SlideShare a Scribd company logo
1 of 13
Download to read offline
EXERCISES

•   NORAIMA ZARATE GARCIA
•       ING. DE PETROLEOS
THOMAS
                                             4,175
2,01475  0,2875
 0,2875 2,01475  0,2875                    0

          0,2875 2,01475  0,2875           0
                   0,2875 2,01475           2,0875




Identificamos los vectores a,b,c y r.

  b1    2,01475   a1    0          c1     0,2875   r1    4,175
  b2    2,01475   a2     0,2875   c2     0,2875   r2       0
  b3    2,01475   a3     0,2875   c3     0,2875   r3       0
  b4  2,01475     a4     0,2875        
                                     c4         0      r4    2,0875
•     Se obtienen las siguientes igualaciones:

    U11  b1  2,01475
                                                n  3
    n  2
                                                             a3
                       an                       L32                   0,1456
    Ln ,n 1                                                U 22
                    U n 1,n 1
                                                U 23  c2             0,2875
                 a2
    L21                                        U 33  b3            L32 U 23
                 U11
                  0,2875                       U 33  1,9728
    L21 
                 2,01475
    L21          0,1426
                                                 n  4
     U n 1,n     cn 1                                      a4
                                                 L43                   0,1457
     U12         c1       0,2875                           U 33
                                                 U 34        c3       0,2875
     U n,n       bn       Ln ,n 1 U n 1,n    U 44        b4      L43 U 34
     U 22        b2      L21 U12
                                                 U 44        1,97286
     U 22        1,9737
Una ves conocidas L y U resolvemos Ld=r mediante una sustitución progresiva.

               1                                          d1      4,175 
               0,1426                                   d        0 
                           1                              2            
                        0,1456    1                     d3       0 
                                                                        
                                 0,457 1                d 4     2,0875

             Desde n=2 hasta n
               dn      rn      Ln , n 1        d n 1
               d1      r1    4,175


                    
               n        2
                                                                n  4
                                                                d 4  r4          L43 d 3
               d2      r2    L21     d1
               d2      0,5953                                  d4      2,127

               n  3
               d 3  r3         L32         d2
               d3      0,0866
Finalmente resolvemos Ux=d con una sustitución regresiva
           2,01475  0,2875                  x1   4,175 
                    1,9737  0,2875            0,5953
                                              x2       
                            1,9728  0,2875  x3  0,0866
                                                        
                                    1,9728   x4   2,127 
                                                 




      k       n  1 hasta 1

                  dn
      xn   
                 U n ,n
                            n
                 dk      U
                          j  k 1
                                     kj   xj
      xk   
                                U k ,k
d4
x4 
       U 44                          Al resolver el vector solución seria:
x4  1,078


k  3                                                  2,1194 
     d  U 34 x4 
                                                      0,3308
x3  3                                            x          
          U 33
                                                      0,2010
x3  0,2010                                                   
                                                       1,078 
k  2
     d  U 23 x3  U 24 x4 
x2  2
               U 22
x2  0,3308


k  1
     d  U12 x2  U13 x3  U14 x4   
x1  1
                   U11
x1  2,1194
GAUSS SEIDEL CON
  RELAJACION
    4 x1    2 x2     x3  20
    7 x1    14 x2           10
     x1              5 x3  6


 Usar el método de Gauss seidel con relajación para
 resolverlo.

 λ= 0,90      ε=6%
Reacomodamos las ecuaciones por pivote ( mayor a
  menor coeficiente) y despejando cada ecuación con su
  variable , tenemos.
              20  2 x2      x3
       x1   
                     4
              10  7 x1
       x2   
                   14
              6  x1
       x3   
                 5

Asumimos que X1=X2=X3=0 y aplicando la definición.

    xinuevo   xinuevo  1    xianterior
Iteración 1.
              20  20  0                     6  4,5
                                              
x1nuevo                              nuevo
 nuevo
             5
                    4                 x
                                      3
x1

x1  0,905  1  0,90 0
                                                    5
                                               2,1
x1  4,5                              nuevo
                                      x
                                      3
              10  74,5
                                      x3  0,902,1  1  0,90 0
x2nuevo 
                    14
x   nuevo
    2         1,535
x2  0,90 1,535  1  0,90 0
x2   1,382                          x3  1,89
#                  X1     %E      nuev   X2      %E             X3     %E
iter   x   nuevo                 x2                     xnuev
           1                                             3

1      5           4,5           -1,53   -1,38          2,1     1,89

2      6,16        6      25     -2,28   -2,19   37     2,4     2,34   19

3      6,902       6,61   9,30   -2,59   -2,55   14,0   2,52    2,50   6,22

4      6,90        6,87   3,7    -2,72   -2,70   5,6    2,57    2,56   2,43
JACOBI
 12 x1       3x2  3x3  2
   x1        6 x2  2 x3 10
  3x1        2 x2  6 x3  8

