SlideShare a Scribd company logo
IMMUNOLOGY


    Elementary Knowledge of Major Histocompatibility Complex and HLA
                                Typing




                              Tapasya Srivastava and Subrata Sinha
                                      Department of Biochemistry
                                 All India Institute of Medical Sciences
                                          New Delhi - 110029




CONTENTS
What is MHC?
Broad functions of MHC molecules
Classification of MHC
MHC presentation and interaction with TCR
MHC in humans: the human leukocytic antigen (HLA)
       About HLA
       Classification of HLA
       Function of HLA
       Genetics of the HLA molecule
       HLA serotype and allele names
       Allelic diversity of MHC molecules




Keywords
Major Histocompatibility Complex, T-cell receptor, MHC-TCR interaction, HLA, HLA typing, allelic diversity
What is MHC?
The major histocompatibility complex (MHC) is a large genomic region or gene family found in
most vertebrates. It is the most gene-dense region of the mammalian genome and plays an
important role in the immune system, autoimmunity, and reproductive success. The proteins
encoded by the MHC are expressed on the surface of cells in all jawed vertebrates, and display
both self antigens (peptide fragments from the cell itself) and nonself antigens (e.g. fragments of
invading microorganisms) to a type of white blood cell called a T cell that has the capacity to kill
or co-ordinate the killing of pathogens, infected or malfunctioning cells.


Broad Functions of MHC Molecules
The MHC proteins act as "signposts" that display fragmented pieces of an antigen on the host
cell's surface. These antigens may be self or nonself. If they are nonself, there are two ways by
which the foreign protein can be processed and recognized as being "nonself".

If the host is a leukocyte, such as a monocyte or neutrophil, it may have engulfed the particle (be
it bacterial, viral, or particulate matter), broken it apart using lysozymes, and displayed the
fragments on Class II MHC molecules.

On the other hand, if a host cell was infected by a bacterium or virus, or was cancerous, it may
have displayed the antigens on its surface with a Class I MHC molecule. In particular, cancerous
cells and cells infected by a virus have a tendency to display unusual, nonself antigens on their
surface. These nonself antigens, regardless of which type of MHC molecule they are displayed
on, will initiate the specific immunity of the host's body.

It is important to note that cells constantly process endogenous proteins and present them within
the context of MHC I. Immune effector cells are trained not to react to self peptides within
MHC, and as such are able to recognize when foreign peptides are being presented during an
infection/cancer.


Classification of MHC Molecules
In humans, the 3.6 Mb (3 600 000 base pairs) MHC region on chromosome 6 contains 140 genes
between flanking genetic markers MOG and COL11A2 Subgroups.

The MHC region is divided into three subgroups called MHC class I, MHC class II, and MHC
class III (Table 1).

Class III has a very different function than class I and II, but it has a locus between the other two
(on chromosome 6 in humans), so they are frequently discussed together.




                                                                                                   2
Table 1: MHC classification and function



      Name      Function                                     Expression


                                                             All nucleated cells. MHC class I
                Encodes heterodimeric peptide binding        proteins contain an a chain & b2-micro-
      MHC
                proteins, as well as antigen processing      globulin b chain. They present antigen
      class I
                molecules such as TAP and Tapasin.           fragments to cytotoxic T-cells cells and
                                                             will bind to CD8 on cytotoxic T-cells.


               Encodes heterodimeric peptide binding         On antigen-presenting cells MHC class
               proteins and proteins that modulate peptide   II proteins contain a & b chains and they
      MHC
               loading onto MHC class II proteins in the     present antigen fragments to T-helper
      class II
               lysosomal compartment such as MHC II DM,      cells by binding to the CD4 receptor on
               MHC II DQ, MHC II DR and MHC II DP.           the T-helper cells.


                Encodes for other immune components, such
      MHC
                as complement components (e.g., C2, C4,
      class III                                           Variable
                factor B) and some that encode cytokines
      region
                (e.g., TNF-α) and also hsp.




MHC Presentation and Interaction with TCR
The classical MHC molecules (also referred to as HLA molecules in humans) have a vital role in
the complex immunological dialogue that must occur between T cells and other cells of the body.
At maturity, MHC molecules are anchored in the cell membrane, where they display short
polypeptides to T cells, via the T cell receptors (TCRs). The polypeptides may be "self," that is,
originating from a protein created by the organism itself, or they may be foreign ("nonself"),
originating from bacteria, viruses, pollen, etc. The overarching design of the MHC-TCR
interaction is that T cells should ignore self peptides while reacting appropriately to the foreign
peptides.

The immune system has another and equally important method for identifying an antigen: B cells
with their membrane-bound antibodies, also known as B cell receptors (BCRs). However,
whereas the BCRs of B cells can bind to antigens without much outside help, the TCRs of T cells
require "presentation" of the antigen: this is the job of MHC. It is important to realize that,
during the vast majority of the time, MHC are kept busy presenting self-peptides, which the T
cells should appropriately ignore. A full-force immune response usually requires the activation
of B cells via BCRs and T cells via the MHC-TCR interaction (Fig. 1). This duplicity creates a
system of "checks and balances" and underscores the immune system's potential for running
amok and causing harm to the body (see autoimmune disorders).



                                                                                                         3
Fig 1: MHC-TCR interaction

All MHC molecules receive polypeptides from inside the cells they are part of and display them
on the cell's exterior surface for recognition by T cells. However, there are major differences
between MHC class I and MHC class II in the method and outcome of peptide presentation.


MHC in Humans: The Human Leukocyte Antigen (HLA)
About HLA
The best-known genes in the MHC region are the subset that encodes cell-surface antigen-
presenting proteins. In humans, these genes are referred to as human leukocyte antigen (HLA)
genes, although people often use the abbreviation MHC to refer to HLA gene products. To
clarify the usage, some of the biomedical literature uses HLA to refer specifically to the HLA
protein molecules and reserves MHC for the region of the genome that encodes for this
molecule; however this convention is not consistently adhered to. These genes are present on
chromosome 6 (Fig. 2).

