SlideShare a Scribd company logo
1 of 72
1
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Lê Anh Đức
ĐÁNH GIÁ SAI SỐ CỦA KỸ THUẬT QUÉT GAM-MA
PHÂN ĐOẠN BẰNG PHƯƠNG PHÁP NGẪU NHIÊN
LUẬN VĂN THẠC SĨ VẬT LÝ
Thành phố Hồ Chí Minh - 2012
1
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Lê Anh Đức
ĐÁNH GIÁ SAI SỐ CỦA KỸ THUẬT QUÉT GAM-MA
PHÂN ĐOẠN BẰNG PHƯƠNG PHÁP NGẪU NHIÊN
Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao
Mã số: 60 44 05
LUẬN VĂN THẠC SĨ VẬT LÝ
Người hướng dẫn khoa học:
TS. Trần Quốc Dũng
Thành phố Hồ Chí Minh - 2012
1
LỜI CẢM ƠN
Trong quá trình thực hiện và hoàn thành luận văn này, tác giả đã nhận được sự
quan tâm và giúp đỡ rất nhiều từ Thầy Cô, đồng nghiệp, bạn bè và gia đình. Tôi xin
được bày tỏ lòng biết ơn chân thành của mình đến:
Thầy TS. Trần Quốc Dũng, người hướng dẫn khoa học, đã mang đến cho tôi
những kiến thức và phương pháp nghiên cứu khoa học, truyền đạt tinh thần học hỏi
và luôn động viên giúp tôi vượt qua những khó khăn, vướng mắc trong suốt quá
trình thực hiện luận văn.
Thầy ThS Trần Thiện Thanh đã gợi ý những phương hướng nghiên cứu, đóng
góp ý kiến, và truyền đạt kinh nghiệm cho tôi trong quá trình thực hiện luận văn.
Quý Thầy Cô giảng dạy bộ môn Vật lý nguyên tử, hạt nhân và năng lượng
cao, Trường ĐH Sư Phạm TP.HCM đã nhiệt tình giảng dạy và giúp đỡ tôi trong suốt
quá trình học tập tại trường.
Quý Thầy Cô phản biện và Hội đồng chấm luận văn đã đọc và có những nhận
xét cũng như những góp ý quý giá về luận văn.
Quý Thầy cô trong Bộ môn Vật lý Hạt nhân và Khoa Vật lý, Trường Đại học
Sư phạm TP HCM đã đóng góp những ý kiến và luôn tạo mọi điều kiện thuận lợi về
cơ sở vật chất để tôi có thể thực hiện các nghiên cứu phục vụ cho luận văn.
Cảm ơn những người bạn, những người anh em đã nhiệt tình giúp đỡ tôi trong
quá trình chế tạo hệ máy đo thực nghiệm.
Cuối cùng, xin cảm ơn gia đình đã luôn động viên và hỗ trợ tôi mọi mặt, về
vật chất lẫn tinh thần để tôi hoàn thành luận văn.
Thành phố Hồ Chí Minh, tháng 11 năm 2012
Lê Anh Đức
2
MỤC LỤC
LỜI CẢM ƠN............................................................................................................1
MỤC LỤC..................................................................................................................2
DANH MỤC CHỮ VIẾT TẮT ................................................................................4
DANH MỤC CÁC BẢNG ........................................................................................5
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ..................................................................6
MỞ ĐẦU ....................................................................................................................8
Chương 1: Tổng quan về các kỹ thuật gam-ma thụ động...................................12
1.1 Tổng quan về các kỹ thuật gam-ma thụ động.................................................12
1.2 Kỹ thuật chụp cắt lớp gam-ma TGS................................................................13
1.3 Kỹ thuật quét gam-ma phân đoạn SGS...........................................................16
Chương 2: Kỹ thuật quét gam-ma phân đoạn và đánh giá sai số theo mô
phỏng………………………………………………………………………………18
2.1 Kỹ thuật quét gam-ma phân đoạn. ..................................................................18
2.2 Đánh giá sai số hệ thống .................................................................................20
2.3 Tính toán giá trị sai số bằng phương pháp ngẫu nhiên. ..................................22
2.3.1 Gieo một nguồn ngẫu nhiên vào một phân đoạn................................................ 22
2.3.2 Gieo nhiều nguồn ngẫu nhiên vào một phân đoạn............................................. 22
2.3.3 Trường hợp tổng quát gieo nhiều nguồn vào thùng phóng xạ ........................... 26
Chương 3: Xây dựng hệ đo thực nghiệm ..............................................................30
3.1 Cơ sở thực nghiệm ..........................................................................................30
3.2 Cấu tạo của thiết bị thí nghiệm .......................................................................32
3.2.1 Máy đơn kênh Ludlum thế hệ 2200................................................................ 32
3.2.2 Đầu dò nhấp nháy thế hệ 44-10..........................................................................35
3.2.3 Giá đỡ và ống chuẩn trực chì .............................................................................36
3.2.4 Hệ nâng thùng rác thải phóng xạ ......................................................................37
3.2.5 Hệ quay và thùng rác thải .................................................................................. 39
3.2.6 Bộ nguồn sử dụng trong quá trình đo đạc.......................................................... 42
Chương 4: Đánh giá kết quả đo đạc, sai số trong các thí nghiệm với hệ đo SGS
3
bằng phương pháp ngẫu nhiên và bình luận........................................................44
4.1 Khảo sát định tính khả năng quét gam-ma của hệ đo SGS với nguồn và chất
độn không đồng nhất.............................................................................................44
4.1.1 Các bước tiến hành............................................................................................. 44
4.1.2 Kết quả thí nghiệm:............................................................................................45
4.1.3 Đánh giá và bình luận ........................................................................................49
4.2 Khảo sát sai số của phương pháp SGS do phân bố của nguồn .......................50
4.2.1 Các bước tiến hành............................................................................................. 51
4.2.2 Xác định hệ số hấp thụ tuyến tính µ của cát sử dụng với nguồn Cs137
.............53
4.2.3 Xác định hệ số α và công thức tính sai số..........................................................53
4.2.4 Kết quả thực nghiệm với K = 87 cm.................................................................. 54
4.2.5 Kết quả thực nghiệm với K = 116 cm ...............................................................59
4.2.6 Đánh giá và bình luận ........................................................................................ 60
KẾT LUẬN ..............................................................................................................61
KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU TIẾP THEO ....................................62
DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ......................................................63
TÀI LIỆU THAM KHẢO ......................................................................................64
PHỤ LỤC.................................................................................................................67
4
DANH MỤC CHỮ VIẾT TẮT
NDA Non-Destructive Assay: Phân tích không huỷ mẫu.
PGT Passive Gamma Technique: Kỹ thuật gam-ma thụ động.
SGS Segmented Gamma Scanning: Quét gam-ma phân đoạn.
TGS Tomographic Gamma Scanning: Kỹ thuật chụp cắt lớp.
5
DANH MỤC CÁC BẢNG
TT Bảng Diễn giải Trang
1 2.1
Giá trị sai số theo phân bố r (cm) khi cho một nguồn ngẫu
nhiên vào một phân đoạn.
22
2 2.2
Giá trị Itb và sai số khi cho nhiều nguồn giống nhau vào một
phân đoạn.
24
3 2.3
Giá trị sai số khi cho nhiều nguồn vào thùng với 10 phân
đoạn, với µ = 0,03; 0,06; và 0,12 cm-1
và K = 87 cm;
K = 116 cm.
27
4 3.1 Thông tin bộ nguồn sử dụng trong quá trình đo. 42
5 4.1
Số đếm thô khi cho 8 nguồn chuẩn vào bốn phân đoạn của
thùng với các lần cho ngẫu nhiên khác nhau.
45
6 4.2
Số đếm thô khi cho 11 nguồn vào năm phân đoạn của thùng
với các lần cho ngẫu nhiên khác nhau.
47
7 4.3
Số đếm thô khi cho 10 nguồn vào năm phân đoạn của thùng
với các lần cho ngẫu nhiên khác nhau.
48
8 4.4 Hệ số hấp thụ tuyến tính trung bình. 53
9 4.5
Số đếm và sai số theo phân bố khoảng cách r (cm), với
K = 87 cm và µ = 0,04987 cm-1
.
54
10 4.6
Số đếm và sai số theo phân bố khoảng cách r (cm), với
K = 116 cm và µ = 0,04987 cm-1
.
58
6
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
TT Hình Diễn giải Trang
1 1.1 Các kỹ thuật gam-ma thụ động của Ortec 12
2 1.2 Mô hình cấu tạo của một hệ đo TGS 13
3 1.3 Bản đồ hệ số suy giảm tuyến tính trong kỹ thuật TGS 14
4 1.4
Hệ TGS thương mại theo chuẩn hộp và chuẩn thùng của Ortec
- Hệ TGS theo chuẩn thùng của Canberra
15
5 1.5 Hình chụp cắt lớp phân bố chất độn trong thùng 16
6 1.6 Hệ SGS thương mại của Ortec 17
7 2.1 Minh hoạ nguyên tắc hoạt động của kỹ thuật SGS 18
8 2.2 Mặt cắt ngang của một phân đoạn 21
9 3.1
Sử dụng nguồn ngoài để tính hệ số hấp thụ tuyến tính trung
bình
31
10 3.2 Máy đơn kênh Ludlum thế hệ 2200 33
11 3.3 Đầu dò nhấp nháy NaI thế hệ 44-10 và giá đỡ 35
12 3.4 Ống chuẩn trực được chế tạo riêng cho đầu dò nhấp nháy NaI 36
13 3.5 Tỉ lệ đường kính ống chuẩn trực và bề dày phân đoạn 37
14 3.6
Ống chuẩn trực được gắn gới đầu dò trên giá đỡ cùng với hệ
máy Ludlum 2200
37
15 3.7 Mô tơ quay và hệ nâng 38
16 3.8 Mô tơ, bánh đà và dây xích truyền động 38
17 3.9 Cáp trượt, thanh trượt và thước đo của hệ nâng 39
18 3.10 Mô tơ được gắn với giá đỡ của hệ quay 40
19 3.11 Thùng rác thải trên giá đỡ và hệ quay 41
20 3.12 Chất độn là cát và vải vụn được cho vào thùng với nguồn 41
21 3.13 Bộ nguồn phóng xạ sử dụng trong thí nghiệm 42
22 3.14 Lắp đặt hệ thí nghiệm 43
7
23 4.1 Lắp đặt đầu dò, ống chuẩn trực và thước đo khoảng cách K 44
24 4.2
Nguồn Cs137
với hoạt độ I = 12,2 MBq, dạng ống với hộp chì
đựng
51
25 4.3
Các vị trí của nguồn có thể có khi cho vào thùng một cách
ngẫu nhiên
52
26 4.4 Xác suất nguồn rơi vào hình vành khăn 56
27 4.5
Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách
r (cm) khi cho nguồn ngẫu nhiên vào thùng, K = 87 cm.
56
28 4.6
Biểu đồ sai số thực nghiệm theo khoảng cách r (cm),
với K = 87 cm
57
29 4.7
Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 87
cm và µ = 0,04987 cm-1
với số liệu tính toán mô phỏng
57
30 4.8
Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách
r (cm) khi cho nguồn ngẫu nhiên vào thùng, với K = 116 cm
58
31 4.9
Biểu đồ sai số thực nghiệm theo khoảng cách r (cm),
với K = 116 cm
59
32 4.10
Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với
K = 116 cm và µ = 0,04987 cm-1
với số liệu tính toán mô
phỏng
59
8
MỞ ĐẦU
Ngày nay, kỹ thuật nguyên tử, hạt nhân và năng lượng cao đã được sử dụng
rộng rãi trong nhiều lĩnh vực trên thế giới. Việc ứng dụng phản ứng hạt nhân nhằm
nhiều mục đích khác nhau như: xây dựng trung tâm nghiên cứu sản xuất đồng vị
phóng xạ nhằm phục vụ cho việc nghiên cứu, y tế, quân sự… Bên cạnh đó, khi
nguồn năng lượng truyền thống đang ngày càng cạn kiệt và góp phần gia tăng sự ô
nhiễm môi trường do phát thải khí độc hại ra môi trường xung quanh: nước, đất,
không khí và sinh vật, thì một số quốc gia đang theo đuổi những dự án lò phản ứng
hạt nhân, nhà máy điện hạt nhân, nhằm đáp ứng nhu cầu ngày càng lớn về năng
lượng.
Tại Việt Nam, chúng ta hiện đang có lò phản ứng hạt nhân nghiên cứu ở Đà
Lạt, và sắp tới là nhà máy điện hạt nhân ở Ninh Thuận dự định sẽ khởi công xây
dựng. Dự kiến đến khoảng năm 2020, có thể tổ máy đầu tiên của Nhà máy điện hạt
nhân Ninh Thuận sẽ được vận hành thương mại. Tuy nhiên quá trình hoạt động của
các lò phản ứng hạt nhân này sinh ra một lượng rác thải phóng xạ đáng kể, được
chứa trong các thùng kín lớn, và chúng ta sẽ phải đối mặt với vấn đề xử lí và quản lí
chất thải hạt nhân ở quy mô lớn. Câu hỏi lớn đặt ra, chúng ta sẽ xử lý như thế
nào với lượng chất thải được tạo ra?
Việc kiểm tra và đánh giá hoạt độ phóng xạ trong các thùng rác thải này là cần
thiết trước khi chúng được đem đi xử lý và tiêu hủy. Song song với việc thẩm định
các vấn đề về an toàn bức xạ, ảnh hưởng đến môi trường trong quá trình lò hoạt
động thì việc xử lý rác thải phóng xạ từ các lò phản ứng này cũng rất quan trọng, để
bảo vệ sức khỏe con người và và không bị rò rĩ chất phóng xạ ra môi trường. Điều
này đòi hỏi cần phải có một phương pháp để xác định hoạt độ phóng xạ trong các
thùng rác thải. Do đó việc nghiên cứu để tìm ra một phương pháp thích hợp, hiệu
quả để áp dụng vào thực tế là vô cùng cần thiết và cấp bách.
Kỹ thuật quét gam-ma phân đoạn SGS (segmented gamma scanning
technique) là một kỹ thuật quan trọng để đo đạc, phân tích hoạt độ và thành phần
9
của rác thải phóng xạ. Trong kỹ thuật SGS, thùng rác thải phóng xạ được đo thành
nhiều phân đoạn, và do đó nó được phân tích một cách chi tiết hơn cách đo thông
thông thường, nếu kết quả đo của đầu dò trên từng phân đoạn là tốt thì sẽ kéo theo
kết quả cuối cùng cũng tốt.
Do phương pháp đo SGS dựa trên giả thuyết là nguồn và chất độn (matrix)
phân bố đồng nhất trên một phân đoạn, điều này không phù hợp với thực tế dẫn đến
sai số phép đo. Việc đánh giá sai số này là một nhiệm vụ quan trọng trong việc kiểm
tra và quản lý chất thải phóng xạ.
Trước những nhu cầu thực tiễn như trên, tôi chọn đề tài: “Đánh giá sai số của
kỹ thuật quét gam-ma phân đoạn bằng phương pháp ngẫu nhiên” làm đề tài
nghiên cứu.
Luận văn đã tìm hiểu khả năng sử dụng phương pháp ngẫu nhiên bằng tính
toán mô phỏng và thực nghiệm khi cho nguồn phóng xạ vào thùng để đánh giá sai
số của kỹ thuật quét gam-ma phân đoạn.
Luận văn đã đi sâu vào:
- Tìm hiểu tổng quan về các kỹ thuật gam-ma thụ động PGT (passive gamma
technique) đặc biệt là kỹ thuật quét gam-ma phân đoạn SGS (segmented gamma
scanning technique) trong việc đo hoạt độ của thùng rác thải nhằm biết được các
các nguyên lý hoạt động và các yếu tố ảnh hưởng đến sai số hệ thống của kỹ thuật
quét gam-ma phân đoạn.
- Hệ đo quét gam-ma phân đoạn đã được chế tạo để đo đạc và tính toán được
sai số thực nghiệm.
Quá trình chế tạo hệ đo SGS và đo đạc thực nghiệm cần tốn nhiều thời gian,
kinh phí, thiết bị, nhân lực. Quá trình đo đạc thực nghiệm cần có cùng một lượng
nguồn phóng xạ nhiều để giả định như thùng rác thải thật sự. Vì vậy, trong một
khoảng thời gian ngắn, đề tài này tập trung vào một số phép đo đơn giản với số
nguồn phóng xạ có sẵn và thực hiện các mô phỏng tính toán. Chủ yếu là ghi nhận số
đếm và đánh giá sai số về hoạt độ của phép đo. Kiểm chứng sai số do yếu tố phân
bố của nguồn trong phép đo SGS.
10
Nhằm đạt được các mục tiêu đã đề ra ở trên, luận văn này tập trung thực hiện
các nội dung sau:
- Nắm rõ nguyên lý hoạt động và quy trình đo trong kĩ thuật quét gam-ma phân
đoạn, tiến hành mô phỏng tính toán lí thuyết.
- Chế tạo hệ quét gam-ma phân đoạn theo một số mô hình của các hệ này trên thế
giới để có thể sử dụng đo đạc được.
- Tiến hành thực nghiệm: kiểm chứng sai số do sự phân bố của nguồn, kiểm chứng
định tính khả năng quét gam-ma của hệ SGS tự chế tạo.