Valores iníciales
    x1     1
   x      0 
    2       
    x3 
           1
              

Reescribiendo cada ecuación
         12 3  3  x1  2
          1 6 2   x   10
                   2    
          3 2 6   x3 
                       8
                            
2  3 x2  3x3                     2  30   31
x1                                  x1                      0,416
                12                                12
       10  x1  2 x3                       10  1  21
x2                                  x2                       1,166
              6                                     6
                                            8  20   31
       8  2 x2  3x1                x3                          0,833
x3                                                  6
                6


          xnuevo  xanterior
 xn                         100
                 xnuevo                       Iteración 1
         0,416  1
x1                100                        x1        0,416
            0,416
                                               x          1,166 
x1  140,38 %                                  2                
                                                x3 
                                                           0,833
                                                                   
x2  100%
x3  20,04%
Iter     a1     e1        a2     e2        a3     e3
       1,000            0,000            1,000
1      0,417   140,00   1,167   100,00   0,833   20,00
2      0,083   400,00   1,319   11,58    0,736   13,21
3      0,021   300,00   1,407    6,25    0,852   13,59
4      0,028    25,00   1,379    2,04    0,854    0,23
5      0,035    21,31   1,377    0,13    0,860    0,69
6      0,037    5,18    1,374    0,23    0,857    0,37
7      0,037    0,04    1,375    0,05    0,857    0,01
8      0,037    0,42    1,375    0,00    0,856    0,03
9      0,037    0,14    1,375    0,01    0,856    0,01
10     0,037    0,01    1,375    0,00    0,856    0,00
11     0,037    0,01    1,375    0,00    0,856    0,00
12     0,037    0,00    1,375    0,00    0,856    0,00

More Related Content

Viewers also liked

Examples of direct methods for the solution of systems of linear equations
Examples of direct methods for the solution of systems of linear equationsExamples of direct methods for the solution of systems of linear equations
Examples of direct methods for the solution of systems of linear equationsNORAIMA
 
Iterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsIterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsNORAIMA
 
Matrices
MatricesMatrices
MatricesNORAIMA
 
Matrices
MatricesMatrices
MatricesNORAIMA
 
Matrices
MatricesMatrices
MatricesNORAIMA
 
Cholesky method and Thomas
Cholesky method and ThomasCholesky method and Thomas
Cholesky method and Thomasjorgeduardooo
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
Iterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsIterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsNORAIMA
 
Examples of iterative methods for the solution of
Examples of iterative methods for the solution ofExamples of iterative methods for the solution of
Examples of iterative methods for the solution ofNORAIMA
 

Viewers also liked (14)

Examples of direct methods for the solution of systems of linear equations
Examples of direct methods for the solution of systems of linear equationsExamples of direct methods for the solution of systems of linear equations
Examples of direct methods for the solution of systems of linear equations
 
Iterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsIterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equations
 
Matrices
MatricesMatrices
Matrices
 
Matrices
MatricesMatrices
Matrices
 
Don't care conditions
Don't care conditionsDon't care conditions
Don't care conditions
 
Matrices
MatricesMatrices
Matrices
 
Cholesky method and Thomas
Cholesky method and ThomasCholesky method and Thomas
Cholesky method and Thomas
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
Jacobi method
Jacobi methodJacobi method
Jacobi method
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
METHOD OF JACOBI
METHOD OF JACOBIMETHOD OF JACOBI
METHOD OF JACOBI
 
Iterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsIterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equations
 
Gauss sediel
Gauss sedielGauss sediel
Gauss sediel
 
Examples of iterative methods for the solution of
Examples of iterative methods for the solution ofExamples of iterative methods for the solution of
Examples of iterative methods for the solution of
 