They also have a role in:
   • Disease defense
   • Reproduction - may be involved in mate selection.
   • Cancer - May be protective or fail to protect.
   • Human disease:
       o In autoimmunity - known to mediate many autoimmune diseases.
       o As antigens - responsible for organ transplant rejection.




                                                                                             4
Classification of HLA
Aside from the genes encoding the 6 major antigens, there are a large number of other genes,
many involved in immune function located on the HLA complex. Diversity of HLA in human
population is one aspect of disease defense, and, as a result, the chance of two unrelated
individuals having identical HLA molecules on all loci is very low.

The major HLA antigens are essential elements in immune function and different classes have
different functions

Class I antigens (A, B & C) - Present peptides from inside the cell (including viral peptides if
present)

Class II antigens (DR, DP, & DQ) - Present phagocytosed antigens from outside of the cell to
T-lymphocytes

The most intensely-studied HLA genes are the nine so-called classical MHC genes: HLA-A,
HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-
DRB1.




                              Fig 2: Localization of MHC gene


                                                                                              5
Functions of HLA
The proteins encoded by HLAs are the proteins on the outer part of body cells that are
(effectively) unique to that person. The immune system uses the HLAs to differentiate self cells
and non-self cells. Any cell displaying that person's HLA type belongs to that person (and
therefore is not an invader).

In infectious disease
When a foreign pathogen enters the body, specific cells called antigen-presenting cells (APCs)
engulf the pathogen through a process called phagocytosis. Proteins from the pathogen are
digested into small pieces (peptides) and loaded onto HLA antigens (specifically MHC class II).
They are then displayed by the antigen presenting cells for certain cells of the immune system
called T cells, which then produce a variety of effects to eliminate the pathogen.

Through a similar process, proteins (both native and foreign, such as the proteins of viruses)
produced inside most cells are displayed on HLA antigens (specifically MHC class I) on the cell
surface. Infected cells can be recognized and destroyed by components of the immune system
(specifically CD8+ T cells).

Once a T-cell recognizes a peptide within a MHC class II molecule it can stimulate B-cells that
also recognize the same molecule in their sIgM antibodies. Therefore these T-cells help B-cells
make antibodies to proteins they both recognize. There are billions of different T-cells in each
person that can be made to recognize antigens, many are removed because they recognize self
antigens. Each HLA can bind many peptides, and each person has 3 HLA types and can have 4
isoforms of DP, 4 isoforms of DQ and 4 Isoforms of DR (2 of DRB1, and 2 of DRB3,DRB4, or
DRB5) for a total of 12 isoforms. In such heterozygotes it is difficult for disease related proteins
to escape detection.

In graft rejection
Any cell displaying some other HLA type is "non-self" and is an invader, resulting in the
rejection of the tissue bearing those cells. Because of the importance of HLA in transplantation,
the HLA loci are among of the most frequently typed by serology or PCR relative to any other
autosomal alleles.

In autoimmunity
HLA types are inherited, and some of them are connected with autoimmune disorders and other
diseases. People with certain HLA antigens are more likely to develop certain autoimmune
diseases, such as Type I Diabetes, Ankylosing spondylitis, Celiac Disease, SLE (Lupus
erythematosus), Myasthenia Gravis, inclusion body myositis and Sjögren's syndrome. HLA
typing has led to some improvement and acceleration in the diagnosis of Celiac Disease and
Type 1 diabetes; however for DQ2 typing to be useful it requires either high resolution
B1*typing (resolving *0201 from *0202), DQA1*typing, or DR serotyping. Current serotyping
can resolve, in one step, DQ8. HLA typing in autoimmunity is being increasingly used as a tool
in diagnosis. In GSE it is the only effective means of discriminating between 1st degree relatives
who are at risk from those who are not at risk, prior to the appearance of sometimes irreversible
symptoms such an allergies and secondary autoimmune disease.

                                                                                                  6
In cancer
Some HLA mediated diseases are directly involved in the promotion of cancer. Gluten sensitive
enteropathy is associated with increased prevalence of enteritus associated T-cell Lymphoma,
and DR3-DQ2 homozygotes are within the highest risk group with close to 80% of gluten
sensitive EATL cases. More often; however, HLA molecules play a protective role, recognizing
the increase in antigens that were not tolerated because of low levels in the normal state.
Abnormal cells may be targeted for aptosis mediating many cancers before clinical diagnosis.
Prevention of cancer may be a portion of heterozygous selection acting on HLA.


Genetics of the HLA molecule
MHC class I
MHC class I form a functional receptor on most nucleated cells of the body. There are 3 major
and 3 minor MHC class I genes in HLA:

HLA-A, HLA-B, HLA-C are the major genes
HLA-E, HLA-F and HLA-G are the minor genes

β2-microglobulin binds with major and minor gene subunits to produce a heterodimer.

MHC class II
There are 3 major and 2 minor MHC class II proteins encoded by the HLA. The genes of the
class II combine to form heterodimeric (αβ) protein receptors that are typically expressed on the
surface of antigen presenting cells.

Major MHC class II
HLA-DP
α-chain encoded by HLA-DPA1 locus
β-chain encoded by HLA-DPB1 locus

HLA-DQ
α-chain encoded by HLA-DQA1 locus
β-chain encoded by HLA-DQB1 locus

HLA-DR
α-chain encoded by HLA-DRA locus
4 β-chains (only 3 possible per person), encoded by HLA-DRB1, DRB3, DRB4, DRB5 loci

Other MHC class II
The Other MHC class II proteins, DM and DO are used in the internal processing of antigens,
loading the antigenic peptides generated from pathogens onto the HLA molecules of antigen-
presenting cell.



