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
NNfamily
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
Shubhesh Ranjan
 
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
IJCI JOURNAL
 
[1] artigo modelherarquicos
[1] artigo modelherarquicos[1] artigo modelherarquicos
[1] artigo modelherarquicos
Ruben Dario Solarte
 
wp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-enwp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-en
Thomas Gessner
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
IJECEIAES
 
International journal of engineering issues vol 2015 - no 2 - paper4
International journal of engineering issues   vol 2015 - no 2 - paper4International journal of engineering issues   vol 2015 - no 2 - paper4
International journal of engineering issues vol 2015 - no 2 - paper4
sophiabelthome
 
A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...
IRJET Journal
 
08. cad&amp;cam
08. cad&amp;cam08. cad&amp;cam
08. cad&amp;cam
vsksuresh2003
 
Analytical transformations software for stationary modes of induction motors...
Analytical transformations software for stationary modes of  induction motors...Analytical transformations software for stationary modes of  induction motors...
Analytical transformations software for stationary modes of induction motors...
IJECEIAES
 
Mathematical models and algorithms challenges
Mathematical models and algorithms challengesMathematical models and algorithms challenges
Mathematical models and algorithms challenges
ijctcm
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
ActiveEon
 
Glenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineeringGlenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineering
atr2006
 
pam_1997
pam_1997pam_1997
pam_1997
Jacek Marczyk
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204
Editor IJARCET
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204
Editor IJARCET
 
Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...
journalBEEI
 
IRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction ManagementIRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction Management
IRJET Journal
 

Similar to Mitres2 002 s10_linear (20)

Micro Electro Mechanical Systems (MEMS) - Lecture 05
Micro Electro Mechanical Systems (MEMS) - Lecture 05Micro Electro Mechanical Systems (MEMS) - Lecture 05
Micro Electro Mechanical Systems (MEMS) - Lecture 05
 
Application of CI in Motor Modeling
Application of CI in Motor ModelingApplication of CI in Motor Modeling
Application of CI in Motor Modeling
 
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
 
[1] artigo modelherarquicos
[1] artigo modelherarquicos[1] artigo modelherarquicos
[1] artigo modelherarquicos
 
wp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-enwp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-en
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
 
International journal of engineering issues vol 2015 - no 2 - paper4
International journal of engineering issues   vol 2015 - no 2 - paper4International journal of engineering issues   vol 2015 - no 2 - paper4
International journal of engineering issues vol 2015 - no 2 - paper4
 
A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...
 
08. cad&amp;cam
08. cad&amp;cam08. cad&amp;cam
08. cad&amp;cam
 
Analytical transformations software for stationary modes of induction motors...
Analytical transformations software for stationary modes of  induction motors...Analytical transformations software for stationary modes of  induction motors...
Analytical transformations software for stationary modes of induction motors...
 
Mathematical models and algorithms challenges
Mathematical models and algorithms challengesMathematical models and algorithms challenges
Mathematical models and algorithms challenges
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
 
Glenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineeringGlenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineering
 
pam_1997
pam_1997pam_1997
pam_1997
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204
 
Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...
 
IRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction ManagementIRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction Management
 

More from manojg1990

Qb103355
Qb103355Qb103355
Qb103355
manojg1990
 
Qb103353
Qb103353Qb103353
Qb103353
manojg1990
 
Qb103352
Qb103352Qb103352
Qb103352
manojg1990
 
Qb103351
Qb103351Qb103351
Qb103351
manojg1990
 
Qb103354
Qb103354Qb103354
Qb103354
manojg1990
 
Aptitude
AptitudeAptitude
Aptitude
manojg1990
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
manojg1990
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabus
manojg1990
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)
manojg1990
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)
manojg1990
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusion
manojg1990
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusion
manojg1990
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)
manojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
manojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
manojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
manojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
manojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
manojg1990
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts
manojg1990
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques
manojg1990
 

More from manojg1990 (20)

Qb103355
Qb103355Qb103355
Qb103355
 
Qb103353
Qb103353Qb103353
Qb103353
 
Qb103352
Qb103352Qb103352
Qb103352
 
Qb103351
Qb103351Qb103351
Qb103351
 
Qb103354
Qb103354Qb103354
Qb103354
 
Aptitude
AptitudeAptitude
Aptitude
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabus
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusion
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusion
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques
 

Recently uploaded

132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
Mahmoud Morsy
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
architagupta876
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
Madan Karki
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
Introduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptxIntroduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptx
MiscAnnoy1
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 

Recently uploaded (20)

132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
Introduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptxIntroduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptx
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 

Mitres2 002 s10_linear