Exercises

  • 1. EXERCISES • NORAIMA ZARATE GARCIA • ING. DE PETROLEOS
  • 2. THOMAS 4,175 2,01475  0,2875  0,2875 2,01475  0,2875 0  0,2875 2,01475  0,2875 0  0,2875 2,01475 2,0875 Identificamos los vectores a,b,c y r. b1  2,01475 a1  0 c1   0,2875 r1  4,175 b2  2,01475 a2   0,2875 c2   0,2875 r2  0 b3  2,01475 a3   0,2875 c3   0,2875 r3  0 b4  2,01475 a4   0,2875  c4 0 r4  2,0875
  • 3. Se obtienen las siguientes igualaciones: U11  b1  2,01475 n  3 n  2 a3 an L32    0,1456 Ln ,n 1  U 22 U n 1,n 1 U 23  c2   0,2875 a2 L21  U 33  b3  L32 U 23 U11  0,2875 U 33  1,9728 L21  2,01475 L21   0,1426 n  4 U n 1,n  cn 1 a4 L43    0,1457 U12  c1   0,2875 U 33 U 34  c3   0,2875 U n,n  bn  Ln ,n 1 U n 1,n U 44  b4  L43 U 34 U 22  b2  L21 U12 U 44  1,97286 U 22  1,9737
  • 4. Una ves conocidas L y U resolvemos Ld=r mediante una sustitución progresiva.  1   d1   4,175   0,1426  d   0   1   2     0,1456 1  d3   0          0,457 1 d 4  2,0875 Desde n=2 hasta n dn  rn  Ln , n 1 d n 1 d1  r1  4,175  n 2 n  4 d 4  r4  L43 d 3 d2  r2  L21 d1 d2  0,5953 d4  2,127 n  3 d 3  r3  L32 d2 d3  0,0866
  • 5. Finalmente resolvemos Ux=d con una sustitución regresiva 2,01475  0,2875   x1   4,175   1,9737  0,2875     0,5953     x2     1,9728  0,2875  x3  0,0866        1,9728   x4   2,127    k  n  1 hasta 1 dn xn  U n ,n n dk  U j  k 1 kj xj xk  U k ,k
  • 6. d4 x4  U 44 Al resolver el vector solución seria: x4  1,078 k  3  2,1194  d  U 34 x4  0,3308 x3  3 x    U 33 0,2010 x3  0,2010    1,078  k  2 d  U 23 x3  U 24 x4  x2  2 U 22 x2  0,3308 k  1 d  U12 x2  U13 x3  U14 x4  x1  1 U11 x1  2,1194
  • 7. GAUSS SEIDEL CON RELAJACION 4 x1  2 x2  x3  20 7 x1  14 x2  10  x1  5 x3  6 Usar el método de Gauss seidel con relajación para resolverlo. λ= 0,90 ε=6%
  • 8. Reacomodamos las ecuaciones por pivote ( mayor a menor coeficiente) y despejando cada ecuación con su variable , tenemos. 20  2 x2  x3 x1  4 10  7 x1 x2  14 6  x1 x3  5 Asumimos que X1=X2=X3=0 y aplicando la definición. xinuevo   xinuevo  1    xianterior
  • 9. Iteración 1. 20  20  0 6  4,5  x1nuevo  nuevo nuevo  5 4 x 3 x1 x1  0,905  1  0,90 0 5  2,1 x1  4,5 nuevo x 3 10  74,5 x3  0,902,1  1  0,90 0 x2nuevo  14 x nuevo 2   1,535 x2  0,90 1,535  1  0,90 0 x2   1,382 x3  1,89
  • 10. # X1 %E nuev X2 %E X3 %E iter x nuevo x2 xnuev 1 3 1 5 4,5 -1,53 -1,38 2,1 1,89 2 6,16 6 25 -2,28 -2,19 37 2,4 2,34 19 3 6,902 6,61 9,30 -2,59 -2,55 14,0 2,52 2,50 6,22 4 6,90 6,87 3,7 -2,72 -2,70 5,6 2,57 2,56 2,43
  • 11. JACOBI 12 x1  3x2  3x3  2 x1  6 x2  2 x3 10 3x1  2 x2  6 x3  8 Valores iníciales  x1  1 x   0   2    x3    1   Reescribiendo cada ecuación 12 3  3  x1  2  1 6 2   x   10    2    3 2 6   x3     8  
  • 12. 2  3 x2  3x3 2  30   31 x1  x1   0,416 12 12 10  x1  2 x3 10  1  21 x2  x2   1,166 6 6 8  20   31 8  2 x2  3x1 x3   0,833 x3  6 6 xnuevo  xanterior  xn   100 xnuevo Iteración 1 0,416  1 x1   100  x1  0,416 0,416 x    1,166  x1  140,38 %  2    x3     0,833   x2  100% x3  20,04%
  • 13. Iter a1 e1 a2 e2 a3 e3 1,000 0,000 1,000 1 0,417 140,00 1,167 100,00 0,833 20,00 2 0,083 400,00 1,319 11,58 0,736 13,21 3 0,021 300,00 1,407 6,25 0,852 13,59 4 0,028 25,00 1,379 2,04 0,854 0,23 5 0,035 21,31 1,377 0,13 0,860 0,69 6 0,037 5,18 1,374 0,23 0,857 0,37 7 0,037 0,04 1,375 0,05 0,857 0,01 8 0,037 0,42 1,375 0,00 0,856 0,03 9 0,037 0,14 1,375 0,01 0,856 0,01 10 0,037 0,01 1,375 0,00 0,856 0,00 11 0,037 0,01 1,375 0,00 0,856 0,00 12 0,037 0,00 1,375 0,00 0,856 0,00