                                                                                               7
HLA serotype and allele names
There are two parallel systems of nomenclature that are applied to HLA. The, first, and oldest
system is based on serological (antibody based) recognition. In this system antigens were
eventually assigned letters and numbers (e.g. HLA-B27 or, shortened, B27). A parallel system
was developed that allowed more refined definition of alleles, in this system a "HLA" is used in
conjunction with a letter * and four or more digit number (e.g. HLA-B*0801, A*68011,
A*240201N N=Null) to designate a specific allele at a given HLA locus. HLA loci can be
further classified into MHC class I and MHC class II (or rarely, D locus). Every two years a
nomenclature is put forth to aid researchers in interpreting serotypes to alleles.

HLA serotyping
In order to create a typing reagent, blood from animals or humans would be taken, the blood
cells allowed to separate from the sera, and the sera diluted to its optimal sensitivity and used to
type cells from other individuals or animals. Thus serotyping became a way of crudely
identifying HLA receptors and receptor isoforms. Over the years serotyping antibodies became
more refined as techniques for increasing sensitivity improved and new serotyping antibodies
continue to appear. One of the goals of serotype analysis is to fill gaps in the analysis. It is
possible to predict based on 'square root','maximum-likelihood' method, or analysis of familial
haplotypes to account for adequately typed alleles. These studies using serotyping techniques
frequently revealed, particularly for non-European or north East Asian populations a large
number of null or blank serotypes. This was particularly problematic for the Cw locus until
recently, and almost half of the Cw serotypes went untyped in the 1991 survey of the human
population.

There are several types of serotypes. A broad antigen serotype is a crude measure of identity of
cells. For example HLA A9 serotype recognizes cells of A23 and A24 bearing individuals, it
may also recognize cells that A23 and A24 miss because of small variations. A23 and A24 are
split antigens, but antibodies specific to either are typically used more often than antibodies to
broad antigens.

HLA Phenotyping
Gene typing is different from gene sequencing and serotyping. With this strategy PCR primers
specific to a variant region of DNA are used (called SSP-PCR), if a product of the right size is
found, the assumption is that the HLA allele has been identified. New gene sequences often
result in an increasing appearance of ambiguity. Because gene typing is based on SSP-PCR it is
possible that new variants, particularly in the class I and DRB1 loci may be missed.

For SSP-PCR within the clinical situation is often used for identifying HLA phenotypes. An
example of an extended phenotype for a person might be:
A*0101/*0301, Cw*0701/*0702, B*0702/*0801, DRB1*0301/*1501, DQA1*0501/*0102,
DQB1*0201/*0602

This is generally identical to the extended serotype: A1,A3,B7,B8,DR3,DR15(2), DQ2,DQ6(1)




                                                                                                  8
For many populations such as the Japanese or European populations so many patients have been
typed that new alleles are relatively rare, and thus SSP-PCR is more than adequate for allele
resolution. Haplotypes can be obtained by typing family members. In areas of world where SSP-
PCR is unable to recognize alleles and typing requires the sequencing of new alleles. Areas of
the world were SSP-PCR or serotyping may be inadequate include Central Africa, Eastern
Africa, parts of southern Africa, Arabia and S. Iran, Pakistan and India.

Allelic diversity of MHC molecules
Besides being scrutinized by immunologists for its pivotal role in the immune system, the MHC
has also attracted the attention of many evolutionary biologists, due to the high levels of allelic
diversity found within many of its genes. Indeed, much theory has been devoted to explaining
why this particular region of the genome harbors so much diversity, especially in light of its
immunological importance.

One of the most striking features of the MHC, particularly in humans, is the astounding allelic
diversity found therein, and especially among the nine classical genes. In humans, the most
conspicuously-diverse loci, HLA-A, HLA-B, and HLA-DRB1, have roughly 250, 500, and 300
known alleles respectively -- diversity truly exceptional in the human genome. The MHC gene is
the most polymorphic in the genome. Population surveys of the other classical loci routinely find
tens to a hundred alleles -- still highly diverse. Many of these alleles are quite ancient: it is often
the case that an allele from a particular HLA gene is more closely related to an allele found in
chimpanzees than it is to another human allele from the same gene.


Suggested Reading
1.   P. Parham and T. Ohta (1996). "Population Biology of Antigen Presentation by MHC class I Molecules.".
     Science 272. .
2.   Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Geraghty DE, Hansen JA, Hurley CK,
     Mach B, Mayr WR, Parham P, Petersdorf EW, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A,
     Terasaki PI, and Trowsdale J. (2005). "Nomenclature for factors of the HLA System, 2004.". Tissue antigens
     65: 301-369.
3.   MHC Sequencing Consortium (1999). "Complete sequence and gene map of a human major histocompatibility
     complex". Nature 401: 921–923.




                                                                                                              9

More Related Content

What's hot

MHC
MHC MHC
MHC MOLECULES
MHC MOLECULESMHC MOLECULES
MHC MOLECULESpreeti337
 
MAJOR HISTOCOMPATIBILITY COMPLEX
MAJOR HISTOCOMPATIBILITY COMPLEXMAJOR HISTOCOMPATIBILITY COMPLEX
The T-Cell Antigen Receptor Complex
The T-Cell Antigen Receptor ComplexThe T-Cell Antigen Receptor Complex
The T-Cell Antigen Receptor Complex
Microbiology
 
B cell(Immunology)
B cell(Immunology)B cell(Immunology)
B cell(Immunology)
Caroline Karunya
 
Secondary lymphoid organs
Secondary lymphoid organsSecondary lymphoid organs
Secondary lymphoid organs
renubiokem
 
Major histocompatibility complex
Major histocompatibility complexMajor histocompatibility complex
Major histocompatibility complexJyoti Sharma
 
B cell generation-activation_and_differentiation
B cell generation-activation_and_differentiationB cell generation-activation_and_differentiation
B cell generation-activation_and_differentiation
DUSHYANT KUMAR
 