- Thu thập, xử lý số liệu thu nhận được từ mô phỏng và thực nghiệm.
- Tiến hành phân tích, so sánh và đánh giá kết quả.
Luận văn bao gồm 4 chương:
Chương 1: Tổng quan về các kỹ thuật gam-ma không hủy mẫu.
Chương này trình bày tổng quan về các kỹ thuật phân tích không huỷ mẫu - kỹ
thuật gam-ma thụ động và nguyên tắc hoạt động, đánh giá sai số của kỹ thuật chụp
cắt lớp gam-ma và kỹ thuật quét gam-ma phân đoạn.
Chương 2: Kỹ thuật quét gam-ma phân đoạn và đánh giá sai số theo mô phỏng.
Nội dung chương này sẽ trình bày rõ ràng hơn về kỹ thuật quét gam-ma phân
đoạn, cùng với các công thức tính toán lý thuyết. Sai số của kỹ thuật SGS do các
yếu tố phân bố của nguồn, khoảng cách và hệ số suy giảm tuyến tính sẽ được tính
toán mô phỏng bằng phương pháp ngẫu nhiên để làm cơ sở xây dựng hệ đo thực
nghiệm.
Chương 3: Xây dựng hệ đo thực nghiệm.
Chương này trình bày cấu tạo của hệ đo SGS do tác giả tự chế tạo, nguyên tắc
hoạt động của từng bộ phận trong hệ đo này, cách lắp đặt hệ đo để tiến hành thực
nghiệm đo đạc.
Chương 4: Đánh giá kết quả đo đạc và sai số trong các thí nghiệm với hệ đo SGS
bằng phương pháp ngẫu nhiên và bình luận.
Xây dựng các bước tiến hành thí nghiệm để kiểm tra định tính và tính toán
định lượng sai số của hệ đo SGS tự chế tạo bằng phương pháp ngẫu nhiên khi cho
11
nguồn vào thùng rác thải phóng xạ. Đưa ra kết luận về sai số của phép đo do các
yếu tố phân bố của nguồn gây ra.
Trong quá trình thực hiện và trình bày luân vặn, vì còn hạn chế về kiến thức,
nên chắc chắn luận văn không tránh khỏi sai sót. Kính mong nhận được sự góp ý
của quý Thầy Cô và bạn đọc. Tôi xin chân thành cảm ơn.
12
Chương 1: Tổng quan về các kỹ thuật gam-ma thụ động
1.1 Các kỹ thuật gam-ma thụ động
Kỹ thuật gam-ma thụ động (Passive Gamma Technique) là một kỹ thuật trong
phép phân tích không huỷ mẫu NDA (Non-Destructive Assay), đã được sử dụng
rộng rãi từ rất lâu để xác định hoạt độ và thành phần các đồng vị phóng xạ của Plu-
to-ni-um, U-ra-ni-um và các sản phẩm phân hạch khác trong thùng rác thải. Hiện
nay các công ty như Ortec, Canberra… đã phát triển và tiến hành bán rất nhiều hệ
đo, phân tích gam-ma thụ động. Các hệ đo này dựa trên những nguyên lý hoạt động
và kỹ thuật khác nhau tương ứng với giá thành.
Hình 1.1. Các kỹ thuật gam-ma thụ động của Ortec [10]
 Kỹ thuật Iso-cart có giá thành tương đối rẻ, và độ tiện dụng cao.
 Kỹ thuật QED có độ nhạy cao nhất khi sử dụng để xác định các đồng vị
phóng xạ trong thùng rác thải có hoạt độ thấp.
 Kỹ thuật SGS có độ tin cậy cao, độ nhạy khi sử dụng để xác định các đồng vị
phóng xạ tốt.
 Kỹ thuật TGS cho độ tin cậy và độ chính xác cao nhất trong quá trình đo đạc
và phân tích với mẫu và chất độn không đồng nhất.
Yêu cầu của các phép đo là phải nhận biết được các gam-ma đặc trưng của các
đồng vị phóng xạ, xác định được hoạt độ phóng xạ và thêm vào đó là thực hiện đo
đạc càng nhanh càng tốt. Các hệ đo này sử dụng hệ phổ kế đa kênh đo gam-ma, có
thể kiểm tra thành phần thùng rác thải gồm có những chất phóng xạ nào dựa vào
13
phổ năng lượng gam-ma của chúng và kiểm tra hoạt độ của thùng dựa vào số đếm
đầu dò ghi nhận được ứng với từng năng lượng đặc trưng của gam-ma. Sai số của
phép đo không chỉ phụ thuộc vào nguồn và chất độn trong thùng mà còn phụ thuộc
vào kỹ thuật nào được sử dụng. Cho đến nay, có rất nhiều kỹ thuật gam-ma không
phá huỷ mẫu để phân tích hoạt độ và thành phần thùng rác thải phóng xạ, và nổi bật
trong số đó là hai kỹ thuật với độ tin cậy cao:
• Kỹ thuật quét gam-ma phân đoạn SGS (Segmented Gamma Scanning
Technique).
• Kỹ thuật chụp cắt lớp gam-ma (Tomographic Gamma Scanning Technique).
1.2 Kỹ thuật chụp cắt lớp gam-ma TGS
Kỹ thuật chụp cắt lớp gam-ma (TGS) được phát triển bởi phòng thí nghiệm
quốc gia Los Alamos vào đầu những năm 1990 cho Bộ Năng lượng Mỹ. TGS sử
dụng nguồn truyền dẫn phát xạ đơn phô-tôn để hiệu chỉnh, chụp cắt lớp vi tính để
xác định sự phân bố không gian, và phân tích thành phần nguồn phóng xạ của thùng
rác thải bằng cách sử dụng đầu dò cùng hệ phổ kế gam-ma độ phân giải cao. Kỹ
thuật này là một bước tiến đáng kể trong công nghệ phân tích không huỷ mẫu, nó
hướng tới một kết quả chính xác nhất vì có thể cho thấy được hình ảnh về sự phân
bố của chất độn và nguồn phóng xạ, tuy nhiên nó đòi hỏi nhiều kinh phí để đầu tư
và kĩ thuật với công nghệ rất cao.
Hình 1.2. Mô hình cấu tạo của một hệ đo TGS [9]
14
Quá trình hoạt động của TGS gồm hai bước với khả năng quét và phân tích
cho độ chính xác cao. Bước đầu tiên là chụp cắt lớp vi tính hoạt động, giống như kỹ
thuật chụp ảnh X-quang y tế, để đo sự suy giảm của cường độ bức xạ đi từ một
nguồn bên ngoài thông qua chất độn đến đầu dò, từ đó xác định hệ số hấp thụ tuyến
tính trên từng phân lớp và trung bình. Các nguồn phát ra tia gam-ma ở mức năng
lượng rời rạc, khi các tia đi qua thùng với chất độn không đồng nhất ở bên trong,
chúng sẽ bị suy giảm ở nhiều mức độ khác nhau. Ở phía bên kia của thùng, hệ phổ
kế gam-ma sẽ đo được bức xạ gam-ma suy yếu. Bằng cách ghi nhận và đo tia gam-
ma cường độ suy yếu ở mức năng lượng cụ thể của nguồn truyền dẫn, người ta có
thể xác định bản đồ của hệ số suy giảm tuyến tính của thùng rác thải. Các bản đồ
này có thể được xây dựng lại để mô tả sự suy giảm do chất độn của thùng [19].
Hình 1.3. Bản đồ hệ số suy giảm tuyến tính trong kỹ thuật TGS [9]
Bước thứ hai là đo gam-ma thụ động, máy dò ghi nhận gam-ma và cho ta
phổ tia gam-ma phát ra từ bên trong thùng. Sự suy giảm gam-ma gây ra bởi vật liệu
trong các phép đo đồng vị phóng xạ được hiệu chỉnh bằng cách sử dụng bản đồ hệ
15
số suy giảm tuyến tính, sự điều chỉnh này cho một kết quả chính xác hơn về các
đồng vị phóng xạ bên trong thùng. Phổ thu được sử dụng để tự động xác định các
đồng vị trong thùng, bởi vì các đồng vị phóng xạ khác nhau sẽ phát ra một năng
lượng đặc trưng duy nhất của riêng chúng trong phổ năng lượng [19].
Máy chụp cắt lớp TGS là một hệ thống mở rộng hơn nữa của hệ máy SGS,
mở rộng phạm vi của các ứng dụng cho phép đo lường đối với các nguồn và chất
thải không đồng nhất với kết quả chính xác cao hơn, độ chính xác của phép đo TGS
trong khoảng từ 10-50% cho dù chất độn không đồng nhất [10]. Sự chuyển động
tương đối của thùng chất thải và đầu dò cũng khác nhau. Thay vì chỉ đơn giản là
xoay và nâng thùng, nó có thể được đồng thời xoay và dịch theo chiều ngang. Đối
với một một thùng rác thải với hoạt độ và chất độn không đồng nhất, kết quả đo
lường TGS cho một sai số thấp hơn nhiều so với các kỹ thuật khác [10].
(a)
(b)
Hình 1.4. Hệ TGS thương mại theo chuẩn hộp và chuẩn thùng của Ortec (a)
Hệ TGS theo chuẩn thùng của Canberra (b)
16
Hình 1.5. Hình chụp cắt lớp phân bố chất độn trong thùng [9]
1.3 Kỹ thuật quét gam-ma phân đoạn SGS
Kỹ thuật quét gam-ma phân đoạn SGS có thể sử dụng cho hầu hết các trường
hợp trong thực tiễn với độ tin cậy cao. SGS là một kỹ thuật quan trọng để đo đạc và
phân tích hoạt độ của rác thải phóng xạ, được phát triển bởi phòng thí nghiệm quốc
gia Los Alamos – Mỹ vào đầu những năm 1970. Kỹ thuật này sử dụng giả thiết rằng
các nguồn phóng xạ và chất độn mẫu (thường làm bằng xi măng - bê tông) được
phân bố đồng nhất trong thùng rác thải phóng xạ. Quá trình dùng SGS có thể gây ra
sai số rất lớn nếu mẫu không thỏa mãn các giả thiết này, đó là nguồn và chất độn
phân bố không đồng nhất, sai số thực nghiệm có thể lên tới 500% [10].
Kỹ thuật quét gam-ma phân đoạn cũng là kỹ thuật phổ biến nhất trong số các
kĩ thuật phân tích không huỷ mẫu chất thải hạt nhân vì giá thành sản xuất và độ tiện
lợi mà nó mang lại. Hệ thống SGS có một lợi thế là sử dụng các dụng cụ đo và lắp
ráp không quá phức tạp, cùng với một sự điều chỉnh truyền dẫn để ước tính hệ số
suy giảm trung bình của các chất thải phóng xạ có hoạt độ khác nhau với chất độn.
Bằng cách sử dụng một ống chuẩn trực và đầu dò gắn đồng trục cùng với một
nguồn truyền dẫn, SGS có thể xác định sự suy giảm số đếm của nguồn khi đi qua
lớp chất độn vật chất chứa trong thùng rác thải phóng xạ. Các nguồn truyền dẫn
17
được đặt ở phía đối diện của đầu dò so với thùng, tia gam-ma từ nguồn truyền qua
trục trung tâm của thùng và được ghi nhận bởi đầu dò khi chúng xuất hiện từ phía
đối diện. Với cách này ta có thể xác định tương đối gần đúng được hệ số hấp thụ
tuyến tính trung bình của chất độn.
Trong kỹ thuật SGS, thùng rác thải phóng xạ được chia thành nhiều phân đoạn
nằm ngang, đầu dò với ống chuẩn trực sẽ ghi số đếm và phân tích thành phần dựa
vào phổ năng lượng thu được trên từng phân đoạn, nếu kết quả đo của đầu dò trên
từng phân đoạn là tốt thì kết quả cuối cùng trên cả thùng cũng tốt [4].
Kỹ thuật này sẽ được phân tích và trình bày rõ ràng hơn ở phần chính của luận
văn.
Hình 1.6. Hệ SGS thương mại của ORTEC [5]
18
Chương 2: Kỹ thuật quét gam-ma phân đoạn và đánh giá sai
số theo mô phỏng
2.1 Kỹ thuật quét gam-ma phân đoạn
Nguyên tắc hoạt động cơ bản của kỹ thuật quét gam-ma phân đoạn SGS là
phân chia thùng rác thải phóng xạ thành các phân đoạn nằm ngang nhỏ hơn rất
nhiều so với chiều cao của thùng, và sử dụng đầu dò (detector) gắn ống chuẩn trực
để phân tích mỗi phân đoạn bằng phương pháp đo gam-ma thông thường. Khi tất cả
các phân đoạn được đo hoàn thành, kết quả số đếm cả thùng sẽ được tính bằng cách
lấy tổng của tất cả các kết quả đo trên từng phân đoạn. Để giảm thiểu tối đa sai số
gây ra do sự phân bố không đồng đều của nguồn và chất độn không đồng nhất trong
mỗi phân đoạn thì thùng sẽ được quay trong quá trình đo [15].
Hình 2.1. Minh hoạ nguyên tắc hoạt động của kỹ thuật SGS
Thùng được chia thành nhiều phân đoạn, i = 1, 2, 3…n là số thứ tự đánh dấu
của từng phân đoạn, mỗi phân đoạn lần lượt được đo bởi đầu dò. Số đếm thô CRi
trên mỗi phân đoạn được xác định bởi đầu dò. Số đếm hiệu chỉnh Ci được tính bằng
công thức:
i i iC = CR .CF (2.1)
Trong đó CFi là hệ số suy giảm do chất độn bởi phân đoạn thứ i [15], có thể
19
được tính bằng công thức:
-0.823. .d
i
1-e
CF =
0.823. .d
i
i
µ
µ
(2.2)
Với hệ số hấp thụ tuyến tính trung bình µi, và d là đường kính của thùng rác thải
phóng xạ. Nếu hệ số hấp thụ tuyến tính trung bình chưa biết, ta có thể sử dụng một
nguồn ngoài để tính truyền dẫn. Cách giải quyết này được sử dụng rộng rãi để xác
định CFi trong phương pháp SGS vì hệ số hấp thụ tuyến tính có thể thay đổi từ phân
đoạn này sang phân đoạn khác do chất độn phân bố không đồng nhất trong thùng.
Số đếm tổng cộng của thùng sẽ là:
i
n
T
i=1
C = C∑ (2.3)
Kết quả cuối cùng của phép đo là hoạt độ của các loại đồng vị mà ta quan tâm [15]:
0,693.
.
. .
d
h
t
T
TC e
I
tY ε
= (2.4)
Trong đó:
td: Thời gian phân rã tính từ lúc nguồn được sản xuất đến lúc đo.
t: Thời gian đo.
Th: chu kì bán rã của các đồng vị phóng xạ.
Y: Hiệu suất tia gam-ma.
ε: Hiệu suất ghi của đầu dò.
Các phương trình trên đều dựa trên hai giả thuyết là khoảng cách từ mẫu trong phân
đoạn đến đầu dò là vô hạn và mẫu là đồng nhất.
 Hệ số hình học:
Vì các nguồn phóng xạ trong thùng trải rộng và phân bố không đều nên số
đếm Ci phụ thuộc vào vị trí của các mẫu trong thùng. Điều này có thể dẫn đến các
sai số tiềm tàng, việc gia tăng khoảng cách từ đầu dò đến thùng có thể giảm thiểu
sai số này nhưng phải trả giá bằng việc suy giảm số đếm. Do vậy thùng được xoay
để giảm thiểu sai số gây ra bởi sự phân bố không đồng đều trong thùng. Sự lựa chọn
khoảng cách từ thùng đến đầu dò sao cho có sự cân bằng giữa tối thiểu hóa sai số và
20
có được số đếm chính xác tối đa. Sự biến đổi số đếm tối đa theo vị trí là nhỏ hơn
10% nếu khoảng cách từ tâm thùng đến đầu dò là bằng hoặc lớn hơn ba lần độ lớn
của bán kính thùng và mẫu được xoay [15].
2.2 Đánh giá sai số hệ thống
Dựa trên mô phỏng toán học của hệ thống SGS những thông số ảnh hưởng đến
sai số sẽ được nghiên cứu:
• Sự phân bố không đồng đều của chất thải phóng xạ trong thùng có chất độn
đồng nhất.
• Khoảng cách từ đầu dò đến tâm thùng liên quan đến việc điều chỉnh sai số
của phép đo với sự suy giảm số đếm mà đầu dò ghi nhận.
Mô hình thùng chất thải phóng xạ thường được sử dụng trong thực tế và mô
phỏng với thể tích 220 lít, đường kính 58 cm và chiều cao 86 cm. Phép đo gam-ma
được thực hiện ở năng lượng của các đồng vị sản phẩm phân hạch, từ 140 KeV đến
1400 KeV. Với khoảng năng lượng gam-ma đã cho, các hệ số hấp thụ tuyến tính
trung bình của chất độn đối sẽ trong khoảng 0,01 cm-1
đến 0,14 cm-1
. Trong luận
văn này, hệ số hấp thụ tuyến tính trung bình là từ 0,03 - 0,12 cm-1
và 0,0498 cm-1
ứng với chất độn là cát. Ta xét trường hợp các nguồn điểm trong chất độn là đồng
nhất [15].
Giả thiết có một nguồn điểm hoạt độ thực là Id trong một phân đoạn. Thì số
đếm thực của nguồn đó sẽ được tính như sau [15]:
j- .Ln
d
2
j=1 j
I . e
C =
n H
µ
α
∑ (2.5)
Trong đó:
Lj: độ dài quãng đường tia gam-ma trong thùng.
Hj: khoảng cách từ nguồn đến đầu dò.
Lj, Hj phụ thuộc vào góc θj, khoảng cách từ nguồn đến tâm thùng r, khoảng
cách từ đầu dò đến tâm thùng K, và bán kính thùng R.
n: số góc θj khác nhau cho mỗi số đếm
21
µ: hệ số hấp thụ tuyến tính
α: hệ số phụ thuộc vào năng lượng của tia gam-ma và hiệu suất của đầu dò
Hình 2.2. Mặt cắt ngang của một phân đoạn
2 2
j jH = K +r -2.K.r.cosθ (2.6)
2 2 2 2 2
j j j
j
j
R .H -K .r .sin θ -(K.cosθ -r).r
L =
H
(2.7)
Ở đây Lj, Hj tính cho trường hợp phân đoạn được chia có bề dày rất nhỏ so
với khoảng cách từ tâm thùng đến đầu dò, khi đó chúng ta có thể không tính tới bề
dày của một phân đoạn. Kết quả sẽ chính xác hơn khi tính đến bề dày z của các
phân đoạn, lúc này ta phải hiệu chỉnh lại Lj, Hj . Giả sử thùng với chiều cao 86 cm
được chia làm 10 phân đoạn, với bề dày của mỗi phân đoạn là 8,6 cm, khi đó Lj, Hj
sẽ được hiệu chỉnh là:
' 2 2
j jH = H +z (2.8)
' 2 2
j jL = L +z (2.9)
Với 0< z < 8,6 cm [2].
Mối liên hệ giữa số đếm thực và hoạt độ Is của nguồn đo bởi kĩ thuật SGS được cho
bởi công thức [15]:
s
i2
I .
C = .CF
K
α
(2.10)
So sánh kết quả của Id và Is được tính toán từ các công thức (2.5) và (2.10) ta
22
có thể rút ra được sai số tương đối của phép đo SGS.
2.3 Tính toán giá trị sai số bằng phương pháp ngẫu nhiên.
Để tính toán mô phỏng, phân bố ngẫu nhiên của một nguồn điểm và tổng quát
hơn là nhiều nguồn điểm được cho vào một phân đoạn đã được giả thiết ở đây. Phần
mềm Borland C là cơ sở cho việc lập trình để tính toán.
2.3.1 Trường hợp một nguồn điểm được gieo vào trong một phân đoạn
Khi ta gieo biến ngẫu nhiên để mô phỏng tương tự cho thao tác cho nguồn
vào thùng ở những toạ độ khác nhau một cách ngẫu nhiên. Vị trí r của nguồn khi
được cho ngẫu nhiên vào thùng sẽ nằm trong khoảng 0 – 29 cm. Hệ số hấp thụ
tuyến tính là 0,04987 cm-1
(thí nghiệm với hệ đo sử dụng cát làm chất độn) và K =
87; 116 cm. Do thùng được quay đều liên tục trong quá trình quét nên tôi không
tính sai số theo góc quét θj.
Như đã trình bày trong phần trên, ta có thể thấy được rõ ràng là vị trí của một
