MATRICES
NORAIMA NAYARITH ZARATE GARCIA
COD. 2073173
ING. DE PETROLEOS

UNIVERSIDAD INDUSTRIAL DE SANTANDER
MATRICES
   An matrix is a set of items of any nature, but in general,
    numbers are usually arranged in rows and columns.

    Order matrix is called "m × n" to a set of elements Ɑij
    rectangular arranged in m rows and n columns.
TYPES OF MATRICES
TYPES OF MATRIX   DEFINITION                           EXAMPLE

ROW               That matrix has a single row,
                  with order 1 × n
COLUMN            That matrix has a single column,
                  and its order m × 1
RECTANGULAR       That array that has different
                  number of rows and columns, and
                  its order m × n,
TRANSPOSE         Given a matrix A, is called the
                  transpose of the matrix A is
                  obtained by changing orderly
                  rows of columns.
                  Is represented by AT or AT
OPPOSITE          The opposite of a given matrix is
                  the result of replacing each
                  element by its opposite. The
                  opposite of A is-A.
SQUARE            That parent has an equal number
                  of rows and columns, m = n,
                  saying that the matrix is of order
                  n.
                  Main diagonal: are the elements
                  Ɑ11, Ɑ22, ..., Ɑnn
                  Secondary Diagonal: Ɑij are the
                  elements to Ɑij , i + j = n +1
                  Trace of a square matrix is: the
                  sum of main diagonal elements of
                  tr A.
TYPES OF MATRICES

 TYPES OF MATRIX   DEFINITION                               EXAMPLES


 SYMMETRICAL       It is a square matrix equals its
                   transpose.
                   A = At, Ɑij = Ɑji
 IDENTICAL         Es una matriz cuadrada que tiene
                   todos sus elementos nulos excepto los
                   de la diagonal principal que son
                   iguales a 1. Tambien se denomina
                   matriz unidad.



 REVERSE           We say that a square matrix has an
                   inverse, A-1 if it is verified that:
                   A · A-1 = A-1 ° A = I



 TRIANGULAR        It is a square matrix that has all the
                   elements above (below) the main
                   diagonal to zero.
OPERATIONS WITH MATRICES

   SUM:
The sum of two matrices                      of the same size (equidimensional)
   another mat is another matrix
            EXAMPLE:




    PROPERTIES:
o   Associations: A + (B + C) = (A + B) + C
    · Commutative: A + B = B + A
    · Elem. Neutral: (0m × n zero matrix), 0 + A = A +0 = A
    · Elem. symmetric (opposite-matrix A), A + (-A) = (-A) + A = 0
PRODUCT MATRIX
   Given two matrices A = (Ɑij) m × n and B = (bij) p × q = p were n=p , the
    number of columns in the first matrix equals the number of rows of the
    matrix B, is defined A · B product as follows:


   EXAMPLE:
INVERSE MATRIX
   Inverse matrix is called a square matrix An and represent the A-1, a
    matrix that verifies the following property: A-1 ° A = A ° .A-1 = I




    PROPERTIES :
BIBLIOGRAPHY
 CHAPRA , STEVEN C. Y CANALE, RAYMOND
  P. Numerics Mathods for Engineers. McGraw
  Hill 2002.
 es. Wikipedia. Org/wiki.

 SANTAFE, Elkin R. “Elementos básicos de
  modelamiento matemático”.
 Clases -universidad de Santander año-2009.

Matrices

  • 1.
    MATRICES NORAIMA NAYARITH ZARATEGARCIA COD. 2073173 ING. DE PETROLEOS UNIVERSIDAD INDUSTRIAL DE SANTANDER
  • 2.
    MATRICES  An matrix is a set of items of any nature, but in general, numbers are usually arranged in rows and columns. Order matrix is called "m × n" to a set of elements Ɑij rectangular arranged in m rows and n columns.
  • 3.
    TYPES OF MATRICES TYPESOF MATRIX DEFINITION EXAMPLE ROW That matrix has a single row, with order 1 × n COLUMN That matrix has a single column, and its order m × 1 RECTANGULAR That array that has different number of rows and columns, and its order m × n, TRANSPOSE Given a matrix A, is called the transpose of the matrix A is obtained by changing orderly rows of columns. Is represented by AT or AT OPPOSITE The opposite of a given matrix is the result of replacing each element by its opposite. The opposite of A is-A. SQUARE That parent has an equal number of rows and columns, m = n, saying that the matrix is of order n. Main diagonal: are the elements Ɑ11, Ɑ22, ..., Ɑnn Secondary Diagonal: Ɑij are the elements to Ɑij , i + j = n +1 Trace of a square matrix is: the sum of main diagonal elements of tr A.
  • 4.
    TYPES OF MATRICES TYPES OF MATRIX DEFINITION EXAMPLES SYMMETRICAL It is a square matrix equals its transpose. A = At, Ɑij = Ɑji IDENTICAL Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. Tambien se denomina matriz unidad. REVERSE We say that a square matrix has an inverse, A-1 if it is verified that: A · A-1 = A-1 ° A = I TRIANGULAR It is a square matrix that has all the elements above (below) the main diagonal to zero.
  • 5.
    OPERATIONS WITH MATRICES  SUM: The sum of two matrices of the same size (equidimensional) another mat is another matrix EXAMPLE: PROPERTIES: o Associations: A + (B + C) = (A + B) + C · Commutative: A + B = B + A · Elem. Neutral: (0m × n zero matrix), 0 + A = A +0 = A · Elem. symmetric (opposite-matrix A), A + (-A) = (-A) + A = 0
  • 6.
    PRODUCT MATRIX  Given two matrices A = (Ɑij) m × n and B = (bij) p × q = p were n=p , the number of columns in the first matrix equals the number of rows of the matrix B, is defined A · B product as follows:  EXAMPLE:
  • 7.
    INVERSE MATRIX  Inverse matrix is called a square matrix An and represent the A-1, a matrix that verifies the following property: A-1 ° A = A ° .A-1 = I PROPERTIES :
  • 8.
    BIBLIOGRAPHY  CHAPRA ,STEVEN C. Y CANALE, RAYMOND P. Numerics Mathods for Engineers. McGraw Hill 2002.  es. Wikipedia. Org/wiki.  SANTAFE, Elkin R. “Elementos básicos de modelamiento matemático”.  Clases -universidad de Santander año-2009.