HLA tissue typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...
HLA tissue  typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...HLA tissue  typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...
HLA tissue typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...
manojjeya
 
Cell mediated & humoral immunity
Cell mediated & humoral immunityCell mediated & humoral immunity
Cell mediated & humoral immunity
prithvi singh
 
T-cell
T-cellT-cell
T-lymphocytes and generation
T-lymphocytes and generationT-lymphocytes and generation
T-lymphocytes and generation
Hadia Azhar
 
T and B cell activation
T  and B cell activationT  and B cell activation
T and B cell activation
yashi jain
 
2 antigens, immunogens, epitopes, and haptens
2 antigens, immunogens, epitopes, and haptens2 antigens, immunogens, epitopes, and haptens
2 antigens, immunogens, epitopes, and haptenstaha244ali
 
Immunological basis of graft rejection and mechanism of graft rejection
Immunological basis of graft rejection and mechanism of graft rejectionImmunological basis of graft rejection and mechanism of graft rejection
Immunological basis of graft rejection and mechanism of graft rejection
benazeer fathima
 
MHC major histocompatibility complex
MHC major histocompatibility complexMHC major histocompatibility complex
MHC major histocompatibility complex
ADITIBAGDI
 
Hapten
HaptenHapten

What's hot (20)

MHC and TCR
MHC and TCRMHC and TCR
MHC and TCR
 
MHC
MHC MHC
MHC
 
MHC MOLECULES
MHC MOLECULESMHC MOLECULES
MHC MOLECULES
 
MAJOR HISTOCOMPATIBILITY COMPLEX
MAJOR HISTOCOMPATIBILITY COMPLEXMAJOR HISTOCOMPATIBILITY COMPLEX
MAJOR HISTOCOMPATIBILITY COMPLEX
 
The T-Cell Antigen Receptor Complex
The T-Cell Antigen Receptor ComplexThe T-Cell Antigen Receptor Complex
The T-Cell Antigen Receptor Complex
 
B cell(Immunology)
B cell(Immunology)B cell(Immunology)
B cell(Immunology)
 
Secondary lymphoid organs
Secondary lymphoid organsSecondary lymphoid organs
Secondary lymphoid organs
 
Mhc
MhcMhc
Mhc
 
Major histocompatibility complex
Major histocompatibility complexMajor histocompatibility complex
Major histocompatibility complex
 
B cell generation-activation_and_differentiation
B cell generation-activation_and_differentiationB cell generation-activation_and_differentiation
B cell generation-activation_and_differentiation
 
HLA tissue typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...
HLA tissue  typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...HLA tissue  typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...
HLA tissue typing, HLA matching ,Microcytotoxicity test , Mixed lymphocyte R...
 
Cell mediated & humoral immunity
Cell mediated & humoral immunityCell mediated & humoral immunity
Cell mediated & humoral immunity
 
T-cell
T-cellT-cell
T-cell
 
T-lymphocytes and generation
T-lymphocytes and generationT-lymphocytes and generation
T-lymphocytes and generation
 
T and B cell activation
T  and B cell activationT  and B cell activation
T and B cell activation
 
2 antigens, immunogens, epitopes, and haptens
2 antigens, immunogens, epitopes, and haptens2 antigens, immunogens, epitopes, and haptens
2 antigens, immunogens, epitopes, and haptens
 
Immunological basis of graft rejection and mechanism of graft rejection
Immunological basis of graft rejection and mechanism of graft rejectionImmunological basis of graft rejection and mechanism of graft rejection
Immunological basis of graft rejection and mechanism of graft rejection
 
Antibody diversity
Antibody diversityAntibody diversity
Antibody diversity
 
MHC major histocompatibility complex
MHC major histocompatibility complexMHC major histocompatibility complex
MHC major histocompatibility complex
 
Hapten
HaptenHapten
Hapten
 

Viewers also liked

زراعة الاعضاء
زراعة الاعضاءزراعة الاعضاء
زراعة الاعضاء
Mohamed Alashram
 
Organ transplantation and the hla system lecture
Organ transplantation and the hla system lectureOrgan transplantation and the hla system lecture
Organ transplantation and the hla system lectureJessica Grigg
 
Introduction to Flow Cytometry
Introduction to Flow CytometryIntroduction to Flow Cytometry
Introduction to Flow Cytometry
Robert (Rob) Salomon
 
Immunology of transplantation with MHC
Immunology of transplantation with MHCImmunology of transplantation with MHC
Immunology of transplantation with MHC
Dr Sathyajith R
 
Organ transplant ppt
Organ transplant pptOrgan transplant ppt
Organ transplant ppt
Richard Frank
 

Viewers also liked (8)

Complaints types
Complaints typesComplaints types
Complaints types
 
زراعة الاعضاء
زراعة الاعضاءزراعة الاعضاء
زراعة الاعضاء
 
Microcytotoxicity
MicrocytotoxicityMicrocytotoxicity
Microcytotoxicity
 
Organ transplantation and the hla system lecture
Organ transplantation and the hla system lectureOrgan transplantation and the hla system lecture
Organ transplantation and the hla system lecture
 
Hla typing
Hla typingHla typing
Hla typing
 
Introduction to Flow Cytometry
Introduction to Flow CytometryIntroduction to Flow Cytometry
Introduction to Flow Cytometry
 
Immunology of transplantation with MHC
Immunology of transplantation with MHCImmunology of transplantation with MHC
Immunology of transplantation with MHC
 
Organ transplant ppt
Organ transplant pptOrgan transplant ppt
Organ transplant ppt
 

Similar to Mhc hla

Major Histocompatibility Complex
Major Histocompatibility Complex Major Histocompatibility Complex
Major Histocompatibility Complex
El Saadany Mohamad
 
MAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptx
MAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptxMAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptx
MAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptx
Manikandan Muthu
 