nguồn điểm theo bán kính r sẽ ảnh hưởng đến sai số của hệ thống trong phép đo
SGS. Chính vì thế trước tiên ta cần phải tính sai số hệ thống cho từng vị trí r sao
cho sự biến đổi của sai số là không quá lớn. Bảng 2.1 trình bày kết quả thống kê
tính toán theo bước nhảy của r là 0,5 cm.
Với giả thiết tính toán: hệ số phụ thuộc vào năng lượng của tia gam-ma và
hiệu suất của đầu dò α = 1 hoặc là hệ số này sẽ bị triệt tiêu khi ta tính toán bằng
cách lập tỉ số.
Kết quả sau khi đã thống kê:
Bảng 2.1. Giá trị sai số theo phân bố r (cm) khi cho một nguồn ngẫu nhiên vào
một phân đoạn
r (cm)
K = 87 cm K = 116 cm
Is/Id Sai số (%) Is/Id Sai số (%)
0,50 0,617 -38,3 0,617 -38,3
1,00 0,617 -38,3 0,617 -38,3
1,50 0,619 -38,1 0,618 -38,2
23
2,00 0,620 -38 0,62 -38
2,50 0,622 -37,8 0,622 -37,8
3,00 0,625 -37,5 0,624 -37,6
3,50 0,628 -37,2 0,627 -37,3
4,00 0,631 -36,9 0,63 -37
4,50 0,635 -36,5 0,634 -36,6
5,50 0,645 -35,5 0,642 -35,8
6,00 0,650 -35 0,647 -35,3
6,50 0,656 -34,4 0,652 -34,8
7,00 0,662 -33,8 0,658 -34,2
7,50 0,669 -33,1 0,665 -33,5
8,00 0,677 -32,3 0,671 -32,9
8,50 0,685 -31,5 0,679 -32,1
9,50 0,703 -29,7 0,695 -30,5
10,00 0,713 -28,7 0,704 -29,6
11,00 0,734 -26,6 0,723 -27,7
12,00 0,759 -24,1 0,745 -25,5
12,50 0,772 -22,8 0,757 -24,3
13,00 0,786 -21,4 0,77 -23
13,50 0,801 -19,9 0,783 -21,7
14,00 0,816 -18,4 0,797 -20,3
15,00 0,850 -15 0,827 -17,3
16,00 0,887 -11,3 0,86 -14
16,50 0,907 -9,3 0,878 -12,2
17,00 0,928 -7,2 0,897 -10,3
17,50 0,951 -4,9 0,917 -8,3
18,00 0,974 -2,6 0,938 -6,2
19,00 1,025 2,5 0,982 -1,8
24
19,50 1,052 5,2 1,006 0,6
20,00 1,081 8,1 1,032 3,2
20,50 1,111 11,1 1,058 5,8
21,00 1,143 14,3 1,087 8,7
22,00 1,212 21,2 1,147 14,7
22,50 1,250 25 1,18 18
23,00 1,289 28,9 1,215 21,5
23,50 1,332 33,2 1,252 25,2
24,00 1,376 37,6 1,291 29,1
25,00 1,475 47,5 1,377 37,7
25,50 1,529 52,9 1,424 42,4
26,50 1,651 65,1 1,53 53
27,00 1,720 72 1,59 59
27,50 1,795 79,5 1,656 65,6
So với kết quả hoạt độ thực của nguồn, kết quả tính toán cho thấy khi nguồn ở
gần tâm của phân đoạn hình tròn thì giá trị đo được có xu hướng bị đánh giá thấp đi,
còn khi nguồn ở gần mép thùng thì giá trị đo được sẽ có xu hướng bị đánh giá cao
hơn.
2.3.2 Trường hợp gieo nhiều nguồn ngẫu nhiên vào một phân đoạn
Từ những giá trị trên Bảng 2.1 dẫn đến việc phải trả lời câu hỏi là nếu có
nhiều nguồn phân bố ngẫu nhiên trong một phân đoạn thì kết quả sẽ như thế nào?
Để trả lời câu hỏi này, các tính toán cho một lượng nguồn từ một đến 1000 được
cho là phân bố đều trong một phân đoạn đã được tiến hành, kết quả thống kê được
đưa ra trong Bảng 2.2. Các nguồn ở đây được coi là có hoạt độ như nhau.
Kết quả sau khi đã thống kê:
Bảng 2.2. Giá trị Itb và sai số khi cho nhiều nguồn giống nhau vào một phân
đoạn
25
K = 87 cm
µ = 0,03 cm-1
K = 87 cm
µ = 0,0498 cm-1
K = 87 cm
µ = 0,12 cm-1
Số nguồn Itb Sai số (%) Itb Sai số(%) Itb Sai số(%)
1 1,63 63 1,86 86 2,22 122
2 1,22 22 1,53 53 2,21 121
3 1,27 27 1,49 49 2,22 122
4 1,15 15 1,41 41 1,72 72
5 1,18 18 1,33 33 1,75 75
6 1,12 12 1,30 30 1,50 50
7 1,07 7 1,21 21 1,31 31
8 1,04 4 1,15 15 1,17 17
9 1,06 6 1,09 9 1,22 22
10 1,10 10 1,19 19 1,37 37
20 1,03 3 1,01 1 1,01 1
30 0,98 -2 0,93 -7 0,81 -19
40 0,99 -1 0,92 -8 0,83 -17
50 1,01 1 0,95 -5 0,87 -13
60 1,01 1 0,96 -4 0,87 -13
70 1,02 2 0,96 -4 0,90 -10
80 1,03 3 1,00 0 0,95 -5
90 1,03 3 1,01 1 0,94 -6
100 1,02 2 0,98 -2 0,93 -7
200 1,00 0 0,95 -5 0,82 -18
300 1,01 1 0,96 -4 0,84 -16
400 1,00 0 0,94 -6 0,83 -17
500 1,00 0 0,95 -5 0,83 -17
600 1,01 1 0,94 -6 0,83 -17
700 1,01 1 0,95 -5 0,85 -15
800 1,00 0 0,94 -6 0,83 -17
900 1,00 0 0,96 -4 0,81 -19
26
1000 1,00 0 0,96 -4 0,81 -19
Nhận xét:
Trong những phép tính toán trên tôi sử dụng số lượng nguồn khác nhau và
khoảng cách từ thùng đến đầu dò không đổi để khảo sát sai số của phương pháp mô
phỏng theo hệ số hấp thụ tuyến tính µ và số nguồn gieo vào thùng rác thải.
- Với cùng một số nguồn, khi hệ số hấp thụ tuyến tính trung bình µ tăng lên thì
sai số trong phép đo sẽ tăng lên. Hệ số hấp thụ tuyến tính càng lớn thì phép đo sẽ có
sai số càng lớn.
- Số nguồn càng tăng lên thì sai số của phương pháp có xu hướng sẽ giảm đi. Qua
đó cho thấy rằng số lượng nguồn và sự phân bố của nguồn và chất độn ảnh hưởng
rất lớn đến sai số của phép đo. Số nguồn càng nhiều và phân bố đều với chất độn có
hệ số hấp thụ tuyến tính thấp thì phép đo càng chính xác.
2.3.3 Trường hợp tổng quát gieo nhiều nguồn vào thùng phóng xạ
Tổng quát hơn nữa: một lượng nguồn từ 10 đến 1000 được cho vào thùng với
nhiều phân đoạn. Các nguồn này được giả thiết là phân bố ngẫu nhiên đều trong
thùng để tính toán. Các kết quả được đưa ra trong Bảng 2.3.
Nhận xét:
Số nguồn cho vào thùng càng lớn thì sai số sẽ có xu hướng giảm xuống rất
nhỏ. Khi ta cho 10 nguồn vào thùng, sai số của phép đo trên từng phân đoạn có thể
rất lớn, có thể lớn hơn 100%. Sai số này do sự phân bố rời rạc của nguồn và nó
giảm đi khi ta tăng số nguồn lên. Điều này có nghĩa là nếu nguồn nhiều và được
phân bố đồng đều thì sai số của phương pháp sẽ giảm đi đáng kể so với một số ít
nguồn phân bố rời rạc, không đều trong thùng.
Khoảng cách K thay đổi ảnh hưởng rất nhỏ đến sai số trong các trường hợp
K = 87 cm hay K = 116 cm. Hệ số hấp thụ tuyến tính càng lớn dẫn đến sai số của
phép đo càng lớn, sai số lớn nhất khi µ = 0,12 cm-1
.
27
Bảng 2.3. Giá trị sai số khi cho nhiều nguồn vào thùng với 10 phân đoạn, với µ = 0,03; 0,06; và 0,12 cm-1
và K = 87 cm;
K = 116 cm
• Cho 10 nguồn vào thùng
Phân
đoạn
Số nguồn/
phân đoạn
µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
1 1 0,8108 -18,92 0,5703 -42,97 0,5703 -42,97 0,5674 -43,26 0,2138 -78,62 0,2121 -78,79
2 0 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100
3 1 0,7917 -20,83 0,5414 -45,86 0,5414 -45,86 0,5406 -45,94 0,1875 -81,25 0,1870 -81,3
4 1 0,8796 -12,04 0,6886 -31,14 0,6886 -31,14 0,6757 -32,43 0,3464 -65,36 0,3376 -66,24
5 0 -0,0000 -100 -0,0000 -100 -0,0000 -100 -0,0000 -100 -0,0000 -100 -0,000 -100
6 0 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100
7 2 1,2858 28,58 1,5065 50,65 1,5065 50,65 1,4025 40,25 1,7911 79,11 1,6523 65,23
8 1 0,8005 -19,95 0,5545 -44,55 0,5545 -44,55 0,5527 -44,73 0,1992 -80,08 0,1982 -80,18
9 2 0,7836 -21,64 0,5277 -47,23 0,5277 -47,23 0,5280 -47,2 0,1740 -82,6 0,1741 -82,59
10 2 1,0656 6,56 1,0762 7,62 1,0762 7,62 1,0198 1,98 1,0740 7,4 0,9987 -0,13
• Cho 50 nguồn vào thùng:
Phân
đoạn
Số nguồn /
phân đoạn
µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
28
1 5 0,9508 -4,92 0,9281 -7,19 0,8242 -17,58 0,5300 -47 0,5500 -45 0,5257 -47,43
2 4 1,2113 21,13 1,1482 14,82 1,3868 38,68 1,4050 40,5 1,5070 50,7 1,5714 57,14
3 2 1,2729 27,29 1,2007 20,07 1,2301 23,01 1,164 16,4 1,2684 26,84 1,6960 69,6
4 3 0,9302 -6,98 0,9102 -8,98 0,7881 -21,19 0,6068 -39,32 0,5068 -49,32 0,4852 -51,48
5 3 1,0031 0,31 0,9724 -2,76 0,9361 -6,39 0,8625 -14,75 0,7725 -22,75 0,7270 -27,3
6 6 0,9445 -5,55 0,9224 -7,76 0,8150 -18,5 0,6540 -34,6 0,5490 -45,1 0,5239 -47,61
7 11 0,9719 -2,81 0,9451 -5,49 0,8842 -11,58 0,842 -15,8 0,7246 -27,54 0,6805 -31,95
8 6 1,1375 13,75 1,0863 8,63 1,2010 20,1 1,2211 22,11 1,2211 22,11 1,1366 13,66
9 6 0,9337 -6,63 0,9130 -8,7 0,8021 -19,79 0,756 -24,4 0,5556 -44,44 0,5281 -47,19
10 4 1,1024 10,24 1,0560 5,6 1,1578 15,78 1,213 21,3 1,2583 25,83 1,1641 16,41
• Cho 200 nguồn vào thùng
Phân
đoạn
Số nguồn
/phân đoạn
µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
1 19 1,0309 3,09 0,9954 -0,46 0,9976 -0,24 0,9504 -4,96 0,9078 -9,22 0,8485 -15,15
2 20 0,9168 -8,32 0,8983 -10,17 0,7774 -22,26 0,7532 -24,68 0,6511 -34,89 0,6217 -37,83
3 27 0,9948 -0,52 0,9649 -3,51 0,9271 -7,29 0,8875 -11,25 0,7871 -21,29 0,7385 -26,15
4 19 1,0695 6,95 1,0285 2,85 1,0729 7,29 1,0180 1,8 1,0312 3,12 0,9617 -3,83
5 25 0,9666 -3,34 0,9411 -5,89 0,8622 -13,78 0,8304 -16,96 0,6412 -35,88 0,6072 -39,28
6 20 0,9708 -2,92 0,9444 -5,56 0,8798 -12,02 0,8451 -15,49 0,7090 -29,1 0,6669 -33,31
29
7 18 0,9633 -3,67 0,9381 -6,19 0,8634 -13,66 0,8307 -16,93 0,6735 -32,65 0,6350 -36,5
8 17 0,9654 -3,46 0,9399 -6,01 0,8620 -13,8 0,8300 -17 0,6484 -35,16 0,6135 -38,65
9 20 1,0495 4,95 1,0112 1,12 1,0387 3,87 0,9867 -1,33 0,9907 -0,93 0,9235 -7,65
10 15 0,9904 -0,96 0,9609 -3,91 0,9206 -7,94 0,8812 -11,88 0,7910 -20,9 0,7408 -25,92
• Cho 1000 nguồn vào thùng
Phân
đoạn
Số nguồn/
phân đoạn
µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
Itb
Sai số
(%)
1 106 0,9752 -2,48 0,9594 -4,06 0,8951 -10,49 0,8739 -12,61 0,7271 -27,29 0,7042 -29,58
2 109 0,9951 -0,49 0,9652 -3,48 0,9228 -7,72 0,8841 -11,59 0,7602 -23,98 0,7151 -28,49
3 110 0,9685 -3,15 0,9425 -5,75 0,8742 -12,58 0,8402 -15,98 0,6953 -30,47 0,6546 -34,54
4 84 0,9981 -0,19 0,9677 -3,23 0,9331 -6,69 0,8930 -10,7 0,7955 -20,45 0,7463 -25,37
5 99 1,0060 0,6 0,9743 -2,57 0,9506 -4,94 0,9083 -9,17 0,8364 -16,36 0,7829 -21,71
6 108 0,9729 -2,71 0,9463 -5,37 0,8789 -12,11 0,8449 -15,51 0,6868 -31,32 0,6480 -35,2
7 106 1,0024 0,24 0,9714 -2,86 0,9379 -6,21 0,8975 -10,25 0,7880 -21,2 0,7402 -25,98
8 106 0,9932 -0,68 0,9637 -3,63 0,9195 -8,05 0,8813 -11,87 0,7581 -24,19 0,7130 -28,7
9 102 0,9807 -1,93 0,9531 -4,69 0,8930 -10,7 0,8578 -14,22 0,7037 -29,63 0,6639 -33,61
10 70 0,9764 -2,36 0,9492 -5,08 0,8900 -11 0,8543 -14,57 0,7231 -27,69 0,6799 -29,58
30
Chương 3: Xây dựng hệ đo thực nghiệm
3.1 Cơ sở thực nghiệm
Các kết quả tính toán ở Chương 2 cho thấy nếu nguồn phóng xạ trong một
phân đoạn tập trung vào một vùng hẹp ở tâm hoặc mép thùng sẽ dẫn đến sai số rất
lớn. Để chứng minh điều này bằng thực nghiệm, một hệ đo dựa trên cơ sở nguyên lý
của phép đo SGS đã được nghiên cứu và thiết lập. Hệ đo này cũng có thể là cơ sở để
xây dựng một hệ đo SGS nếu được tiếp tục hoàn thiện.
Hệ đo sử dụng một đầu dò NaI có gắn ống chuẩn trực (colimator) hình trụ để
phân tích một phân đoạn đã cho trước của thùng rác thải. Nhiều đoạn có thể được
đo nếu ta đồng thời sử dụng nhiều máy dò để giảm thời gian đo lường. Số phân
đoạn được chia ra phân tích càng nhiều thì độ chính xác của phép đo càng cao, tuy
nhiên điều này khó có thể thực hiện được trong thực nghiệm do hạn chế về mặt kỹ
thuật. Hệ đo được thiết kế sao cho thoả mãn các yêu cầu đo đạc mà vẫn có thể
chiếm một thể tích nhỏ nhất và có thể dễ dàng lắp đặt và di chuyển nhất.
Bởi vì hệ SGS sử dụng một nguồn ngoài để tính hệ số hấp thụ cho sự suy giảm
tia gam-ma nên sai số của phép đo có thể nhỏ nếu các nguồn là đồng nhất giống như
nguồn ngoài mà ta đã sử dụng. Đối với những mẫu tương đối đồng nhất kể cả nguồn
và chất độn, với sự suy giảm tương đối thấp do chất độn hấp thụ, sai số nằm trong
khoảng từ 10% đến 30% (sai số trong trường hợp lý tưởng với chất độn và nguồn
đồng nhất). Sai số thực nghiệm rất lớn, có thể lớn hơn 500% xảy ra nếu thùng chất
thải thể hiện tính không đồng nhất về nguồn và chất độn [10].
31
 Phương pháp tính hệ số hấp thụ tuyến tính trung bình của chất độn
Ta sử dụng nguồn ngoài để tính hệ số truyền qua:
Hình 3.1. Sử dụng nguồn ngoài để tính hệ số hấp thụ tuyến tính trung bình [7]
Xác định hệ số hấp thụ tuyến tính trung bình bằng một nguồn truyền dẫn gắn
ngoài
0
t
IT
I
= (3.1)
Với :
I0: là cường độ nguồn ngoài khi không có chất độn ở giữa.
I: là cường độ khi có chất độn đặt giữa đầu dò và nguồn.
Tt: là hệ số truyền qua, nói lên cường độ của bức xạ xác định được sau khi đi
qua bề dày chất độn của thùng rác thải.
T: là năng lượng phân tích, là phần năng lượng của bức xạ được xác định khi
năng lượng từ nguồn được truyền trực tiếp đến thiết bị đo mà không phải đi
qua lớp vật chất hấp thụ nào trừ không khí.
Mối quan hệ giữa hệ số truyền qua trong năng lượng truyền qua và năng
lượng phân tích cho bởi:
t
tT T
µ
µ
= (3.2)
Trong đó µ và µt là hệ số hấp thụ tuyến tính tương ứng với năng lượng truyền
qua và năng lượng phân tích.
Cách này được sử dụng rộng rãi để xác định CFi ở phân đoạn thứ i trong
32
phương pháp SGS, vì hệ số hấp thụ tuyến tính có thể thay đổi giữa các vùng trên
một phân đoạn hoặc từ phân đoạn này sang phân đoạn khác. Từ đó ta tính được hệ
số suy giảm do chất độn CFi [15]:
0,823
1
0.823.lni
T
CF
T
−
=
−
(3.3)
3.2 Cấu tạo của thiết bị thí nghiệm:
3.2.1 Máy đơn kênh Ludlum thế hệ 2200
Máy đơn kênh Ludlum thế hệ 2200 là thiết bị được dùng cho việc phân
tích năng lượng gam-ma cùng với đầu dò nhấp nháy, ống đếm Geiger Muller và
ống đếm tỷ lệ. Số đếm được hiển thị trên đèn Led và máy có thể kết nối với máy vi
tính thông qua cổng RS-232 và có phần mềm xử lý kết quả đo.
- Đèn đếm (Count Lamp): số đếm hiện thị bằng đèn Led gồm có 6 số.
- Công tắc đếm (Count Switch): để xóa và khởi động đếm, quá trình đếm sẽ tự
động tắt khi kết thúc thời gian đã đặt trước.
- Thời gian đếm (Count Time): thời gian sử dụng để đo với đơn vị là phút từ 0-999
với công tắc chỉnh X0.1 và X1.
- Số phút (Minutes): cài đặt thời gian có thể điều chỉnh bằng tay có núm 3 số thập
phân dùng để đặt trước thời gian đếm.
- Công tắc chọn chức năng (Ratemeter Function Selector): có 3 vị trí được cài đặt
sẵn Rate, HV, Bat. Chức năng của công tắc này (Rate) là cho phép điều khiển tốc độ
đếm của đồng hồ, HV là cài đặt điện thế và Bat là kiểm tra tình trạng làm việc của
pin trên đồng hồ.
33
Hình 3.2. Máy đơn kênh Ludlum thế hệ 2200
- Ngưỡng (Threshold): Là một nút được chia ra làm 10 vạch nhỏ với 10 vòng
dùng đề lựa chọn xung phù hợp với thang đo. Thiết bị điều khiển này thì có giá trị
tăng từ thế từ 1.00 đến 10.00. Nếu dưới 1.00 thì sẽ bị ảnh hưởng của tiếng ồn hay
nhiễu do đó sẽ không ghi nhận được xung một cách chính xác.
- Cửa sổ (Window): là một nút gồm có 10 vạch giống như Threshold được sử
dụng để điều chỉnh độ rộng cửa sổ. Nó được điều chỉnh ngưỡng sao cho một vòng
quay của việc điều chỉnh cửa sổ tương đương với một vòng quay điều chỉnh
ngưỡng.
- Tắt mở (On-Off): là công tắc bằng nút, mở hoặc đóng cửa sổ.
- Đầu nối vào đầu dò: đầu nối đồng trục nối tiếp “C”. Nó là đầu điều chỉnh không có
chỉ số chỉ thị, cho phép chọn điểm làm việc mà không vượt ra khỏi mạch tuyến
tính của mạch Threshold/ Window.
- Công tắc chọn khoảng (Range Selector Switch): có 4 vị trí công tắc sắp xếp theo
hệ số nhân của 10 là X1, X10, X100, X1K ứng với thang đo của số đếm từ 0-500
counts-per-minute (cpm); 0-5000; 0-50000; 0-500.000 cpm.
- Công tắc Zero: khi ấn vào nút công tắc thì tụ điện tích hợp phóng điện để đưa
đồng hồ đo về mức 0.
34
- Nút Fast- Slow: công tắc với 2 vị trí chỉ thị để điều chỉnh ở mức độ nhanh ở vị trí
“F” đồng hồ sẽ chỉ từ 0 đến 90% toàn bộ thang đo trong 4 giây, còn ở vị trí “S”
đồng hồ thang đo sẽ chỉ từ 0 đến 90% toàn bộ thang đo trong 22 giây.
- HV (Cao thế): nút chỉnh gồm có 10 vòng được chia làm 10 vạch điều chỉnh cao
thế từ 200 V đến 2500 V.
Việc tiến hành đo của đầu dò và thiết bị được quyết định bởi cao thế HV và