Major Histocompatibility complex
Major Histocompatibility complexMajor Histocompatibility complex
Major Histocompatibility complex
Prasann Saha
 
MHC- Major Histocompactibility complex -Definition, classification, structure...
MHC- Major Histocompactibility complex -Definition, classification, structure...MHC- Major Histocompactibility complex -Definition, classification, structure...
MHC- Major Histocompactibility complex -Definition, classification, structure...
someshwar mankar
 
Presentation MHC.pptx
Presentation MHC.pptxPresentation MHC.pptx
Presentation MHC.pptx
MohamedBayoumi58
 
MHC, Superantigens
MHC, SuperantigensMHC, Superantigens
MHC, Superantigens
Jasleen Rajpal
 
MHC MOLECULE
MHC MOLECULEMHC MOLECULE
MHC MOLECULE
preeti337
 
HLA system and major histocompatibility complex
HLA system and major histocompatibility complexHLA system and major histocompatibility complex
HLA system and major histocompatibility complex
Soujanya Pharm.D
 
Major histocompatibility complex (mhc)
Major histocompatibility complex (mhc)Major histocompatibility complex (mhc)
Major histocompatibility complex (mhc)
RUSHIKESHSHELKE13
 
Immunology
ImmunologyImmunology
MHC final 23.pdf
MHC final 23.pdfMHC final 23.pdf
MHC final 23.pdf
NaaelHAli1
 
Major histocompatibility complex
Major histocompatibility  complexMajor histocompatibility  complex
Major histocompatibility complex
Truptimayee Mohanty
 
MHC
MHCMHC
Major Histocompatibility Complex (MHC)
Major Histocompatibility Complex (MHC)Major Histocompatibility Complex (MHC)
Major Histocompatibility Complex (MHC)
Rohimah Mohamud
 
MHC
MHCMHC
Major histocompatibility complex and antigen presentation & processing
Major histocompatibility complex and antigen presentation & processingMajor histocompatibility complex and antigen presentation & processing
Major histocompatibility complex and antigen presentation & processing
AISHUJ3
 
MHC I molecules
MHC I  moleculesMHC I  molecules
MHC I molecules
Md Fayezur Rahaman
 
MHC--M.Sc--III sem--07.07.20.pptx
MHC--M.Sc--III sem--07.07.20.pptxMHC--M.Sc--III sem--07.07.20.pptx
MHC--M.Sc--III sem--07.07.20.pptx
AyushiRajniGupta
 
Mhc
MhcMhc

Similar to Mhc hla (20)

Major Histocompatibility Complex
Major Histocompatibility Complex Major Histocompatibility Complex
Major Histocompatibility Complex
 
MAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptx
MAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptxMAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptx
MAJOR HISTOCOMPATIBILITY COMPLEX M.MANIKANDAN.pptx
 
Major Histocompatibility complex
Major Histocompatibility complexMajor Histocompatibility complex
Major Histocompatibility complex
 
MHC- Major Histocompactibility complex -Definition, classification, structure...
MHC- Major Histocompactibility complex -Definition, classification, structure...MHC- Major Histocompactibility complex -Definition, classification, structure...
MHC- Major Histocompactibility complex -Definition, classification, structure...
 
Presentation MHC.pptx
Presentation MHC.pptxPresentation MHC.pptx
Presentation MHC.pptx
 
MHC, Superantigens
MHC, SuperantigensMHC, Superantigens
MHC, Superantigens
 
MHC MOLECULE
MHC MOLECULEMHC MOLECULE
MHC MOLECULE
 
HLA system and major histocompatibility complex
HLA system and major histocompatibility complexHLA system and major histocompatibility complex
HLA system and major histocompatibility complex
 
Major histocompatibility complex (mhc)
Major histocompatibility complex (mhc)Major histocompatibility complex (mhc)
Major histocompatibility complex (mhc)
 
Immunology
ImmunologyImmunology
Immunology
 
MHC.pptx
MHC.pptxMHC.pptx
MHC.pptx
 
MHC final 23.pdf
MHC final 23.pdfMHC final 23.pdf
MHC final 23.pdf
 
Major histocompatibility complex
Major histocompatibility  complexMajor histocompatibility  complex
Major histocompatibility complex
 
MHC
MHCMHC
MHC
 
Major Histocompatibility Complex (MHC)
Major Histocompatibility Complex (MHC)Major Histocompatibility Complex (MHC)
Major Histocompatibility Complex (MHC)
 
MHC
MHCMHC
MHC
 
Major histocompatibility complex and antigen presentation & processing
Major histocompatibility complex and antigen presentation & processingMajor histocompatibility complex and antigen presentation & processing
Major histocompatibility complex and antigen presentation & processing
 
MHC I molecules
MHC I  moleculesMHC I  molecules
MHC I molecules
 
MHC--M.Sc--III sem--07.07.20.pptx
MHC--M.Sc--III sem--07.07.20.pptxMHC--M.Sc--III sem--07.07.20.pptx
MHC--M.Sc--III sem--07.07.20.pptx
 
Mhc
MhcMhc
Mhc
 

Recently uploaded

Physiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdfPhysiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdf
MedicoseAcademics
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
FFragrant
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
pal078100
 
24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all
DrSathishMS1
 
For Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #Girls
For Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #GirlsFor Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #Girls
For Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #Girls
Savita Shen $i11
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
MedicoseAcademics
 
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model SafeSurat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Savita Shen $i11
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
د.محمود نجيب
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
VarunMahajani
 
POST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its managementPOST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its management
touseefaziz1
 
New Drug Discovery and Development .....
New Drug Discovery and Development .....New Drug Discovery and Development .....
New Drug Discovery and Development .....
NEHA GUPTA
 
Flu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore KarnatakaFlu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore Karnataka
addon Scans
 
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptxMaxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Prof. Marcus Renato de Carvalho
 
heat stroke and heat exhaustion in children
heat stroke and heat exhaustion in childrenheat stroke and heat exhaustion in children
heat stroke and heat exhaustion in children
SumeraAhmad5
 
Hemodialysis: Chapter 3, Dialysis Water Unit - Dr.Gawad
Hemodialysis: Chapter 3, Dialysis Water Unit - Dr.GawadHemodialysis: Chapter 3, Dialysis Water Unit - Dr.Gawad
Hemodialysis: Chapter 3, Dialysis Water Unit - Dr.Gawad
NephroTube - Dr.Gawad
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
Dr. Rabia Inam Gandapore
 
Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
KafrELShiekh University
 

Recently uploaded (20)

Physiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdfPhysiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdf
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
 
24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all24 Upakrama.pptx class ppt useful in all
24 Upakrama.pptx class ppt useful in all
 
For Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #Girls
For Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #GirlsFor Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #Girls
For Better Surat #ℂall #Girl Service ❤85270-49040❤ Surat #ℂall #Girls
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
 
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model SafeSurat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
Pulmonary Thromboembolism - etilogy, types, medical- Surgical and nursing man...
 
POST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its managementPOST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its management
 
New Drug Discovery and Development .....
New Drug Discovery and Development .....New Drug Discovery and Development .....
New Drug Discovery and Development .....
 
Flu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore KarnatakaFlu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore Karnataka
 
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptxMaxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
Maxilla, Mandible & Hyoid Bone & Clinical Correlations by Dr. RIG.pptx
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
 
heat stroke and heat exhaustion in children
heat stroke and heat exhaustion in childrenheat stroke and heat exhaustion in children
heat stroke and heat exhaustion in children
 
Hemodialysis: Chapter 3, Dialysis Water Unit - Dr.Gawad
Hemodialysis: Chapter 3, Dialysis Water Unit - Dr.GawadHemodialysis: Chapter 3, Dialysis Water Unit - Dr.Gawad
Hemodialysis: Chapter 3, Dialysis Water Unit - Dr.Gawad
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
 
Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
 

Mhc hla

  • 1. IMMUNOLOGY Elementary Knowledge of Major Histocompatibility Complex and HLA Typing Tapasya Srivastava and Subrata Sinha Department of Biochemistry All India Institute of Medical Sciences New Delhi - 110029 CONTENTS What is MHC? Broad functions of MHC molecules Classification of MHC MHC presentation and interaction with TCR MHC in humans: the human leukocytic antigen (HLA) About HLA Classification of HLA Function of HLA Genetics of the HLA molecule HLA serotype and allele names Allelic diversity of MHC molecules Keywords Major Histocompatibility Complex, T-cell receptor, MHC-TCR interaction, HLA, HLA typing, allelic diversity
  • 2. What is MHC? The major histocompatibility complex (MHC) is a large genomic region or gene family found in most vertebrates. It is the most gene-dense region of the mammalian genome and plays an important role in the immune system, autoimmunity, and reproductive success. The proteins encoded by the MHC are expressed on the surface of cells in all jawed vertebrates, and display both self antigens (peptide fragments from the cell itself) and nonself antigens (e.g. fragments of invading microorganisms) to a type of white blood cell called a T cell that has the capacity to kill or co-ordinate the killing of pathogens, infected or malfunctioning cells. Broad Functions of MHC Molecules The MHC proteins act as "signposts" that display fragmented pieces of an antigen on the host cell's surface. These antigens may be self or nonself. If they are nonself, there are two ways by which the foreign protein can be processed and recognized as being "nonself". If the host is a leukocyte, such as a monocyte or neutrophil, it may have engulfed the particle (be it bacterial, viral, or particulate matter), broken it apart using lysozymes, and displayed the fragments on Class II MHC molecules. On the other hand, if a host cell was infected by a bacterium or virus, or was cancerous, it may have displayed the antigens on its surface with a Class I MHC molecule. In particular, cancerous cells and cells infected by a virus have a tendency to display unusual, nonself antigens on their surface. These nonself antigens, regardless of which type of MHC molecule they are displayed on, will initiate the specific immunity of the host's body. It is important to note that cells constantly process endogenous proteins and present them within the context of MHC I. Immune effector cells are trained not to react to self peptides within MHC, and as such are able to recognize when foreign peptides are being presented during an infection/cancer. Classification of MHC Molecules In humans, the 3.6 Mb (3 600 000 base pairs) MHC region on chromosome 6 contains 140 genes between flanking genetic markers MOG and COL11A2 Subgroups. The MHC region is divided into three subgroups called MHC class I, MHC class II, and MHC class III (Table 1). Class III has a very different function than class I and II, but it has a locus between the other two (on chromosome 6 in humans), so they are frequently discussed together. 2
  • 3. Table 1: MHC classification and function Name Function Expression All nucleated cells. MHC class I Encodes heterodimeric peptide binding proteins contain an a chain & b2-micro- MHC proteins, as well as antigen processing globulin b chain. They present antigen class I molecules such as TAP and Tapasin. fragments to cytotoxic T-cells cells and will bind to CD8 on cytotoxic T-cells. Encodes heterodimeric peptide binding On antigen-presenting cells MHC class proteins and proteins that modulate peptide II proteins contain a & b chains and they MHC loading onto MHC class II proteins in the present antigen fragments to T-helper class II lysosomal compartment such as MHC II DM, cells by binding to the CD4 receptor on MHC II DQ, MHC II DR and MHC II DP. the T-helper cells. Encodes for other immune components, such MHC as complement components (e.g., C2, C4, class III Variable factor B) and some that encode cytokines region (e.g., TNF-α) and also hsp. MHC Presentation and Interaction with TCR The classical MHC molecules (also referred to as HLA molecules in humans) have a vital role in the complex immunological dialogue that must occur between T cells and other cells of the body. At maturity, MHC molecules are anchored in the cell membrane, where they display short polypeptides to T cells, via the T cell receptors (TCRs). The polypeptides may be "self," that is, originating from a protein created by the organism itself, or they may be foreign ("nonself"), originating from bacteria, viruses, pollen, etc. The overarching design of the MHC-TCR interaction is that T cells should ignore self peptides while reacting appropriately to the foreign peptides. The immune system has another and equally important method for identifying an antigen: B cells with their membrane-bound antibodies, also known as B cell receptors (BCRs). However, whereas the BCRs of B cells can bind to antigens without much outside help, the TCRs of T cells require "presentation" of the antigen: this is the job of MHC. It is important to realize that, during the vast majority of the time, MHC are kept busy presenting self-peptides, which the T cells should appropriately ignore. A full-force immune response usually requires the activation of B cells via BCRs and T cells via the MHC-TCR interaction (Fig. 1). This duplicity creates a system of "checks and balances" and underscores the immune system's potential for running amok and causing harm to the body (see autoimmune disorders). 3
  • 4. Fig 1: MHC-TCR interaction All MHC molecules receive polypeptides from inside the cells they are part of and display them on the cell's exterior surface for recognition by T cells. However, there are major differences between MHC class I and MHC class II in the method and outcome of peptide presentation. MHC in Humans: The Human Leukocyte Antigen (HLA) About HLA The best-known genes in the MHC region are the subset that encodes cell-surface antigen- presenting proteins. In humans, these genes are referred to as human leukocyte antigen (HLA) genes, although people often use the abbreviation MHC to refer to HLA gene products. To clarify the usage, some of the biomedical literature uses HLA to refer specifically to the HLA protein molecules and reserves MHC for the region of the genome that encodes for this molecule; however this convention is not consistently adhered to. These genes are present on chromosome 6 (Fig. 2). They also have a role in: • Disease defense • Reproduction - may be involved in mate selection. • Cancer - May be protective or fail to protect. • Human disease: o In autoimmunity - known to mediate many autoimmune diseases. o As antigens - responsible for organ transplant rejection. 4
  • 5. Classification of HLA Aside from the genes encoding the 6 major antigens, there are a large number of other genes, many involved in immune function located on the HLA complex. Diversity of HLA in human population is one aspect of disease defense, and, as a result, the chance of two unrelated individuals having identical HLA molecules on all loci is very low. The major HLA antigens are essential elements in immune function and different classes have different functions Class I antigens (A, B & C) - Present peptides from inside the cell (including viral peptides if present) Class II antigens (DR, DP, & DQ) - Present phagocytosed antigens from outside of the cell to T-lymphocytes The most intensely-studied HLA genes are the nine so-called classical MHC genes: HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA- DRB1. Fig 2: Localization of MHC gene 5