ngưỡng cài đặt Threshold, ta phải điều chỉnh ngưỡng đo sao cho thích hợp để sự
ảnh hưởng có phông tự nhiên và nhiễu là nhỏ nhất.
• Đặc trưng kỹ thuật
- Nguồn nuôi: 85-265V sử dụng dòng điện xoay chiều, tần số 50-60 Hz.
- Pin: 4 pin với thời gian làm việc là 120 giờ được đặt trong thiết bị.
- Độ nhạy của thiết bị: độ nhạy điện thế cho các đầu dò .
- Cao thế: điều chỉnh bằng núm xoay 10 vòng từ 0V đến 1400 V.
- Bộ tốc độ đo: máy đếm với 4 tốc độ đếm là: 0-500 cpm, 0-5000 cpm, 0-50000
cpm, 0-500000 cpm (cpm: số đếm trên phút).
- Thời gian đếm là từ 0 đến 999 phút với các thang nhân X0.1 và X1.
- Độ chính xác thời gian: được quyết định bằng tinh thể với độ chính xác là: 0.2 %
số đếm đọc trên núm điều chỉnh.
- Độ chính xác của tốc độ đếm: 10 % giá trị tham chiếu.
• Cách vận hành
- Nguồn nuôi: Có thể sử dụng nguồn nuôi bằng cách sử dụng lưới điện hoặc dùng
pin bằng công tắc nguồn.
- Vận hành bằng nguồn điện lưới (line operation): nối thiết bị với nguồn lưới 85-
265 V, 50-60 Hz, bật công tắc về Line.
- Vận hành bằng nguồn pin: các ổ pin nằm ở mặt sau của thiết bị. Đặt 4 pin loại
“D” vào với cực dương hướng ra ngoài. Bật công tắc về Bat, kiểm tra tình trạng pin
bằng cách chọn Bat trên đồng hồ Rate-HV-Bat.
- Kiểm tra hoạt động của thiết bị bằng cách ấn vào nút Count lúc này đèn đếm sẽ
phát sáng, máy bắt đầu đếm.
35
3.2.2 Đầu dò nhấp nháy thế hệ 44-10
Đầu dò là thành phần quan trọng nhất trong các thiết bị bức xạ. Nguyên tắc
hoạt động chung của đầu dò ghi đo bức xạ là khi bức xạ đi qua môi trường vật chất
của nó, chúng tương tác với các nguyên tử và gây nên ion hoá và kích thích nguyên
tử.
Đầu dò NaI nhấp nháy thế hệ 44-10 sử dụng cho việc đo bức xạ gam-ma có
năng lượng trong khoảng 60 KeV - 2 MeV. Đầu dò bao gồm: tinh thể NaI đường
kính 2 inch (5,1cm); bề dày 2 inch (5,1cm) được nối với ống nhân quang điện và
được bao bọc bằng một lớp nhôm mỏng 0,062 inch.
Hình 3.3. Đầu dò nhấp nháy NaI thế hệ 44-10 và giá đỡ
 Đặc trưng kỹ thuật
- Chất nhấp nháy: tinh thể NaI.
- Độ nhạy : 900 cpm ( đối với nguồn 137
Cs ).
- Dụng cụ tương thích với mọi thiết bị.
- Điện thế hoạt động : 500-1200 V.
- Kết nối cổng “C”.
- Nhiệt độ là từ 200
C-500
C.
- Kích thước: đường kính 2,6 inch (6,6 cm); chiều dài là 11 inch (27,94 cm).
 Cách vận hành và bảo quản đầu dò
- Kết nối đầu dò với máy đếm bằng cáp.
- Kiểm tra đầu dò.
36
- Bảo đảm cao thế (HV) phù hợp với đầu dò .
- Sau khi kiểm tra an toàn thì có thể tiến hành đo
- Đặt nơi khô ráo.
- Nhiệt độ trong khoảng từ 200
C đến 500
C.
Do chỉ giới hạn mục đích kiểm nghiệm kết quả tính toán với kết quả từ mô
phỏng lý thuyết, nên luận văn này tôi chỉ quan tâm đến số đếm và sử dụng đầu dò
NaI. Trong trường hợp chúng ta quan tâm nhiều hơn đến các đồng vị trong thùng
rác thải ta phải sử dụng đầu dò HPGe cùng với hệ phân tích đa kênh để thu được
phổ năng lượng ứng với gam-ma đặc trưng của các đồng vị phóng xạ.
3.2.3 Giá đỡ và ống chuẩn trực chì
Hình 3.4. Ống chuẩn trực được chế tạo riêng cho đầu dò nhấp nháy NaI
Ống chuẩn trực được đúc và tiện bằng chì theo đúng kích cỡ cần thiết ứng
với kích cỡ của giá đỡ, đầu dò và bề dày của một phân đoạn. Sử dụng hai ống ghép
lại với nhau: ống lớn có đường kính trong là 7 cm, đường kính ngoài là 9 cm, chiều
dài 7 cm ôm trọn lấy đầu tinh thể NaI, ống nhỏ có chiều dài là 5 cm, đường kính
trong 0,5 cm ứng với góc nhìn (độ mở tầm nhìn) trên từng phân đoạn của đầu dò.
Các ống chuẩn trực được gắn đồng trục trên cùng một giá đỡ với đầu dò. Khi
gắn ống chuẩn trực vào đầu dò thì nó làm cho góc nhìn của đầu dò bị hạn chế lại,
góc nhìn của đầu dò bây giờ sẽ tương ứng với bề dày của mỗi phân đoạn đã phân
chia trên thùng rác thải.
Ứng với khoảng cách từ tâm thùng đến đầu dò là K = 87 cm thì đường kính
của ống chuẩn trực sẽ là:
37
Hình 3.5. Tỉ lệ đường kính ống chuẩn trực và bề dày phân đoạn
. 8,6.5
0,5
87
d L z L
d
z K K
= ⇒ = = ≈
Với: d: là đường kính trong của ống chuẩn trực
z: là chiều cao của một phân đoạn
L: là chiều dài của ống chuẩn trực
K: là khoảng cách từ tâm thùng đến đầu dò.
Hình 3.6. Ống chuẩn trực gắn với đầu dò trên giá đỡ + máy LUDLUM 2200
3.2.4 Hệ nâng thùng rác thải phóng xạ gồm có:
- Giá đỡ: được làm bằng bốn trục kim loại gắn lại với nhau, thước dây được gắn liền
với các trục này để ta có thể biết được chính xác vị trí của từng phân đoạn của thùng
rác thải.
- Một mô tơ có công suất lớn, có thể nâng được 200 kg, được gắn hệ giảm tốc và hệ
phanh để có thể nâng thùng lên hoặc hạ thùng xuống theo đúng độ cao ta cần có. Hệ
phanh có thể giúp giữ thùng tại một độ cao nào đó để ta có thể thực hiện các phép
đo.
38
- Hệ trượt cho thùng: gồm dây và trục ròng rọc truyền động. Các bánh răng được
gắn thêm vào giữa mô tơ quay và ròng rọc trong hệ truyền động để giảm tốc độ
nâng lên hoặc trượt xuống, giúp chúng ta có thể điều chỉnh chính xác chuyển động
của thùng rác thải.
Hình 3.7. Mô tơ quay và hệ nâng
Hình 3.8. Mô tơ, bánh đà và dây xích truyền động
- Cáp trượt: làm bằng dây chắc chắn, có thể thay thế được một cách dễ dàng. Cáp
39
trượt gắn với hai ròng rọc, một ở mô tơ nâng và một ở giá đỡ thùng rác thải phóng
xạ. Khi mô tơ hoạt động thì cáp trượt sẽ nâng thùng lên hoặc hạ thùng xuống theo ý
muốn thực nghiệm.
Hình 3.9. Cáp trượt, thanh trượt và thước đo của hệ nâng
Hệ nâng có thể nâng thùng lên hoặc hạ thùng xuống trong một phạm vi là
0,6 m theo phương thẳng đứng. Trong mô hình thí nghiệm này, hệ nâng sẽ nâng
hoặc hạ thùng lên xuống từng đoạn là 8,6 cm tương ứng với chiều cao của mỗi phân
đoạn trên thùng mà ta đã chia ứng với góc quét của đầu dò. Toàn bộ hệ được thiết kế
chắc chắn nhưng tương đối gọn nhẹ, chiếm diện tích sàn khoảng 0,64 m2
, thuận lợi
cho việc lắp ráp, thay thế linh kiện và di chuyển.
3.2.5 Hệ quay và thùng rác thải:
• Hệ quay
Hệ quay gồm một mô tơ quay đã gắn hệ giảm tốc, quay với tốc độc chậm để
đầu dò có thể quét được toàn bộ thùng rác thải phóng xạ một cách chi tiết nhất, mô
tơ được gắn hệ truyền động gồm các bánh răng gắn liền với trục quay của giá đỡ
thùng rác thải phóng xạ.
40
Hình 3.10. Mô tơ được gắn với giá đỡ của hệ quay
• Thùng rác thải:
Thùng chất thải được đặt trên đĩa quay của giá đỡ và có thể thay thế được,
khi thùng quay có thể được quét lần lượt từng phân đoạn trên cùng một trục. Kích
thước:
 Đường kính : 58 cm
 Chiều cao: 51 cm
 Thùng có thể tích là: 130 lít
Do vấn đề tải trọng quá lớn cộng với việc sẽ thiếu nguồn làm thí nghiệm nếu
thiết kế đúng theo thùng rác thải thường sử dụng nên thùng rác ở đây đã được cắt đi
một nửa, với chiều cao 51 cm. Thùng được chia làm năm phân đoạn trong quá trình
làm thí nghiệm, mỗi phân đoạn có chiều cao là 8,6 cm.
41
Hình 3.11. Thùng rác thải trên giá đỡ và hệ quay
Thùng rác thải này được chế tạo lại tương tự thùng rác thải hạt nhân thật sự
với chất độn được sử dụng là cát, vải vụn, giấy vụn… để có thể cho nguồn vào hoặc
lấy nguồn ra mà không làm ảnh hưởng đến nguồn thay vì sử dụng xi măng và các
chất độn khác như thùng rác thải thật. Trong thí nghiệm định tính để kiểm tra số
đếm thô của đầu dò tôi đã sử dụng hỗn hợp chất độn gồm cát và vải vụn với khối
lượng riêng hỗn hợp là khoảng 1-1,5 g/cm3
.
Hình 3.12. Chất độn là cát và vải vụn được cho vào thùng với nguồn.
42
3.2.6 Bộ nguồn sử dụng trong quá trình đo đạc:
Bảng 3.1. Thông tin bộ nguồn sử dụng trong quá trình đo
Nguồn
Hoạt độ ban
đầu
Chu kì bán rã
Hoạt độ
hiện tại
Năng lượng (MeV)
133
Ba 1 µCi 10,8 năm 0,741 µCi
0,081; 0,276; 0,303; 0,365;
0,384
109
Cd 1 µCi 463 ngày 0,0078 µCi 0,022; 0,025; 0,088
57
Co 1 µCi 272 ngày 0,013µCi 0,122; 0,136
60
Co 1 µCi 5,27 năm 0,541µCi 1,173; 1,332
137
Cs 1 µCi 30,2 năm 0,898 µCi 0,662
54
Mn 1 µCi 313 ngày 0,023 µCi 0,835
22
Na 1 µCi 2,6 năm 0,288µCi 0,511; 1,275
65
Zn 1 µCi 244 ngày 0,0079 µCi 1,115
152
Eu
KHTN
12,4 năm 1 µCi
133
Ba 10,8 năm 1 µCi
0,081; 0,276; 0,303; 0,365;
0,384
137
Cs 30,2 năm 10 µCi 0,662
Hình 3.13. Bộ nguồn phóng xạ sử dụng trong thí nghiệm
43
Hình 3.14. Lắp đặt hệ thí nghiệm
44
Chương 4: Đánh giá kết quả đo đạc, sai số trong các thí
nghiệm với hệ đo SGS bằng phương pháp ngẫu nhiên và
bình luận
4.1 Khảo sát định tính khả năng quét gam-ma của hệ đo SGS với
nguồn và chất độn không đồng nhất
4.1.1 Các bước tiến hành
Bước 1:
- Cài đặt đầu dò.
- Cài đặt thời gian tại nút công tắc “X1” và khi đó thời gian đo (Minutes) ở công
tắc “030” để tiến hành đo đạc trong khoảng thời gian 30 phút.
- Đặt ngưỡng 1.0 và lên cao thế phù hợp ở 800 V.
Bước 2:
- Đo khoảng cách từ tâm thùng đến đầu dò là K = 87 cm.
- Đặt ống chuẩn trực lên giá đỡ đồng trục với đầu dò sao cho ống chuẩn trực ôm
trọn lấy tinh thể NaI. Lắp đặt hệ thí nghiệm như hình:
Hình 4.1. Lắp đặt đầu dò, ống chuẩn trực và thước đo khoảng cách K
- Đo phông phóng xạ của môi trường trong khoảng thời gian 30 phút. Ghi lấy số
45
đếm phông.
Bước 3:
- Cho các nguồn mẫu vào thùng một cách ngẫu nhiên đồng thời với việc cho chất
độn cát và vải vào thùng.
- Gạt công tắc của mô tơ nâng để nâng thùng lên hoặc hạ thùng xuống các đoạn 8,6
(cm) theo đúng phân đoạn cần đo.
- Gạt công tắc mô tơ quay để quay thùng rác thải phóng xạ.
- Nhấn nút Count để ghi lại số đếm trong mỗi trường hợp đo.
- Khoảng 6-7,5 phút lại thay đổi phân đoạn đo một lần sao cho toàn bộ các phân
đoạn trên thùng rác thải đều được quét với thời gian như nhau.
Đo trong thời gian 30 phút, ghi lại số đếm tổng của phông và nguồn. Hoặc ghi
lại số đếm trên từng phân đoạn rồi cộng lại hoặc so sánh chúng với nhau, dựa vào
số đếm này chúng ta có thể biết được phân đoạn nào chứa nhiều nguồn hoặc có
hoạt độ cao hơn các phân đoạn còn lại.
4.1.2 Kết quả thí nghiệm:
 N1 là số đếm phông, N2 là số đếm tổng phông và nguồn.
 N = N2 - N1 : số đếm thô được ghi nhận bởi đầu dò
• Sử dụng bộ nguồn chuẩn của trường ĐH Sư Phạm TP.HCM cho vào thùng
với bốn phân đoạn được chia.
Bảng 4.1. Số đếm thô khi cho 8 nguồn chuẩn vào bốn phân đoạn của
thùng với các lần cho ngẫu nhiên khác nhau.
Số lần
đo
N1 N2 N
1 182076 188328 6736
2 181153 187992 6400
3 181547 188828 7236
TB 181592 6790,667
46
Số lần
đo
N1 N2 N
1 154241 161083 6876,333
2 154385 162079 7872,333
3 153994 161480 7273,333
TB 154206,7 7340,667
Số lần
đo
N1 N2 N
1 154241 161352 6989,333
2 153874 160635 6272,333
3 154973 161380 7017,333
TB 154362,7 6759,667
Số lần
đo
N1 N2 N
1 138285 144265 6718,333
2 137135 143252 5705,333
3 137220 143482 5935,333
TB 137546,7 6119,667
Số lần
đo
N1 N2 N
1 138285 144417 6870,333
2 137135 144713 7166,333
3 137220 144985 7438,333
47
TB 137546,7 7158,333
Số lần
đo
N1 N2 N
1 159927 166032 6692
2 158061 166267 6927
3 160032 166334 6994
TB 159340 6871
• Sử dụng 11 nguồn gồm 8 nguồn chuẩn của ĐH Sư Phạm TP.HCM và 3
nguồn của ĐH KH-TN TP.HCM cho vào thùng với năm phân đoạn được
chia.
Bảng 4.2. Số đếm thô khi cho 11 nguồn vào năm phân đoạn của thùng với các
lần cho ngẫu nhiên khác nhau.
Số lần
đo
N1 N2 N
1 144157 154644 10607,67
2 143865 154998 10961,67
3 144087 154340 10303,67
TB 144036,3 10624,33
Số lần
đo
N1 N2 N
1 139696 153488 13099,33
2 140803 154331 13942,33
3 140667 154237 13848,33
TB 140388,7 13630
48
Số lần
đo
N1 N2 N
1 139696 153586 13197,33
2 140803 153869 13480,33
3 140667 154088 13699,33
TB 140388,7 13459
Số lần
đo
N1 N2 N
1 140525 151632 11198
2 140448 152033 11599
3 140329 152348 11914
TB 140434 11570,33
Số lần
đo
N1 N2 N
1 140525 153402 12968
2 140448 151930 11496
3 140329 151935 11501
TB 140434 11988,33
• Sử dụng 10 nguồn gồm 8 nguồn chuẩn của ĐH Sư Phạm TP.HCM và 2
nguồn 152
Eu, 133
Ba của ĐH KH-TN TP.HCM cho vào thùng với 5 phân đoạn
được chia
Bảng 4.3. Số đếm thô khi cho 10 nguồn vào năm phân đoạn của thùng với
các lần cho ngẫu nhiên khác nhau.
Số lần
đo
N1 N2 N
1 139696 148879 8490,333
49
2 140803 149959 9570,333
3 140667 151273 10884,33
TB 140388,7 9648,333
Số lần
đo
N1 N2 N
1 139696 150476 10087,33
2 140803 148994 8605,333
3 140667 148902 8513,333
TB 140388,7 9068,667
Số lần
đo
N1 N2 N
1 140525 151147 10713
2 140448 149090 8656
3 140329 150806 10372
TB 140434 9913,667
4.1.3 Đánh giá và bình luận:
Trong thí nghiệm này ta đã ghi nhận được số đếm trên từng phân đoạn và số
đếm tổng của thùng, nhưng lại chưa thể xử lý được số đếm này và so sánh với hoạt
độ thực của thùng. Lý do: khi làm thí nghiệm với cả thùng rác thải phóng xạ lớn ta
cần phải có một lượng nguồn tương đối để cho vào thùng. Do đó trong thí nghiệm
này tôi đã huy động tất cả các nguồn trong phòng thí nghiệm và mượn thêm nguồn
ở Tổ bộ môn VLHN trường ĐH KHTN TP.HCM. Tuy nhiên các nguồn này khác
nhau nhiều về hoạt độ (có nguồn hoạt độ rất lớn, nhưng có nhiều nguồn hoạt độ rất
nhỏ), về thành phần cũng như là năng lượng gam-ma do các nguồn phát ra, dẫn đến
các hệ số hấp thụ tuyến tính và hiệu suất ghi của đầu dò theo năng lượng gam-ma sẽ
không tính toán chính xác được. Do đó thí nghiệm chỉ mang tính chất định tính để
50
kiểm tra tính năng hoạt động của đầu dò cùng ống chuẩn trực, chứ chưa có thể tính
toán được hoạt độ của thùng bằng phương pháp SGS và so sánh với hoạt độ thực tế
của bộ nguồn sử dụng từ đó rút ra sai số của phép đo SGS.
So sánh số liệu giữa các thí nghiệm ta đo được, ta thấy:
 Với cùng một số lượng nguồn cho ngẫu nhiên vào thùng, ta có được số đếm
không sai khác nhau quá nhiều, sai số tương đối giữa các phép đo không
vượt quá 50%.
 Khi số lượng nguồn tăng lên, ta thấy số đếm thô mà đầu dò ghi nhận cũng
tăng lên rõ rệt. Kết quả đo này là phù hợp với thực tế, chứng tỏ được hệ đo
ổn định, và về mặt định tính nó cho ta thấy được rằng những phân đoạn nào
có chứa nguồn hay những thùng nào có nhiều nguồn phóng xạ hay hoạt độ
lớn hơn thì sẽ cho số đếm lớn hơn.
Đề nghị cải tiến:
Nếu ta sử dụng bộ nguồn đồng nhất với các nguồn giống nhau hoàn toàn, ta
có thể tính được hoạt độ và đưa ra kết luận về sai số của phép đo. Để tính toán chính
xác hơn đối với lượng nguồn không đồng nhất này ta phải sử dụng đầu dò HPGe và
hệ phổ kế đa kênh để thu được phổ năng lượng và xử lý số đếm trên từng đỉnh năng
lượng.
4.2 Khảo sát sai số của phương pháp SGS do phân bố của nguồn
Trong thí nghiệm này, tôi sẽ khảo sát sai số của phương pháp SGS do sự phân
bố của nguồn theo r (cm) với khoảng cách K, sử dụng chất độn đồng nhất là cát.
Sử dụng nguồn Cs137
có hoạt độ I = 3,3 mCi = 12,21 MBq mượn tại Trung Tâm Hạt
nhân TP. HCM
51
Hình 4.2. Nguồn Cs137
với hoạt độ I = 12,21 (MBq), dạng ống với hộp chì đựng
4.2.1 Các bước tiến hành:
Bước 1:
- Cài đặt đầu dò
- Cài đặt thời gian tại nút công tắc “X1” và khi đó thời gian đo (Minutes) ở công
tắc “001” để tiến hành mỗi phép đo trong khoảng thời gian 1 phút.
- Đặt ngưỡng 1.0 và lên cao thế phù hợp 800V với đầu dò NaI.
Bước 2:
- Đo khoảng cách từ tâm thùng đến đầu dò tương ứng với K = 87 cm và
K = 116cm.
- Đo phông phóng xạ của môi trường. Ghi lấy số đếm phông trung bình.
Bước3:
- Cho nguồn mẫu vào thùng một cách ngẫu nhiên. Ghi lại vị trí của nguồn, từ đó
xác định khoảng cách từ nguồn tới tâm thùng bằng thước đo. Thí nghiệm này sử
dụng chỉ 1 nguồn và chất độn là đồng nhất (cát).
52
Hình 4.3. Các vị trí của nguồn có thể có khi cho vào thùng một cách ngẫu nhiên
- Gạt công tắc của mô tơ để nâng thùng lên hoặc hạ thùng xuống đúng vị trí phân
đoạn cần đo.
- Gạt công tắc mô tơ quay để làm quay thùng rác thải phóng xạ.
- Nhấn nút Count để ghi lại số đếm trong mỗi trường hợp đo.
Mỗi phép đo tiến hành 10 lần, ghi lại số đếm tổng của phông và nguồn.
Số đếm thu được trong các lần đo bằng kỹ thuật SGS chính là Cs, từ (2.10) ta có
53
2
s
s
i
s
i2
C .K
I =
.CF
I .
C = .CF
Ks
α
α
⇒ (4.1)
4.2.2 Xác định hệ số hấp thụ tuyến tính µ của cát sử dụng với nguồn Cs137
Đặt nguồn ở khoảng cách K = 87 cm so với đầu dò, ghi lại số đếm N0. Giữ
nguyên khoảng cách K, cho chất độn là cát vào giữa nguồn và đầu dò với bề dày
của lớp cát là x. Ghi lại số đếm N. Ta có:
.
0. x
N N e µ−
= (4.2)
Lấy ln hai vế:
0
ln .
N
x
N
µ=
0
ln
N
N
x
µ⇒ = (4.3)
Kết quả:
Bảng 4.4. Hệ số hấp thụ tuyến tính trung bình
N0 Bề dày x N µ (cm-1
)
Hệ số hấp thụ
trung bình (cm-1
)
1469854 27 375013 0,0506
0,049871469854 56 100760 0,0478
1469854 14 719760 0,0512
4.2.3 Xác định hệ số α và công thức tính sai số
Có được hệ số hấp thụ tuyến tính, ta tiếp tục tính α và sai số của phương pháp SGS
với thực tế. Giả thiết có một nguồn điểm hoạt độ thực là Id trong một phân đoạn, thì
số đếm thực của nguồn đó sẽ được tính theo công thức (2.5) :
j- .Ln
d
2
j=1 j
I . e
C =
n H
µ
α
∑
Đặt nguồn ở trung tâm thùng với các khoảng cách K=87; 116 cm.
54
Lúc này ta có: r =0
Lj =R=28cm
Hj = K
2
2
I .
.
I
C =
C
R
d
R
d
e
K
K
e
µ
µ
α
α
−
−
⇒ =
⇒
(4.3)
Thế α vào biểu thức (4.1):
2
s
s
i
C .K
I =
.CFα
.
R
s s
d i
I e
I CF
C
C
µ−
⇒ = (4.4)
Từ công thức (4.4) ta có thể tính toán được sai số giữa Is và Id dựa vào số đếm
Cs thu được từ các phép đo SGS với các khoảng cách r khác nhau.
Kết quả đánh giá thô sai số hệ thống bằng thực nghiệm được đưa ra trong
Bảng 4.5 và 4.6 dưới đây. Các kết quả này được thống kê từ Phụ lục 1 và 2.
4.2.4 Kết quả thực nghiệm với K = 87 cm
Bảng 4.5. Số đếm và sai số theo phân bố khoảng cách r (cm), với
K = 87 cm và µ = 0,04987 cm-1
r (cm) Số đếm trung bình Cs Sai số (%)
0 374369,6 -36,9
3 378324,2 -35,244
6 390958,6 -34,1039
7 394979,4 -33,4262
8 437971 -26,18
11 454528,2 -23,3893
13 550786,9 -7,16486
17 619452,2 4,4088
55
20 717512,5 20,93674
23 773208,7 30,32433
24 851996,3 43,60399
27 922887,2 55,55265
 Phân bố xác suất khi cho một nguồn vào khoảng các vị trí r từ 0 – 28 cm
trong tiết diện của một phân đoạn.
Thí nghiệm sử dụng nguồn phóng xạ với hoạt độ tương đối lớn, nên ta phải có
kế hoạch đo rõ ràng, tránh tiếp xúc quá lâu với nguồn sẽ rất nguy hiểm. Để hạn chế
thời gian tiếp xúc với nguồn, ta có thể xem việc cho nguồn vào thùng giống như
cách nhắm mắt lại rồi ném một viên bi vào thùng một cách ngẫu nhiên, ghi lại vị trí
của viên bi trong thùng. Thực hiện điều này nhiều lần để lấy được nhiều vị trí khác
nhau, tiến hành thống kê và tính toán tần suất mà nguồn có thể rơi vào trong một
khoảng cách r (cm) nào đó. Sau đó ta mới cho nguồn vào đúng vào khoảng các vị trí
mà ta đã thống kê rồi tiến hành đo đạc.
Xác suất nguồn rơi vào trong đoạn từ r1 – r2 sẽ là tỉ lệ giữa diện tích hình vành
khăn được bôi đen với tiết diện của thùng (diện tích của một phân đoạn) Hình 4.4:
2 2
a 2 1
2
.( )
w .100% .100%
.
v nhkhan
phandoan
S r r
d
S R
π
π
−
= = (4.5)
56
Hình 4.4. Xác suất nguồn rơi vào hình vành khăn
Hình 4.5. Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách r (cm) khi
cho nguồn ngẫu nhiên vào thùng, K = 87 cm.
57
 Biểu đồ sai số theo phân bố khoảng cách
Hình 4.6. Biểu đồ sai số thực nghiệm theo khoảng cách r (cm), với K = 87 cm
Hình 4.7. Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 87 cm và
µ = 0,04987 cm-1
với số liệu tính toán mô phỏng.
58
4.2.5 Kết quả thực nghiệm với K = 116 cm
Bảng 4.6. Số đếm và sai số theo phân bố khoảng cách r (cm), với
K = 116 cm và µ = 0,04987 cm-1
.
r (cm) Số đếm trung bình Cs Sai số (%)
0 230295,1 -36,9
5 260159,4 -28,7173
6 262902,2 -27,9658
8 280212,5 -23,2228
9 294685,4 -19,2573
10 297543,7 -18,4741
12 308591,6 -15,4471
16 388728,1 6,510052
18 410684,5 12,52602
20 466461,8 27,8088
25 603697,4 46,42295
26 639806,1 53,56191
Hình 4.8. Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách r (cm) khi
cho nguồn ngẫu nhiên vào thùng, với K = 116 cm.
59
 Biểu đồ sai số theo phân bố khoảng cách
Hình 4.9. Biểu đồ sai số thực nghiệm theo khoảng cách r (cm), với K = 116 cm
Hình 4.10. Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 116 cm
và µ = 0,04987 cm-1
với số liệu tính toán mô phỏng
60
4.2.6 Đánh giá và bình luận:
Mặc dù các kết quả thí nghiệm vẫn còn thô, mang tính chất định tính để kiểm
tra kết quả và dự đoán bằng lý thuyết về sự ảnh hưởng của sự phân bố nguồn trong
một phân đoạn đến sai số hệ thống của phép đo SGS, nhưng có thể khẳng định kết
quả thực nghiệm là phù hợp với kết quả tính toán bằng lý thuyết trong trường hợp
một nguồn điểm phóng xạ nằm trong một phân đoạn.
Ta thấy đồ thị đường thực nghiệm có dạng gần giống như đường mô phỏng,
cộng với kết quả tính toán sai số trong khoảng từ -36,9 % đến 55,55 %. Số liệu sai
số này do mô phỏng bằng phương pháp ngẫu nhiên trong khoảng sai số -38,3 % đến
79,5 % (Bảng 2.1).
Sai số lớn nhất là khi nguồn phân bố ở tâm thùng (r = 0 cm): -36,9% và phân
bố ở gần vành thùng (r = 26; 28 cm): 55,55265%; 53,56191%. Trong khoảng r từ
10-20 cm thì sai số của phương pháp SGS là nhỏ nhất. Các biểu đồ về phân bố ngẫu
nhiên của một nguồn điểm theo bán kính cho thấy xác suất ngùôn rơi vào các vị trí
gây sai số lớn (tại tâm và mép thùng) là nhỏ hơn so với xác suất nguồn rơi vào các
vị trí r từ 10-20 cm, đây là khoảng vị trí cho sai số nhỏ hơn.
Với sai số này, hệ đo có khả năng áp dụng vào thực tế để đo đạc với số lượng
nguồn đồng nhất nhiều hơn.
61
KẾT LUẬN
Với mục tiêu ban đầu là tính toán sai số của kỹ thuật SGS bằng phương pháp
ngẫu nhiên, kết hợp giữa thực nghiệm và tính toán mô phỏng, luận văn đã đạt được
những kết quả cụ thể sau đây:
- Tính toán lại sai số của SGS bằng phương pháp ngẫu nhiên trong các trường
hợp cho nguồn vào một phân đoạn của thùng rác thải và trường hợp cho nguồn vào
cả thùng rác thải. Rút ra được kết luận về sai số này, và từ đó tiến hành việc chế tạo
và đo đạc thực nghiệm.
- Xây dựng được hệ đo SGS để đo đạc và tính toán thực nghiệm bằng phương
pháp cho các nguồn phóng xạ vào thùng ngẫu nhiên. Hệ đo này có thể dùng để
nghiên cứu các đề tài tiếp theo, liên quan đến đo hoạt độ phóng xạ của thùng rác
thải.
- Tiến hành đo đạc thực nghiệm với nguồn và chất độn không đồng nhất cho
vào thùng, ghi đo lại số đếm và so sánh. Từ đó khảo sát định tính khả năng quét của
hệ đo SGS với nguồn và chất độn không đồng nhất.
- Tiến hành đo đạc thực nghiệm với nguồn Cs137
cho vào một phân đoạn, và
khảo sát định lượng sai số của kỹ thuật SGS do sự phân bố của nguồn và khoảng
cách K với chất độn là cát đồng nhất. Kết quả thực nghiệm thu được khá phù hợp
với kết quả tính toán lý thuyết.
62
KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU
TIẾP THEO
Đề tài có những kiến nghị sau:
- Có thể tiến hành thí nghiệm với chất độn là giấy, hoặc vải vụn, hoặc pha trộn
nhiều hợp chất khác nhau để làm rõ hơn sai số phụ thuộc vào chất độn như thế nào.
- Tính toán hệ số liên hệ giữa năng lượng gam-ma và hiệu suất của đầu dò NaI
với các nguồn phát ra gam-ma năng lượng khác nhau, từ đây ta có thể làm thí
nghiệm với nhiều nguồn có hoạt độ và thành phần khác nhau và có thể mở rộng mô
hình cho việc đo và tính toán hoạt độ của thùng rác thải chứa các nguồn không đồng
nhất. Chế tạo thêm các ống chuẩn trực ứng với kích thước của các đầu dò trong
phòng thí nghiệm, để có thể tiến hành đo với các đầu dò ở nhiều khoảng cách và các
kích thước phân đoạn khác nhau.
- Cải tiến lại hệ đo với đầu dò bán dẫn HPGe siêu tinh khiết cùng với hệ phổ
kế đa kênh trong phương pháp đo nhận diện các đồng vị phóng xạ, phân bố và hoạt
độ của chúng theo phổ thu được.
- Chế tạo thêm hệ che chắn cho hệ đo SGS bằng chì, nâng cao khả năng tự
động của hệ máy để người vận hành chịu ít ảnh hưởng nhất khi tiến hành đo đạc với
nguồn phóng xạ.
- Kết hợp hai hay nhiều đầu dò trở lên trong kỹ thuật SGS để phép đo nhanh
hơn và thu được kết quả chính xác hơn – đây chính là kỹ thuật phân tích kép.
63
DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ
Tran Quoc Dung, Phan Trong Phuc, Truong Truong Son, Le Anh Duc (2012),
“Evaluation of combination of different methods for determination of activity of
radioactive waste in sealed drum”, Tạp chí khoa học ĐHSP TPHCM, số 36 năm
2012.
64
TÀI LIỆU THAM KHẢO
Tài liệu tham khảo Tiếng Việt:
1. Trần Phong Dũng, Châu Văn Tạo, Nguyễn Hải Dương (2005), “Phương pháp
ghi bức xạ ion hóa”, NXB ĐH Quốc Gia TP.HCM.
2. Đỗ Văn Duyệt (2010), “Sử dụng phương pháp xác suất để đánh giá sai số hệ
thống của phương pháp gamma không phá hủy trong kiểm tra chất thải phóng
xạ ”, Luận văn tốt nghiệp đại học, Trường ĐH Khoa Học Tự Nhiên TP.HCM,
11-15.
3. Lê Hồng Khiêm (2008), “Phân tích số liệu trong ghi nhận bức xạ”, NXB Đại
học Quốc Gia Hà Nội.
Tài liệu tham khảo Tiếng Anh:
4. D. J. Decman, H. E. Martz, G. P. Roberson, and E. Johansson (1996), “NDA Via
Gamma-Ray Active And Passive Computed Tomography”, Lawrence
Liverrnore National Laboratory, USA.
5. D. Nakazawa, M. Field, B. Gillespie, R. Mowry, S. Philips, A. Radomski, and H.
Yang (2011), “A New Segmented Gamma Scanner System – 11366”, WM2011
Conference, Canberra Industries Inc, 800 Research Parkway, Meriden, 06450,
USA, 1-3.
6. G. P. Roberson, H. E. Martz, D. J. Deckman, D. C. Camp, S. G. Azevedo and E.
R. Keto (1994), “Characterization of Waste Drums Using Nonintrusive Active
and Passive Computed Tomography”, Lawrence Livermore National
Laboratory, CA 94551, USA.
7. G. W. Eccleston (1991), “Segmented gam-ma-ray scanner”, Los Alamos National
Laboratory, 1-2.
8. H. E. Martz, G. P. Roberson, D. J. Decman, and D. C. Camp (1997), “Gamma-
Ray Scanner Systems for Nondestructive Assay of Heterogeneous Waste
Barrels”, Lawrence Livermore National Laboratory &Technical University of
Budapest, H-1521, Hungary.
9. J. Steven Hansen (2010), “Tomographic gamma-ray scanning of uranium and
65
plutonium”, LA-UR-07-5150, 4, 1-27.
10. ORTEC®ANTECH (2009), “Comparison of Gam-ma-Ray Nondestructive
Assay Measurement Techniques”, www.ortec-online.com
11. ORTEC®ANTECH (2009), “Series 3800— Tomographic Gamma Scanner”,
www.ortec-online.com
12. R.Venkataraman, S.Croft, M.Villani, R.McElroy, B.M. Young, G. Geurkov, R.J.
Huckins, P. McClay, D.L. Petroka, C. Spanakos (2005), “The Next
Generation Tomographic Gamma Scanner”, Canberra Industries, and
Advanced Nuclear Technology Group (N2), Los Alamos National Laboratory,
USA.
13. S. Croft and R.D. McElroy, “The calibration of segmented gamma scanners
using rod sources”, Canberra Industries, Research Parkway, Meriden,
Connecticut, 06450, USA.
14. T. E. Sampson, T. A. Kelley, D. T. Vo (2003), “Application Guide to Gamma-
Ray Isotopic Analysis Using the FRAM Software”, Los Alamos National Lab.
15. Trần Quốc Dũng (1996), “Non-destructive techniques for assay of radioactive
waste”, Doctor of Philosophy Dissertation, Technical University of
Budapest,57-72.
16. Trần Quốc Dũng (2006), “Investigation of the systematic inaccuracies and
improvement of the measuring technique in segmented gamma scanner”, Tạp
chí khoa học và công nghệ, tập 44, số 1, năm 2006.
17. Trần Quốc Dũng, Trương Trường Sơn(2012), “Limitation of the segmented
gamma scanning technique and an additonal method for assay of radwaste
drums”, Tạp chí khoa học ĐHSP TPHCM, số 33 năm 2012.
18. Westinghouse Electric Company (2011), “ Qualification of Packaged Nuclear
Waste”, Cranberry Township.
Các website:
19. https://www.llnl.gov/str/Roberson.html
20.http://www.antech-
66
inc.com/Products/GammaRaySystems/GR03Model3200320/index.htm
21. http://www.nist.gov/pml/data/xray_gammaray.cfm
22. http://en.wikipedia.org/wiki/Radioactive_waste
23. http://www.world-nuclear.org/info/inf04.html
67
PHỤ LỤC
Phụ lục 1. Số đếm trong các lần đo với nguồn cho ngẫu nhiên vào thùng với K=87cm, và µ= 0,04987cm-1
Lần
đo
r
0 3 6 7 8 11 13 17 20 23 24 27
1 385022 391599 407716 402522 449615 458940 573004 621948 734685 800917 850529 951393
2 384157 381696 400091 403538 448802 469746 546634 631058 729933 776573 846319 928062
3 385226 381642 399389 407726 443371 459532 572166 610056 697795 770304 890121 910184
4 384656 380710 395259 400629 454325 469924 553344 625734 734169 805424 839928 963652
5 383865 382227 402072 409906 441884 463882 563757 633264 704586 763564 875262 912069
6 383767 380253 395220 402158 454557 463981 558011 604925 707171 802877 863030 929741
7 384204 381815 399604 406132 443520 469507 555526 648280 731309 771132 843104 950147
8 384640 381669 400173 405708 450650 459494 564686 621459 696088 780380 889261 907221
9 384701 380428 397426 403210 447222 473365 552104 610989 730294 797123 838507 958794
10 383708 381453 402886 408515 446014 457161 568887 639038 709345 764043 884152 917859
Số đếm phông trung bình: 10025
Ntb 374369,6 372324,2 390958,6 394979,4 437971 454528,2 550786,9 619452,2 717512,5 773208,7 851996,3 922887,2
Sai
số
-36,9 -35,244 -34,1039 -33,4262 -26,18 -23,3893 -7,16486 4,4088 20,9367 30,3243 43,6039 55,55265
68
Phụ lục 2. Số đếm trong các lần đo với nguồn cho ngẫu nhiên vào thùng với K=116cm, và µ= 0,04987cm-1
Lần
đo
r
0 5 6 8 9 10 12 16 18 20 25 26
1 240323 268125 273126 290672 301455 303119 314929 391410 425546 463777 628743 641697
2 239663 272259 273959 291356 305980 312221 323204 407917 420553 490516 603808 665657
3 239960 269760 270672 286813 306184 303483 315149 392875 415512 466973 610412 633365
4 241096 270928 274960 293064 301374 310930 317553 397863 428309 485806 622912 661308
5 240987 271110 272213 288331 308809 304299 323249 404855 411364 472433 598382 649617
6 239875 268810 271831 289018 304053 312138 314509 390545 431475 475916 632526 634367
7 240819 271070 274376 292805 303110 302907 319815 406149 412586 482088 599693 671049
8 239790 269806 271488 286915 308975 312834 319492 396058 424374 468026 621898 633371
9 240596 269080 273882 294156 301380 306708 315222 394670 421083 490559 612753 658690
10 240092 270896 272765 289245 305784 307048 323044 405189 416293 468774 606097 649190
Số đếm phông trung bình: 10025
Ntb 230295,1 260159,4 262902,2 280212,5 294685,4 297543,7 308591,6 388728,1 410684,5 466461,8 603697,4 639806,1
Sai
số
-36,9 -28,7173 -27,9658 -23,2228 -19,2573 -18,4741 -15,4471 6,510052 12,52602 27,8088 46,42295 53,56191
69
Phụ lục3. Biểu đồ so sánh kết quả giữa thực nghiệm và lý thuyết ( K = 87 cm)
Phụ lục4. Biểu đồ so sánh kết quả giữa thực nghiệm và lý thuyết ( K = 116 cm)
70