  • 6. Functions of HLA The proteins encoded by HLAs are the proteins on the outer part of body cells that are (effectively) unique to that person. The immune system uses the HLAs to differentiate self cells and non-self cells. Any cell displaying that person's HLA type belongs to that person (and therefore is not an invader). In infectious disease When a foreign pathogen enters the body, specific cells called antigen-presenting cells (APCs) engulf the pathogen through a process called phagocytosis. Proteins from the pathogen are digested into small pieces (peptides) and loaded onto HLA antigens (specifically MHC class II). They are then displayed by the antigen presenting cells for certain cells of the immune system called T cells, which then produce a variety of effects to eliminate the pathogen. Through a similar process, proteins (both native and foreign, such as the proteins of viruses) produced inside most cells are displayed on HLA antigens (specifically MHC class I) on the cell surface. Infected cells can be recognized and destroyed by components of the immune system (specifically CD8+ T cells). Once a T-cell recognizes a peptide within a MHC class II molecule it can stimulate B-cells that also recognize the same molecule in their sIgM antibodies. Therefore these T-cells help B-cells make antibodies to proteins they both recognize. There are billions of different T-cells in each person that can be made to recognize antigens, many are removed because they recognize self antigens. Each HLA can bind many peptides, and each person has 3 HLA types and can have 4 isoforms of DP, 4 isoforms of DQ and 4 Isoforms of DR (2 of DRB1, and 2 of DRB3,DRB4, or DRB5) for a total of 12 isoforms. In such heterozygotes it is difficult for disease related proteins to escape detection. In graft rejection Any cell displaying some other HLA type is "non-self" and is an invader, resulting in the rejection of the tissue bearing those cells. Because of the importance of HLA in transplantation, the HLA loci are among of the most frequently typed by serology or PCR relative to any other autosomal alleles. In autoimmunity HLA types are inherited, and some of them are connected with autoimmune disorders and other diseases. People with certain HLA antigens are more likely to develop certain autoimmune diseases, such as Type I Diabetes, Ankylosing spondylitis, Celiac Disease, SLE (Lupus erythematosus), Myasthenia Gravis, inclusion body myositis and Sjögren's syndrome. HLA typing has led to some improvement and acceleration in the diagnosis of Celiac Disease and Type 1 diabetes; however for DQ2 typing to be useful it requires either high resolution B1*typing (resolving *0201 from *0202), DQA1*typing, or DR serotyping. Current serotyping can resolve, in one step, DQ8. HLA typing in autoimmunity is being increasingly used as a tool in diagnosis. In GSE it is the only effective means of discriminating between 1st degree relatives who are at risk from those who are not at risk, prior to the appearance of sometimes irreversible symptoms such an allergies and secondary autoimmune disease. 6
  • 7. In cancer Some HLA mediated diseases are directly involved in the promotion of cancer. Gluten sensitive enteropathy is associated with increased prevalence of enteritus associated T-cell Lymphoma, and DR3-DQ2 homozygotes are within the highest risk group with close to 80% of gluten sensitive EATL cases. More often; however, HLA molecules play a protective role, recognizing the increase in antigens that were not tolerated because of low levels in the normal state. Abnormal cells may be targeted for aptosis mediating many cancers before clinical diagnosis. Prevention of cancer may be a portion of heterozygous selection acting on HLA. Genetics of the HLA molecule MHC class I MHC class I form a functional receptor on most nucleated cells of the body. There are 3 major and 3 minor MHC class I genes in HLA: HLA-A, HLA-B, HLA-C are the major genes HLA-E, HLA-F and HLA-G are the minor genes β2-microglobulin binds with major and minor gene subunits to produce a heterodimer. MHC class II There are 3 major and 2 minor MHC class II proteins encoded by the HLA. The genes of the class II combine to form heterodimeric (αβ) protein receptors that are typically expressed on the surface of antigen presenting cells. Major MHC class II HLA-DP α-chain encoded by HLA-DPA1 locus β-chain encoded by HLA-DPB1 locus HLA-DQ α-chain encoded by HLA-DQA1 locus β-chain encoded by HLA-DQB1 locus HLA-DR α-chain encoded by HLA-DRA locus 4 β-chains (only 3 possible per person), encoded by HLA-DRB1, DRB3, DRB4, DRB5 loci Other MHC class II The Other MHC class II proteins, DM and DO are used in the internal processing of antigens, loading the antigenic peptides generated from pathogens onto the HLA molecules of antigen- presenting cell. 7
  • 8. HLA serotype and allele names There are two parallel systems of nomenclature that are applied to HLA. The, first, and oldest system is based on serological (antibody based) recognition. In this system antigens were eventually assigned letters and numbers (e.g. HLA-B27 or, shortened, B27). A parallel system was developed that allowed more refined definition of alleles, in this system a "HLA" is used in conjunction with a letter * and four or more digit number (e.g. HLA-B*0801, A*68011, A*240201N N=Null) to designate a specific allele at a given HLA locus. HLA loci can be further classified into MHC class I and MHC class II (or rarely, D locus). Every two years a nomenclature is put forth to aid researchers in interpreting serotypes to alleles. HLA serotyping In order to create a typing reagent, blood from animals or humans would be taken, the blood cells allowed to separate from the sera, and the sera diluted to its optimal sensitivity and used to type cells from other individuals or animals. Thus serotyping became a way of crudely identifying HLA receptors and receptor isoforms. Over the years serotyping antibodies became more refined as techniques for increasing sensitivity improved and new serotyping antibodies continue to appear. One of the goals of serotype analysis is to fill gaps in the analysis. It is possible to predict based on 'square root','maximum-likelihood' method, or analysis of familial haplotypes to account for adequately typed alleles. These studies using serotyping techniques frequently revealed, particularly for non-European or north East Asian populations a large number of null or blank serotypes. This was particularly problematic for the Cw locus until recently, and almost half of the Cw serotypes went untyped in the 1991 survey of the human population. There are several types of serotypes. A broad antigen serotype is a crude measure of identity of cells. For example HLA A9 serotype recognizes cells of A23 and A24 bearing individuals, it may also recognize cells that A23 and A24 miss because of small variations. A23 and A24 are split antigens, but antibodies specific to either are typically used more often than antibodies to broad antigens. HLA Phenotyping Gene typing is different from gene sequencing and serotyping. With this strategy PCR primers specific to a variant region of DNA are used (called SSP-PCR), if a product of the right size is found, the assumption is that the HLA allele has been identified. New gene sequences often result in an increasing appearance of ambiguity. Because gene typing is based on SSP-PCR it is possible that new variants, particularly in the class I and DRB1 loci may be missed. For SSP-PCR within the clinical situation is often used for identifying HLA phenotypes. An example of an extended phenotype for a person might be: A*0101/*0301, Cw*0701/*0702, B*0702/*0801, DRB1*0301/*1501, DQA1*0501/*0102, DQB1*0201/*0602 This is generally identical to the extended serotype: A1,A3,B7,B8,DR3,DR15(2), DQ2,DQ6(1) 8
  • 9. For many populations such as the Japanese or European populations so many patients have been typed that new alleles are relatively rare, and thus SSP-PCR is more than adequate for allele resolution. Haplotypes can be obtained by typing family members. In areas of world where SSP- PCR is unable to recognize alleles and typing requires the sequencing of new alleles. Areas of the world were SSP-PCR or serotyping may be inadequate include Central Africa, Eastern Africa, parts of southern Africa, Arabia and S. Iran, Pakistan and India. Allelic diversity of MHC molecules Besides being scrutinized by immunologists for its pivotal role in the immune system, the MHC has also attracted the attention of many evolutionary biologists, due to the high levels of allelic diversity found within many of its genes. Indeed, much theory has been devoted to explaining why this particular region of the genome harbors so much diversity, especially in light of its immunological importance. One of the most striking features of the MHC, particularly in humans, is the astounding allelic diversity found therein, and especially among the nine classical genes. In humans, the most conspicuously-diverse loci, HLA-A, HLA-B, and HLA-DRB1, have roughly 250, 500, and 300 known alleles respectively -- diversity truly exceptional in the human genome. The MHC gene is the most polymorphic in the genome. Population surveys of the other classical loci routinely find tens to a hundred alleles -- still highly diverse. Many of these alleles are quite ancient: it is often the case that an allele from a particular HLA gene is more closely related to an allele found in chimpanzees than it is to another human allele from the same gene. Suggested Reading 1. P. Parham and T. Ohta (1996). "Population Biology of Antigen Presentation by MHC class I Molecules.". Science 272. . 2. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Geraghty DE, Hansen JA, Hurley CK, Mach B, Mayr WR, Parham P, Petersdorf EW, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A, Terasaki PI, and Trowsdale J. (2005). "Nomenclature for factors of the HLA System, 2004.". Tissue antigens 65: 301-369. 3. MHC Sequencing Consortium (1999). "Complete sequence and gene map of a human major histocompatibility complex". Nature 401: 921–923. 9