More Related Content

What's hot

Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)
Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)
Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)Nguyễn Hữu Học Inc
 
Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...
Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...
Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...Man_Ebook
 
Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...
Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...
Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...Dịch vụ viết thuê Khóa Luận - ZALO 0932091562
 
[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan
[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan
[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuantrongphuckhtn
 
Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...
Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...
Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...nataliej4
 
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...https://www.facebook.com/garmentspace
 

What's hot (18)

Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)
Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)
Cơ sở hóa học phân tích - Lâm Ngọc Thụ (ĐHQGHN)
 
Sac ki
Sac kiSac ki
Sac ki
 
Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...
Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...
Nghiên cứu nồng độ acid uric máu, bệnh gút và hội chứng chuyển hóa ở người từ...
 
Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...
Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...
Đề tài: Tiếp cận công nghệ sạch, nghiên cứu xử lý, tái chế bùn thải sinh học ...
 
[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan
[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan
[Www.toan capba.net] chuyen-de-luyen-thi-dh-2012-tran-anh-tuan
 
Luận án: Ứng dụng lọc Kalman trong điều khiển dự báo phi tuyến
Luận án: Ứng dụng lọc Kalman trong điều khiển dự báo phi tuyếnLuận án: Ứng dụng lọc Kalman trong điều khiển dự báo phi tuyến
Luận án: Ứng dụng lọc Kalman trong điều khiển dự báo phi tuyến
 
Hệ thống điều khiển bám cho panel lắp đặt pin năng lượng mặt trời
Hệ thống điều khiển bám cho panel lắp đặt pin năng lượng mặt trờiHệ thống điều khiển bám cho panel lắp đặt pin năng lượng mặt trời
Hệ thống điều khiển bám cho panel lắp đặt pin năng lượng mặt trời
 
Luận văn: Các dạng phương trình lượng giác, HAY, 9đ
Luận văn: Các dạng phương trình lượng giác, HAY, 9đLuận văn: Các dạng phương trình lượng giác, HAY, 9đ
Luận văn: Các dạng phương trình lượng giác, HAY, 9đ
 
Đề tài: Phản ứng của dầm dưới tác dụng của tải trọng động, HAY
Đề tài: Phản ứng của dầm dưới tác dụng của tải trọng động, HAYĐề tài: Phản ứng của dầm dưới tác dụng của tải trọng động, HAY
Đề tài: Phản ứng của dầm dưới tác dụng của tải trọng động, HAY
 
Luận án: Phương pháp dự báo các đại lượng dịch chuyển đất đá
Luận án: Phương pháp dự báo các đại lượng dịch chuyển đất đáLuận án: Phương pháp dự báo các đại lượng dịch chuyển đất đá
Luận án: Phương pháp dự báo các đại lượng dịch chuyển đất đá
 
Khảo Sát Các Tính Chất Phi Cổ Điển Của Trạng Thái Hai Mode Kết Hợp Thêm Hai P...
Khảo Sát Các Tính Chất Phi Cổ Điển Của Trạng Thái Hai Mode Kết Hợp Thêm Hai P...Khảo Sát Các Tính Chất Phi Cổ Điển Của Trạng Thái Hai Mode Kết Hợp Thêm Hai P...
Khảo Sát Các Tính Chất Phi Cổ Điển Của Trạng Thái Hai Mode Kết Hợp Thêm Hai P...
 
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tửLuận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
 
Luận án: Khả năng tích lũy đồng và chì trong nghêu nuôi ở sông Tiền
Luận án: Khả năng tích lũy đồng và chì trong nghêu nuôi ở sông TiềnLuận án: Khả năng tích lũy đồng và chì trong nghêu nuôi ở sông Tiền
Luận án: Khả năng tích lũy đồng và chì trong nghêu nuôi ở sông Tiền
 
Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...
Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...
Đánh giá thực trạng công tác quản lý chất thải y tế tại một số bệnh viện trên...
 
Luận án: Một số tính chất của neutrino thuận thang điện yếu, HAY
Luận án: Một số tính chất của neutrino thuận thang điện yếu, HAYLuận án: Một số tính chất của neutrino thuận thang điện yếu, HAY
Luận án: Một số tính chất của neutrino thuận thang điện yếu, HAY
 
Chuyên đề tich phan on thi dh
Chuyên đề tich phan on thi dhChuyên đề tich phan on thi dh
Chuyên đề tich phan on thi dh
 
Luân văn: Ứng dụng ống nano cacbon trong chất lỏng tản nhiệt, 9đ
Luân văn: Ứng dụng ống nano cacbon trong chất lỏng tản nhiệt, 9đLuân văn: Ứng dụng ống nano cacbon trong chất lỏng tản nhiệt, 9đ
Luân văn: Ứng dụng ống nano cacbon trong chất lỏng tản nhiệt, 9đ
 
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
 

Similar to Luận văn: Đánh giá sai số của kỹ thuật quét gam-ma phân đoạn

Thiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdf
Thiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdfThiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdf
Thiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdfMan_Ebook
 
Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...
Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...
Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...https://www.facebook.com/garmentspace
 
Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...
Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...
Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...Man_Ebook
 
Hệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdf
Hệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdfHệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdf
Hệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdfHanaTiti
 
Luận văn thạc sĩ vật lí.
Luận văn thạc sĩ vật lí.Luận văn thạc sĩ vật lí.
Luận văn thạc sĩ vật lí.ssuser499fca
 
03 - LUANVAN_NopQuyen.pdf
03 - LUANVAN_NopQuyen.pdf03 - LUANVAN_NopQuyen.pdf
03 - LUANVAN_NopQuyen.pdfNguyễn Thái
 
Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...
Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...
Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...https://www.facebook.com/garmentspace
 
Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...
Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...
Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...Man_Ebook
 

Similar to Luận văn: Đánh giá sai số của kỹ thuật quét gam-ma phân đoạn (20)

Thiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdf
Thiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdfThiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdf
Thiết kế hệ thống giám sát liên tục nồng độ khí thải của nhà máy xi măng.pdf
 
Luận án: Phát triển công nghệ yếm khí cao tải tuần hoàn nội- IC, HAY
Luận án: Phát triển công nghệ yếm khí cao tải tuần hoàn nội- IC, HAYLuận án: Phát triển công nghệ yếm khí cao tải tuần hoàn nội- IC, HAY
Luận án: Phát triển công nghệ yếm khí cao tải tuần hoàn nội- IC, HAY
 
Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...
Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...
Nghiên cứu đánh giá và đề xuất giải pháp tái sử dụng dòng thải từ hoạt động l...
 
Phát hiện ngã sử dụng đặc trưng chuyển động và hình dạng cơ thể
Phát hiện ngã sử dụng đặc trưng chuyển động và hình dạng cơ thểPhát hiện ngã sử dụng đặc trưng chuyển động và hình dạng cơ thể
Phát hiện ngã sử dụng đặc trưng chuyển động và hình dạng cơ thể
 
Luận án: Xây dựng mô hình biến động địa cơ khu vực lò chợ cơ giới
Luận án: Xây dựng mô hình biến động địa cơ khu vực lò chợ cơ giớiLuận án: Xây dựng mô hình biến động địa cơ khu vực lò chợ cơ giới
Luận án: Xây dựng mô hình biến động địa cơ khu vực lò chợ cơ giới
 
Vô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinh
Vô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinhVô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinh
Vô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinh
 
Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...
Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...
Tính toán thiết kế đường dây trung thế ngầm 22kV cấp cho trạm biến áp T1 và T...
 
Luận án: Dao động phi tuyến yếu của hệ cấp ba có đạo hàm, HAY
Luận án: Dao động phi tuyến yếu của hệ cấp ba có đạo hàm, HAYLuận án: Dao động phi tuyến yếu của hệ cấp ba có đạo hàm, HAY
Luận án: Dao động phi tuyến yếu của hệ cấp ba có đạo hàm, HAY
 
Hệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdf
Hệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdfHệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdf
Hệ thống xử lý tín hiệu điện não tự động phát hiện gai động kinh.pdf
 
Luận văn thạc sĩ vật lí.
Luận văn thạc sĩ vật lí.Luận văn thạc sĩ vật lí.
Luận văn thạc sĩ vật lí.
 
Đề tài: Đánh giá sai số hệ thống trong kỹ thuật quét gamma, 9đ
Đề tài: Đánh giá sai số hệ thống trong kỹ thuật quét gamma, 9đĐề tài: Đánh giá sai số hệ thống trong kỹ thuật quét gamma, 9đ
Đề tài: Đánh giá sai số hệ thống trong kỹ thuật quét gamma, 9đ
 
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxyHiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
 
Nghiên Cứu Thiết Kế, Mô Phỏng Và Thử Nghiệm Cảm Biến Góc Nghiêng Hai Chiều Cấ...
Nghiên Cứu Thiết Kế, Mô Phỏng Và Thử Nghiệm Cảm Biến Góc Nghiêng Hai Chiều Cấ...Nghiên Cứu Thiết Kế, Mô Phỏng Và Thử Nghiệm Cảm Biến Góc Nghiêng Hai Chiều Cấ...
Nghiên Cứu Thiết Kế, Mô Phỏng Và Thử Nghiệm Cảm Biến Góc Nghiêng Hai Chiều Cấ...
 
03 - LUANVAN_NopQuyen.pdf
03 - LUANVAN_NopQuyen.pdf03 - LUANVAN_NopQuyen.pdf
03 - LUANVAN_NopQuyen.pdf
 
Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...
Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...
Nghiên cứu thành phần alkaloid, flavonoid và hoạt tính chống oxy của lá sen n...
 
Luận án: Động lực học của hạt tải có cấu trúc nano, HAY
Luận án: Động lực học của hạt tải có cấu trúc nano, HAYLuận án: Động lực học của hạt tải có cấu trúc nano, HAY
Luận án: Động lực học của hạt tải có cấu trúc nano, HAY
 
Thử nghiệm cảm biến góc nghiêng hai chiều cấu trúc hai pha lỏng –khí
Thử nghiệm cảm biến góc nghiêng hai chiều cấu trúc hai pha lỏng –khíThử nghiệm cảm biến góc nghiêng hai chiều cấu trúc hai pha lỏng –khí
Thử nghiệm cảm biến góc nghiêng hai chiều cấu trúc hai pha lỏng –khí
 
Luận văn: Công nghệ cải tạo xử lý nước thải nhà máy Spindex, 9đ
Luận văn: Công nghệ cải tạo xử lý nước thải nhà máy Spindex, 9đLuận văn: Công nghệ cải tạo xử lý nước thải nhà máy Spindex, 9đ
Luận văn: Công nghệ cải tạo xử lý nước thải nhà máy Spindex, 9đ
 
Bài toán thiết kế luật điều khiển cho rô bốt di động kiểu bánh xe, HAY
Bài toán thiết kế luật điều khiển cho rô bốt di động kiểu bánh xe, HAYBài toán thiết kế luật điều khiển cho rô bốt di động kiểu bánh xe, HAY
Bài toán thiết kế luật điều khiển cho rô bốt di động kiểu bánh xe, HAY
 
Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...
Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...
Nghiên cứu phát triển một số thuật toán điều khiển rô bốt di động có tính đến...
 

More from Dịch vụ viết bài trọn gói ZALO: 0909232620

Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDanh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDịch vụ viết bài trọn gói ZALO: 0909232620
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDịch vụ viết bài trọn gói ZALO: 0909232620
 

More from Dịch vụ viết bài trọn gói ZALO: 0909232620 (20)

Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDanh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
 
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 ĐiểmDanh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
 
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý TưởngDanh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
 

Recently uploaded

60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docxasdnguyendinhdang
 
Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...
Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...
Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...lamluanvan.net Viết thuê luận văn
 
Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3
Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3
Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3lamluanvan.net Viết thuê luận văn
 
GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...
GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...
GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...lamluanvan.net Viết thuê luận văn
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...Nguyen Thanh Tu Collection
 
NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...
NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...
NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...lamluanvan.net Viết thuê luận văn
 
XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025
XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025
XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025lamluanvan.net Viết thuê luận văn
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...Nguyen Thanh Tu Collection
 
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdfltbdieu
 
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdfGiáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf4pdx29gsr9
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...Nguyen Thanh Tu Collection
 
PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...
PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...
PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...lamluanvan.net Viết thuê luận văn
 
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnTử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnKabala
 
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...VnTh47
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...
Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...
Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...lamluanvan.net Viết thuê luận văn
 

Recently uploaded (20)

60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
60 CÂU HỎI ÔN TẬP LÝ LUẬN CHÍNH TRỊ NĂM 2024.docx
 
Luận Văn: HOÀNG TỬ BÉ TỪ GÓC NHÌN CẢI BIÊN HỌC
Luận Văn: HOÀNG TỬ BÉ TỪ GÓC NHÌN CẢI BIÊN HỌCLuận Văn: HOÀNG TỬ BÉ TỪ GÓC NHÌN CẢI BIÊN HỌC
Luận Văn: HOÀNG TỬ BÉ TỪ GÓC NHÌN CẢI BIÊN HỌC
 
Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...
Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...
Luận văn 2024 Thực trạng và giải pháp nâng cao hiệu quả công tác quản lý hành...
 
Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3
Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3
Hướng dẫn viết tiểu luận cuối khóa lớp bồi dưỡng chức danh biên tập viên hạng 3
 
GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...
GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...
GIỮ GÌN VÀ PHÁT HUY GIÁ TRỊ MỘT SỐ BÀI HÁT DÂN CA CÁC DÂN TỘC BẢN ĐỊA CHO HỌC...
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 - TỪ CÁC TRƯỜNG, ...
 
NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...
NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...
NHẬN XÉT LUẬN VĂN THẠC SĨ: Các nhân tố ảnh hưởng đến hiệu quả hoạt động của n...
 
TIỂU LUẬN MÔN PHƯƠNG PHÁP NGHIÊN CỨU KHOA HỌC
TIỂU LUẬN MÔN PHƯƠNG PHÁP NGHIÊN CỨU KHOA HỌCTIỂU LUẬN MÔN PHƯƠNG PHÁP NGHIÊN CỨU KHOA HỌC
TIỂU LUẬN MÔN PHƯƠNG PHÁP NGHIÊN CỨU KHOA HỌC
 
XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025
XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025
XÂY DỰNG KẾ HOẠCH KINH DOANH CHO CÔNG TY KHÁCH SẠN SÀI GÒN CENTER ĐẾN NĂM 2025
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT HÓA HỌC 2024 - TỪ CÁC TRƯỜNG, TRƯ...
 
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
26 Truyện Ngắn Sơn Nam (Sơn Nam) thuviensach.vn.pdf
 
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdfGiáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
Giáo trình xây dựng thực đơn. Ths Hoang Ngoc Hien.pdf
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...
PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...
PHIẾU KHẢO SÁT MỨC ĐỘ HÀI LÒNG VỀ CHẤT LƯỢNG DỊCH VỤ VẬN CHUYỂN HÀNG KHÁCH BẰ...
 
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận HạnTử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
Tử Vi Là Gì Học Luận Giải Tử Vi Và Luận Đoán Vận Hạn
 
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
[123doc] - ao-dai-truyen-thong-viet-nam-va-xuong-xam-trung-quoc-trong-nen-van...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
Trích dẫn theo Harvard với Microsoft Word
Trích dẫn theo Harvard với Microsoft WordTrích dẫn theo Harvard với Microsoft Word
Trích dẫn theo Harvard với Microsoft Word
 
Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...
Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...
Hoàn thiện hoạt động kiểm soát rủi ro tín dụng trong cho vay doanh nghiệp tại...
 

Luận văn: Đánh giá sai số của kỹ thuật quét gam-ma phân đoạn

  • 1. 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Lê Anh Đức ĐÁNH GIÁ SAI SỐ CỦA KỸ THUẬT QUÉT GAM-MA PHÂN ĐOẠN BẰNG PHƯƠNG PHÁP NGẪU NHIÊN LUẬN VĂN THẠC SĨ VẬT LÝ Thành phố Hồ Chí Minh - 2012
  • 2. 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Lê Anh Đức ĐÁNH GIÁ SAI SỐ CỦA KỸ THUẬT QUÉT GAM-MA PHÂN ĐOẠN BẰNG PHƯƠNG PHÁP NGẪU NHIÊN Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao Mã số: 60 44 05 LUẬN VĂN THẠC SĨ VẬT LÝ Người hướng dẫn khoa học: TS. Trần Quốc Dũng Thành phố Hồ Chí Minh - 2012
  • 3. 1 LỜI CẢM ƠN Trong quá trình thực hiện và hoàn thành luận văn này, tác giả đã nhận được sự quan tâm và giúp đỡ rất nhiều từ Thầy Cô, đồng nghiệp, bạn bè và gia đình. Tôi xin được bày tỏ lòng biết ơn chân thành của mình đến: Thầy TS. Trần Quốc Dũng, người hướng dẫn khoa học, đã mang đến cho tôi những kiến thức và phương pháp nghiên cứu khoa học, truyền đạt tinh thần học hỏi và luôn động viên giúp tôi vượt qua những khó khăn, vướng mắc trong suốt quá trình thực hiện luận văn. Thầy ThS Trần Thiện Thanh đã gợi ý những phương hướng nghiên cứu, đóng góp ý kiến, và truyền đạt kinh nghiệm cho tôi trong quá trình thực hiện luận văn. Quý Thầy Cô giảng dạy bộ môn Vật lý nguyên tử, hạt nhân và năng lượng cao, Trường ĐH Sư Phạm TP.HCM đã nhiệt tình giảng dạy và giúp đỡ tôi trong suốt quá trình học tập tại trường. Quý Thầy Cô phản biện và Hội đồng chấm luận văn đã đọc và có những nhận xét cũng như những góp ý quý giá về luận văn. Quý Thầy cô trong Bộ môn Vật lý Hạt nhân và Khoa Vật lý, Trường Đại học Sư phạm TP HCM đã đóng góp những ý kiến và luôn tạo mọi điều kiện thuận lợi về cơ sở vật chất để tôi có thể thực hiện các nghiên cứu phục vụ cho luận văn. Cảm ơn những người bạn, những người anh em đã nhiệt tình giúp đỡ tôi trong quá trình chế tạo hệ máy đo thực nghiệm. Cuối cùng, xin cảm ơn gia đình đã luôn động viên và hỗ trợ tôi mọi mặt, về vật chất lẫn tinh thần để tôi hoàn thành luận văn. Thành phố Hồ Chí Minh, tháng 11 năm 2012 Lê Anh Đức
  • 4. 2 MỤC LỤC LỜI CẢM ƠN............................................................................................................1 MỤC LỤC..................................................................................................................2 DANH MỤC CHỮ VIẾT TẮT ................................................................................4 DANH MỤC CÁC BẢNG ........................................................................................5 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ..................................................................6 MỞ ĐẦU ....................................................................................................................8 Chương 1: Tổng quan về các kỹ thuật gam-ma thụ động...................................12 1.1 Tổng quan về các kỹ thuật gam-ma thụ động.................................................12 1.2 Kỹ thuật chụp cắt lớp gam-ma TGS................................................................13 1.3 Kỹ thuật quét gam-ma phân đoạn SGS...........................................................16 Chương 2: Kỹ thuật quét gam-ma phân đoạn và đánh giá sai số theo mô phỏng………………………………………………………………………………18 2.1 Kỹ thuật quét gam-ma phân đoạn. ..................................................................18 2.2 Đánh giá sai số hệ thống .................................................................................20 2.3 Tính toán giá trị sai số bằng phương pháp ngẫu nhiên. ..................................22 2.3.1 Gieo một nguồn ngẫu nhiên vào một phân đoạn................................................ 22 2.3.2 Gieo nhiều nguồn ngẫu nhiên vào một phân đoạn............................................. 22 2.3.3 Trường hợp tổng quát gieo nhiều nguồn vào thùng phóng xạ ........................... 26 Chương 3: Xây dựng hệ đo thực nghiệm ..............................................................30 3.1 Cơ sở thực nghiệm ..........................................................................................30 3.2 Cấu tạo của thiết bị thí nghiệm .......................................................................32 3.2.1 Máy đơn kênh Ludlum thế hệ 2200................................................................ 32 3.2.2 Đầu dò nhấp nháy thế hệ 44-10..........................................................................35 3.2.3 Giá đỡ và ống chuẩn trực chì .............................................................................36 3.2.4 Hệ nâng thùng rác thải phóng xạ ......................................................................37 3.2.5 Hệ quay và thùng rác thải .................................................................................. 39 3.2.6 Bộ nguồn sử dụng trong quá trình đo đạc.......................................................... 42 Chương 4: Đánh giá kết quả đo đạc, sai số trong các thí nghiệm với hệ đo SGS
  • 5. 3 bằng phương pháp ngẫu nhiên và bình luận........................................................44 4.1 Khảo sát định tính khả năng quét gam-ma của hệ đo SGS với nguồn và chất độn không đồng nhất.............................................................................................44 4.1.1 Các bước tiến hành............................................................................................. 44 4.1.2 Kết quả thí nghiệm:............................................................................................45 4.1.3 Đánh giá và bình luận ........................................................................................49 4.2 Khảo sát sai số của phương pháp SGS do phân bố của nguồn .......................50 4.2.1 Các bước tiến hành............................................................................................. 51 4.2.2 Xác định hệ số hấp thụ tuyến tính µ của cát sử dụng với nguồn Cs137 .............53 4.2.3 Xác định hệ số α và công thức tính sai số..........................................................53 4.2.4 Kết quả thực nghiệm với K = 87 cm.................................................................. 54 4.2.5 Kết quả thực nghiệm với K = 116 cm ...............................................................59 4.2.6 Đánh giá và bình luận ........................................................................................ 60 KẾT LUẬN ..............................................................................................................61 KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU TIẾP THEO ....................................62 DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ......................................................63 TÀI LIỆU THAM KHẢO ......................................................................................64 PHỤ LỤC.................................................................................................................67
  • 6. 4 DANH MỤC CHỮ VIẾT TẮT NDA Non-Destructive Assay: Phân tích không huỷ mẫu. PGT Passive Gamma Technique: Kỹ thuật gam-ma thụ động. SGS Segmented Gamma Scanning: Quét gam-ma phân đoạn. TGS Tomographic Gamma Scanning: Kỹ thuật chụp cắt lớp.
  • 7. 5 DANH MỤC CÁC BẢNG TT Bảng Diễn giải Trang 1 2.1 Giá trị sai số theo phân bố r (cm) khi cho một nguồn ngẫu nhiên vào một phân đoạn. 22 2 2.2 Giá trị Itb và sai số khi cho nhiều nguồn giống nhau vào một phân đoạn. 24 3 2.3 Giá trị sai số khi cho nhiều nguồn vào thùng với 10 phân đoạn, với µ = 0,03; 0,06; và 0,12 cm-1 và K = 87 cm; K = 116 cm. 27 4 3.1 Thông tin bộ nguồn sử dụng trong quá trình đo. 42 5 4.1 Số đếm thô khi cho 8 nguồn chuẩn vào bốn phân đoạn của thùng với các lần cho ngẫu nhiên khác nhau. 45 6 4.2 Số đếm thô khi cho 11 nguồn vào năm phân đoạn của thùng với các lần cho ngẫu nhiên khác nhau. 47 7 4.3 Số đếm thô khi cho 10 nguồn vào năm phân đoạn của thùng với các lần cho ngẫu nhiên khác nhau. 48 8 4.4 Hệ số hấp thụ tuyến tính trung bình. 53 9 4.5 Số đếm và sai số theo phân bố khoảng cách r (cm), với K = 87 cm và µ = 0,04987 cm-1 . 54 10 4.6 Số đếm và sai số theo phân bố khoảng cách r (cm), với K = 116 cm và µ = 0,04987 cm-1 . 58
  • 8. 6 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ TT Hình Diễn giải Trang 1 1.1 Các kỹ thuật gam-ma thụ động của Ortec 12 2 1.2 Mô hình cấu tạo của một hệ đo TGS 13 3 1.3 Bản đồ hệ số suy giảm tuyến tính trong kỹ thuật TGS 14 4 1.4 Hệ TGS thương mại theo chuẩn hộp và chuẩn thùng của Ortec - Hệ TGS theo chuẩn thùng của Canberra 15 5 1.5 Hình chụp cắt lớp phân bố chất độn trong thùng 16 6 1.6 Hệ SGS thương mại của Ortec 17 7 2.1 Minh hoạ nguyên tắc hoạt động của kỹ thuật SGS 18 8 2.2 Mặt cắt ngang của một phân đoạn 21 9 3.1 Sử dụng nguồn ngoài để tính hệ số hấp thụ tuyến tính trung bình 31 10 3.2 Máy đơn kênh Ludlum thế hệ 2200 33 11 3.3 Đầu dò nhấp nháy NaI thế hệ 44-10 và giá đỡ 35 12 3.4 Ống chuẩn trực được chế tạo riêng cho đầu dò nhấp nháy NaI 36 13 3.5 Tỉ lệ đường kính ống chuẩn trực và bề dày phân đoạn 37 14 3.6 Ống chuẩn trực được gắn gới đầu dò trên giá đỡ cùng với hệ máy Ludlum 2200 37 15 3.7 Mô tơ quay và hệ nâng 38 16 3.8 Mô tơ, bánh đà và dây xích truyền động 38 17 3.9 Cáp trượt, thanh trượt và thước đo của hệ nâng 39 18 3.10 Mô tơ được gắn với giá đỡ của hệ quay 40 19 3.11 Thùng rác thải trên giá đỡ và hệ quay 41 20 3.12 Chất độn là cát và vải vụn được cho vào thùng với nguồn 41 21 3.13 Bộ nguồn phóng xạ sử dụng trong thí nghiệm 42 22 3.14 Lắp đặt hệ thí nghiệm 43
  • 9. 7 23 4.1 Lắp đặt đầu dò, ống chuẩn trực và thước đo khoảng cách K 44 24 4.2 Nguồn Cs137 với hoạt độ I = 12,2 MBq, dạng ống với hộp chì đựng 51 25 4.3 Các vị trí của nguồn có thể có khi cho vào thùng một cách ngẫu nhiên 52 26 4.4 Xác suất nguồn rơi vào hình vành khăn 56 27 4.5 Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách r (cm) khi cho nguồn ngẫu nhiên vào thùng, K = 87 cm. 56 28 4.6 Biểu đồ sai số thực nghiệm theo khoảng cách r (cm), với K = 87 cm 57 29 4.7 Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 87 cm và µ = 0,04987 cm-1 với số liệu tính toán mô phỏng 57 30 4.8 Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách r (cm) khi cho nguồn ngẫu nhiên vào thùng, với K = 116 cm 58 31 4.9 Biểu đồ sai số thực nghiệm theo khoảng cách r (cm), với K = 116 cm 59 32 4.10 Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 116 cm và µ = 0,04987 cm-1 với số liệu tính toán mô phỏng 59
  • 10. 8 MỞ ĐẦU Ngày nay, kỹ thuật nguyên tử, hạt nhân và năng lượng cao đã được sử dụng rộng rãi trong nhiều lĩnh vực trên thế giới. Việc ứng dụng phản ứng hạt nhân nhằm nhiều mục đích khác nhau như: xây dựng trung tâm nghiên cứu sản xuất đồng vị phóng xạ nhằm phục vụ cho việc nghiên cứu, y tế, quân sự… Bên cạnh đó, khi nguồn năng lượng truyền thống đang ngày càng cạn kiệt và góp phần gia tăng sự ô nhiễm môi trường do phát thải khí độc hại ra môi trường xung quanh: nước, đất, không khí và sinh vật, thì một số quốc gia đang theo đuổi những dự án lò phản ứng hạt nhân, nhà máy điện hạt nhân, nhằm đáp ứng nhu cầu ngày càng lớn về năng lượng. Tại Việt Nam, chúng ta hiện đang có lò phản ứng hạt nhân nghiên cứu ở Đà Lạt, và sắp tới là nhà máy điện hạt nhân ở Ninh Thuận dự định sẽ khởi công xây dựng. Dự kiến đến khoảng năm 2020, có thể tổ máy đầu tiên của Nhà máy điện hạt nhân Ninh Thuận sẽ được vận hành thương mại. Tuy nhiên quá trình hoạt động của các lò phản ứng hạt nhân này sinh ra một lượng rác thải phóng xạ đáng kể, được chứa trong các thùng kín lớn, và chúng ta sẽ phải đối mặt với vấn đề xử lí và quản lí chất thải hạt nhân ở quy mô lớn. Câu hỏi lớn đặt ra, chúng ta sẽ xử lý như thế nào với lượng chất thải được tạo ra? Việc kiểm tra và đánh giá hoạt độ phóng xạ trong các thùng rác thải này là cần thiết trước khi chúng được đem đi xử lý và tiêu hủy. Song song với việc thẩm định các vấn đề về an toàn bức xạ, ảnh hưởng đến môi trường trong quá trình lò hoạt động thì việc xử lý rác thải phóng xạ từ các lò phản ứng này cũng rất quan trọng, để bảo vệ sức khỏe con người và và không bị rò rĩ chất phóng xạ ra môi trường. Điều này đòi hỏi cần phải có một phương pháp để xác định hoạt độ phóng xạ trong các thùng rác thải. Do đó việc nghiên cứu để tìm ra một phương pháp thích hợp, hiệu quả để áp dụng vào thực tế là vô cùng cần thiết và cấp bách. Kỹ thuật quét gam-ma phân đoạn SGS (segmented gamma scanning technique) là một kỹ thuật quan trọng để đo đạc, phân tích hoạt độ và thành phần
  • 11. 9 của rác thải phóng xạ. Trong kỹ thuật SGS, thùng rác thải phóng xạ được đo thành nhiều phân đoạn, và do đó nó được phân tích một cách chi tiết hơn cách đo thông thông thường, nếu kết quả đo của đầu dò trên từng phân đoạn là tốt thì sẽ kéo theo kết quả cuối cùng cũng tốt. Do phương pháp đo SGS dựa trên giả thuyết là nguồn và chất độn (matrix) phân bố đồng nhất trên một phân đoạn, điều này không phù hợp với thực tế dẫn đến sai số phép đo. Việc đánh giá sai số này là một nhiệm vụ quan trọng trong việc kiểm tra và quản lý chất thải phóng xạ. Trước những nhu cầu thực tiễn như trên, tôi chọn đề tài: “Đánh giá sai số của kỹ thuật quét gam-ma phân đoạn bằng phương pháp ngẫu nhiên” làm đề tài nghiên cứu. Luận văn đã tìm hiểu khả năng sử dụng phương pháp ngẫu nhiên bằng tính toán mô phỏng và thực nghiệm khi cho nguồn phóng xạ vào thùng để đánh giá sai số của kỹ thuật quét gam-ma phân đoạn. Luận văn đã đi sâu vào: - Tìm hiểu tổng quan về các kỹ thuật gam-ma thụ động PGT (passive gamma technique) đặc biệt là kỹ thuật quét gam-ma phân đoạn SGS (segmented gamma scanning technique) trong việc đo hoạt độ của thùng rác thải nhằm biết được các các nguyên lý hoạt động và các yếu tố ảnh hưởng đến sai số hệ thống của kỹ thuật quét gam-ma phân đoạn. - Hệ đo quét gam-ma phân đoạn đã được chế tạo để đo đạc và tính toán được sai số thực nghiệm. Quá trình chế tạo hệ đo SGS và đo đạc thực nghiệm cần tốn nhiều thời gian, kinh phí, thiết bị, nhân lực. Quá trình đo đạc thực nghiệm cần có cùng một lượng nguồn phóng xạ nhiều để giả định như thùng rác thải thật sự. Vì vậy, trong một khoảng thời gian ngắn, đề tài này tập trung vào một số phép đo đơn giản với số nguồn phóng xạ có sẵn và thực hiện các mô phỏng tính toán. Chủ yếu là ghi nhận số đếm và đánh giá sai số về hoạt độ của phép đo. Kiểm chứng sai số do yếu tố phân bố của nguồn trong phép đo SGS.
  • 12. 10 Nhằm đạt được các mục tiêu đã đề ra ở trên, luận văn này tập trung thực hiện các nội dung sau: - Nắm rõ nguyên lý hoạt động và quy trình đo trong kĩ thuật quét gam-ma phân đoạn, tiến hành mô phỏng tính toán lí thuyết. - Chế tạo hệ quét gam-ma phân đoạn theo một số mô hình của các hệ này trên thế giới để có thể sử dụng đo đạc được. - Tiến hành thực nghiệm: kiểm chứng sai số do sự phân bố của nguồn, kiểm chứng định tính khả năng quét gam-ma của hệ SGS tự chế tạo. - Thu thập, xử lý số liệu thu nhận được từ mô phỏng và thực nghiệm. - Tiến hành phân tích, so sánh và đánh giá kết quả. Luận văn bao gồm 4 chương: Chương 1: Tổng quan về các kỹ thuật gam-ma không hủy mẫu. Chương này trình bày tổng quan về các kỹ thuật phân tích không huỷ mẫu - kỹ thuật gam-ma thụ động và nguyên tắc hoạt động, đánh giá sai số của kỹ thuật chụp cắt lớp gam-ma và kỹ thuật quét gam-ma phân đoạn. Chương 2: Kỹ thuật quét gam-ma phân đoạn và đánh giá sai số theo mô phỏng. Nội dung chương này sẽ trình bày rõ ràng hơn về kỹ thuật quét gam-ma phân đoạn, cùng với các công thức tính toán lý thuyết. Sai số của kỹ thuật SGS do các yếu tố phân bố của nguồn, khoảng cách và hệ số suy giảm tuyến tính sẽ được tính toán mô phỏng bằng phương pháp ngẫu nhiên để làm cơ sở xây dựng hệ đo thực nghiệm. Chương 3: Xây dựng hệ đo thực nghiệm. Chương này trình bày cấu tạo của hệ đo SGS do tác giả tự chế tạo, nguyên tắc hoạt động của từng bộ phận trong hệ đo này, cách lắp đặt hệ đo để tiến hành thực nghiệm đo đạc. Chương 4: Đánh giá kết quả đo đạc và sai số trong các thí nghiệm với hệ đo SGS bằng phương pháp ngẫu nhiên và bình luận. Xây dựng các bước tiến hành thí nghiệm để kiểm tra định tính và tính toán định lượng sai số của hệ đo SGS tự chế tạo bằng phương pháp ngẫu nhiên khi cho
  • 13. 11 nguồn vào thùng rác thải phóng xạ. Đưa ra kết luận về sai số của phép đo do các yếu tố phân bố của nguồn gây ra. Trong quá trình thực hiện và trình bày luân vặn, vì còn hạn chế về kiến thức, nên chắc chắn luận văn không tránh khỏi sai sót. Kính mong nhận được sự góp ý của quý Thầy Cô và bạn đọc. Tôi xin chân thành cảm ơn.
  • 14. 12 Chương 1: Tổng quan về các kỹ thuật gam-ma thụ động 1.1 Các kỹ thuật gam-ma thụ động Kỹ thuật gam-ma thụ động (Passive Gamma Technique) là một kỹ thuật trong phép phân tích không huỷ mẫu NDA (Non-Destructive Assay), đã được sử dụng rộng rãi từ rất lâu để xác định hoạt độ và thành phần các đồng vị phóng xạ của Plu- to-ni-um, U-ra-ni-um và các sản phẩm phân hạch khác trong thùng rác thải. Hiện nay các công ty như Ortec, Canberra… đã phát triển và tiến hành bán rất nhiều hệ đo, phân tích gam-ma thụ động. Các hệ đo này dựa trên những nguyên lý hoạt động và kỹ thuật khác nhau tương ứng với giá thành. Hình 1.1. Các kỹ thuật gam-ma thụ động của Ortec [10]  Kỹ thuật Iso-cart có giá thành tương đối rẻ, và độ tiện dụng cao.  Kỹ thuật QED có độ nhạy cao nhất khi sử dụng để xác định các đồng vị phóng xạ trong thùng rác thải có hoạt độ thấp.  Kỹ thuật SGS có độ tin cậy cao, độ nhạy khi sử dụng để xác định các đồng vị phóng xạ tốt.  Kỹ thuật TGS cho độ tin cậy và độ chính xác cao nhất trong quá trình đo đạc và phân tích với mẫu và chất độn không đồng nhất. Yêu cầu của các phép đo là phải nhận biết được các gam-ma đặc trưng của các đồng vị phóng xạ, xác định được hoạt độ phóng xạ và thêm vào đó là thực hiện đo đạc càng nhanh càng tốt. Các hệ đo này sử dụng hệ phổ kế đa kênh đo gam-ma, có thể kiểm tra thành phần thùng rác thải gồm có những chất phóng xạ nào dựa vào
  • 15. 13 phổ năng lượng gam-ma của chúng và kiểm tra hoạt độ của thùng dựa vào số đếm đầu dò ghi nhận được ứng với từng năng lượng đặc trưng của gam-ma. Sai số của phép đo không chỉ phụ thuộc vào nguồn và chất độn trong thùng mà còn phụ thuộc vào kỹ thuật nào được sử dụng. Cho đến nay, có rất nhiều kỹ thuật gam-ma không phá huỷ mẫu để phân tích hoạt độ và thành phần thùng rác thải phóng xạ, và nổi bật trong số đó là hai kỹ thuật với độ tin cậy cao: • Kỹ thuật quét gam-ma phân đoạn SGS (Segmented Gamma Scanning Technique). • Kỹ thuật chụp cắt lớp gam-ma (Tomographic Gamma Scanning Technique). 1.2 Kỹ thuật chụp cắt lớp gam-ma TGS Kỹ thuật chụp cắt lớp gam-ma (TGS) được phát triển bởi phòng thí nghiệm quốc gia Los Alamos vào đầu những năm 1990 cho Bộ Năng lượng Mỹ. TGS sử dụng nguồn truyền dẫn phát xạ đơn phô-tôn để hiệu chỉnh, chụp cắt lớp vi tính để xác định sự phân bố không gian, và phân tích thành phần nguồn phóng xạ của thùng rác thải bằng cách sử dụng đầu dò cùng hệ phổ kế gam-ma độ phân giải cao. Kỹ thuật này là một bước tiến đáng kể trong công nghệ phân tích không huỷ mẫu, nó hướng tới một kết quả chính xác nhất vì có thể cho thấy được hình ảnh về sự phân bố của chất độn và nguồn phóng xạ, tuy nhiên nó đòi hỏi nhiều kinh phí để đầu tư và kĩ thuật với công nghệ rất cao. Hình 1.2. Mô hình cấu tạo của một hệ đo TGS [9]
  • 16. 14 Quá trình hoạt động của TGS gồm hai bước với khả năng quét và phân tích cho độ chính xác cao. Bước đầu tiên là chụp cắt lớp vi tính hoạt động, giống như kỹ thuật chụp ảnh X-quang y tế, để đo sự suy giảm của cường độ bức xạ đi từ một nguồn bên ngoài thông qua chất độn đến đầu dò, từ đó xác định hệ số hấp thụ tuyến tính trên từng phân lớp và trung bình. Các nguồn phát ra tia gam-ma ở mức năng lượng rời rạc, khi các tia đi qua thùng với chất độn không đồng nhất ở bên trong, chúng sẽ bị suy giảm ở nhiều mức độ khác nhau. Ở phía bên kia của thùng, hệ phổ kế gam-ma sẽ đo được bức xạ gam-ma suy yếu. Bằng cách ghi nhận và đo tia gam- ma cường độ suy yếu ở mức năng lượng cụ thể của nguồn truyền dẫn, người ta có thể xác định bản đồ của hệ số suy giảm tuyến tính của thùng rác thải. Các bản đồ này có thể được xây dựng lại để mô tả sự suy giảm do chất độn của thùng [19]. Hình 1.3. Bản đồ hệ số suy giảm tuyến tính trong kỹ thuật TGS [9] Bước thứ hai là đo gam-ma thụ động, máy dò ghi nhận gam-ma và cho ta phổ tia gam-ma phát ra từ bên trong thùng. Sự suy giảm gam-ma gây ra bởi vật liệu trong các phép đo đồng vị phóng xạ được hiệu chỉnh bằng cách sử dụng bản đồ hệ
  • 17. 15 số suy giảm tuyến tính, sự điều chỉnh này cho một kết quả chính xác hơn về các đồng vị phóng xạ bên trong thùng. Phổ thu được sử dụng để tự động xác định các đồng vị trong thùng, bởi vì các đồng vị phóng xạ khác nhau sẽ phát ra một năng lượng đặc trưng duy nhất của riêng chúng trong phổ năng lượng [19]. Máy chụp cắt lớp TGS là một hệ thống mở rộng hơn nữa của hệ máy SGS, mở rộng phạm vi của các ứng dụng cho phép đo lường đối với các nguồn và chất thải không đồng nhất với kết quả chính xác cao hơn, độ chính xác của phép đo TGS trong khoảng từ 10-50% cho dù chất độn không đồng nhất [10]. Sự chuyển động tương đối của thùng chất thải và đầu dò cũng khác nhau. Thay vì chỉ đơn giản là xoay và nâng thùng, nó có thể được đồng thời xoay và dịch theo chiều ngang. Đối với một một thùng rác thải với hoạt độ và chất độn không đồng nhất, kết quả đo lường TGS cho một sai số thấp hơn nhiều so với các kỹ thuật khác [10]. (a) (b) Hình 1.4. Hệ TGS thương mại theo chuẩn hộp và chuẩn thùng của Ortec (a) Hệ TGS theo chuẩn thùng của Canberra (b)
  • 18. 16 Hình 1.5. Hình chụp cắt lớp phân bố chất độn trong thùng [9] 1.3 Kỹ thuật quét gam-ma phân đoạn SGS Kỹ thuật quét gam-ma phân đoạn SGS có thể sử dụng cho hầu hết các trường hợp trong thực tiễn với độ tin cậy cao. SGS là một kỹ thuật quan trọng để đo đạc và phân tích hoạt độ của rác thải phóng xạ, được phát triển bởi phòng thí nghiệm quốc gia Los Alamos – Mỹ vào đầu những năm 1970. Kỹ thuật này sử dụng giả thiết rằng các nguồn phóng xạ và chất độn mẫu (thường làm bằng xi măng - bê tông) được phân bố đồng nhất trong thùng rác thải phóng xạ. Quá trình dùng SGS có thể gây ra sai số rất lớn nếu mẫu không thỏa mãn các giả thiết này, đó là nguồn và chất độn phân bố không đồng nhất, sai số thực nghiệm có thể lên tới 500% [10]. Kỹ thuật quét gam-ma phân đoạn cũng là kỹ thuật phổ biến nhất trong số các kĩ thuật phân tích không huỷ mẫu chất thải hạt nhân vì giá thành sản xuất và độ tiện lợi mà nó mang lại. Hệ thống SGS có một lợi thế là sử dụng các dụng cụ đo và lắp ráp không quá phức tạp, cùng với một sự điều chỉnh truyền dẫn để ước tính hệ số suy giảm trung bình của các chất thải phóng xạ có hoạt độ khác nhau với chất độn. Bằng cách sử dụng một ống chuẩn trực và đầu dò gắn đồng trục cùng với một nguồn truyền dẫn, SGS có thể xác định sự suy giảm số đếm của nguồn khi đi qua lớp chất độn vật chất chứa trong thùng rác thải phóng xạ. Các nguồn truyền dẫn
  • 19. 17 được đặt ở phía đối diện của đầu dò so với thùng, tia gam-ma từ nguồn truyền qua trục trung tâm của thùng và được ghi nhận bởi đầu dò khi chúng xuất hiện từ phía đối diện. Với cách này ta có thể xác định tương đối gần đúng được hệ số hấp thụ tuyến tính trung bình của chất độn. Trong kỹ thuật SGS, thùng rác thải phóng xạ được chia thành nhiều phân đoạn nằm ngang, đầu dò với ống chuẩn trực sẽ ghi số đếm và phân tích thành phần dựa vào phổ năng lượng thu được trên từng phân đoạn, nếu kết quả đo của đầu dò trên từng phân đoạn là tốt thì kết quả cuối cùng trên cả thùng cũng tốt [4]. Kỹ thuật này sẽ được phân tích và trình bày rõ ràng hơn ở phần chính của luận văn. Hình 1.6. Hệ SGS thương mại của ORTEC [5]
  • 20. 18 Chương 2: Kỹ thuật quét gam-ma phân đoạn và đánh giá sai số theo mô phỏng 2.1 Kỹ thuật quét gam-ma phân đoạn Nguyên tắc hoạt động cơ bản của kỹ thuật quét gam-ma phân đoạn SGS là phân chia thùng rác thải phóng xạ thành các phân đoạn nằm ngang nhỏ hơn rất nhiều so với chiều cao của thùng, và sử dụng đầu dò (detector) gắn ống chuẩn trực để phân tích mỗi phân đoạn bằng phương pháp đo gam-ma thông thường. Khi tất cả các phân đoạn được đo hoàn thành, kết quả số đếm cả thùng sẽ được tính bằng cách lấy tổng của tất cả các kết quả đo trên từng phân đoạn. Để giảm thiểu tối đa sai số gây ra do sự phân bố không đồng đều của nguồn và chất độn không đồng nhất trong mỗi phân đoạn thì thùng sẽ được quay trong quá trình đo [15]. Hình 2.1. Minh hoạ nguyên tắc hoạt động của kỹ thuật SGS Thùng được chia thành nhiều phân đoạn, i = 1, 2, 3…n là số thứ tự đánh dấu của từng phân đoạn, mỗi phân đoạn lần lượt được đo bởi đầu dò. Số đếm thô CRi trên mỗi phân đoạn được xác định bởi đầu dò. Số đếm hiệu chỉnh Ci được tính bằng công thức: i i iC = CR .CF (2.1) Trong đó CFi là hệ số suy giảm do chất độn bởi phân đoạn thứ i [15], có thể
  • 21. 19 được tính bằng công thức: -0.823. .d i 1-e CF = 0.823. .d i i µ µ (2.2) Với hệ số hấp thụ tuyến tính trung bình µi, và d là đường kính của thùng rác thải phóng xạ. Nếu hệ số hấp thụ tuyến tính trung bình chưa biết, ta có thể sử dụng một nguồn ngoài để tính truyền dẫn. Cách giải quyết này được sử dụng rộng rãi để xác định CFi trong phương pháp SGS vì hệ số hấp thụ tuyến tính có thể thay đổi từ phân đoạn này sang phân đoạn khác do chất độn phân bố không đồng nhất trong thùng. Số đếm tổng cộng của thùng sẽ là: i n T i=1 C = C∑ (2.3) Kết quả cuối cùng của phép đo là hoạt độ của các loại đồng vị mà ta quan tâm [15]: 0,693. . . . d h t T TC e I tY ε = (2.4) Trong đó: td: Thời gian phân rã tính từ lúc nguồn được sản xuất đến lúc đo. t: Thời gian đo. Th: chu kì bán rã của các đồng vị phóng xạ. Y: Hiệu suất tia gam-ma. ε: Hiệu suất ghi của đầu dò. Các phương trình trên đều dựa trên hai giả thuyết là khoảng cách từ mẫu trong phân đoạn đến đầu dò là vô hạn và mẫu là đồng nhất.  Hệ số hình học: Vì các nguồn phóng xạ trong thùng trải rộng và phân bố không đều nên số đếm Ci phụ thuộc vào vị trí của các mẫu trong thùng. Điều này có thể dẫn đến các sai số tiềm tàng, việc gia tăng khoảng cách từ đầu dò đến thùng có thể giảm thiểu sai số này nhưng phải trả giá bằng việc suy giảm số đếm. Do vậy thùng được xoay để giảm thiểu sai số gây ra bởi sự phân bố không đồng đều trong thùng. Sự lựa chọn khoảng cách từ thùng đến đầu dò sao cho có sự cân bằng giữa tối thiểu hóa sai số và
  • 22. 20 có được số đếm chính xác tối đa. Sự biến đổi số đếm tối đa theo vị trí là nhỏ hơn 10% nếu khoảng cách từ tâm thùng đến đầu dò là bằng hoặc lớn hơn ba lần độ lớn của bán kính thùng và mẫu được xoay [15]. 2.2 Đánh giá sai số hệ thống Dựa trên mô phỏng toán học của hệ thống SGS những thông số ảnh hưởng đến sai số sẽ được nghiên cứu: • Sự phân bố không đồng đều của chất thải phóng xạ trong thùng có chất độn đồng nhất. • Khoảng cách từ đầu dò đến tâm thùng liên quan đến việc điều chỉnh sai số của phép đo với sự suy giảm số đếm mà đầu dò ghi nhận. Mô hình thùng chất thải phóng xạ thường được sử dụng trong thực tế và mô phỏng với thể tích 220 lít, đường kính 58 cm và chiều cao 86 cm. Phép đo gam-ma được thực hiện ở năng lượng của các đồng vị sản phẩm phân hạch, từ 140 KeV đến 1400 KeV. Với khoảng năng lượng gam-ma đã cho, các hệ số hấp thụ tuyến tính trung bình của chất độn đối sẽ trong khoảng 0,01 cm-1 đến 0,14 cm-1 . Trong luận văn này, hệ số hấp thụ tuyến tính trung bình là từ 0,03 - 0,12 cm-1 và 0,0498 cm-1 ứng với chất độn là cát. Ta xét trường hợp các nguồn điểm trong chất độn là đồng nhất [15]. Giả thiết có một nguồn điểm hoạt độ thực là Id trong một phân đoạn. Thì số đếm thực của nguồn đó sẽ được tính như sau [15]: j- .Ln d 2 j=1 j I . e C = n H µ α ∑ (2.5) Trong đó: Lj: độ dài quãng đường tia gam-ma trong thùng. Hj: khoảng cách từ nguồn đến đầu dò. Lj, Hj phụ thuộc vào góc θj, khoảng cách từ nguồn đến tâm thùng r, khoảng cách từ đầu dò đến tâm thùng K, và bán kính thùng R. n: số góc θj khác nhau cho mỗi số đếm
  • 23. 21 µ: hệ số hấp thụ tuyến tính α: hệ số phụ thuộc vào năng lượng của tia gam-ma và hiệu suất của đầu dò Hình 2.2. Mặt cắt ngang của một phân đoạn 2 2 j jH = K +r -2.K.r.cosθ (2.6) 2 2 2 2 2 j j j j j R .H -K .r .sin θ -(K.cosθ -r).r L = H (2.7) Ở đây Lj, Hj tính cho trường hợp phân đoạn được chia có bề dày rất nhỏ so với khoảng cách từ tâm thùng đến đầu dò, khi đó chúng ta có thể không tính tới bề dày của một phân đoạn. Kết quả sẽ chính xác hơn khi tính đến bề dày z của các phân đoạn, lúc này ta phải hiệu chỉnh lại Lj, Hj . Giả sử thùng với chiều cao 86 cm được chia làm 10 phân đoạn, với bề dày của mỗi phân đoạn là 8,6 cm, khi đó Lj, Hj sẽ được hiệu chỉnh là: ' 2 2 j jH = H +z (2.8) ' 2 2 j jL = L +z (2.9) Với 0< z < 8,6 cm [2]. Mối liên hệ giữa số đếm thực và hoạt độ Is của nguồn đo bởi kĩ thuật SGS được cho bởi công thức [15]: s i2 I . C = .CF K α (2.10) So sánh kết quả của Id và Is được tính toán từ các công thức (2.5) và (2.10) ta
  • 24. 22 có thể rút ra được sai số tương đối của phép đo SGS. 2.3 Tính toán giá trị sai số bằng phương pháp ngẫu nhiên. Để tính toán mô phỏng, phân bố ngẫu nhiên của một nguồn điểm và tổng quát hơn là nhiều nguồn điểm được cho vào một phân đoạn đã được giả thiết ở đây. Phần mềm Borland C là cơ sở cho việc lập trình để tính toán. 2.3.1 Trường hợp một nguồn điểm được gieo vào trong một phân đoạn Khi ta gieo biến ngẫu nhiên để mô phỏng tương tự cho thao tác cho nguồn vào thùng ở những toạ độ khác nhau một cách ngẫu nhiên. Vị trí r của nguồn khi được cho ngẫu nhiên vào thùng sẽ nằm trong khoảng 0 – 29 cm. Hệ số hấp thụ tuyến tính là 0,04987 cm-1 (thí nghiệm với hệ đo sử dụng cát làm chất độn) và K = 87; 116 cm. Do thùng được quay đều liên tục trong quá trình quét nên tôi không tính sai số theo góc quét θj. Như đã trình bày trong phần trên, ta có thể thấy được rõ ràng là vị trí của một nguồn điểm theo bán kính r sẽ ảnh hưởng đến sai số của hệ thống trong phép đo SGS. Chính vì thế trước tiên ta cần phải tính sai số hệ thống cho từng vị trí r sao cho sự biến đổi của sai số là không quá lớn. Bảng 2.1 trình bày kết quả thống kê tính toán theo bước nhảy của r là 0,5 cm. Với giả thiết tính toán: hệ số phụ thuộc vào năng lượng của tia gam-ma và hiệu suất của đầu dò α = 1 hoặc là hệ số này sẽ bị triệt tiêu khi ta tính toán bằng cách lập tỉ số. Kết quả sau khi đã thống kê: Bảng 2.1. Giá trị sai số theo phân bố r (cm) khi cho một nguồn ngẫu nhiên vào một phân đoạn r (cm) K = 87 cm K = 116 cm Is/Id Sai số (%) Is/Id Sai số (%) 0,50 0,617 -38,3 0,617 -38,3 1,00 0,617 -38,3 0,617 -38,3 1,50 0,619 -38,1 0,618 -38,2
  • 25. 23 2,00 0,620 -38 0,62 -38 2,50 0,622 -37,8 0,622 -37,8 3,00 0,625 -37,5 0,624 -37,6 3,50 0,628 -37,2 0,627 -37,3 4,00 0,631 -36,9 0,63 -37 4,50 0,635 -36,5 0,634 -36,6 5,50 0,645 -35,5 0,642 -35,8 6,00 0,650 -35 0,647 -35,3 6,50 0,656 -34,4 0,652 -34,8 7,00 0,662 -33,8 0,658 -34,2 7,50 0,669 -33,1 0,665 -33,5 8,00 0,677 -32,3 0,671 -32,9 8,50 0,685 -31,5 0,679 -32,1 9,50 0,703 -29,7 0,695 -30,5 10,00 0,713 -28,7 0,704 -29,6 11,00 0,734 -26,6 0,723 -27,7 12,00 0,759 -24,1 0,745 -25,5 12,50 0,772 -22,8 0,757 -24,3 13,00 0,786 -21,4 0,77 -23 13,50 0,801 -19,9 0,783 -21,7 14,00 0,816 -18,4 0,797 -20,3 15,00 0,850 -15 0,827 -17,3 16,00 0,887 -11,3 0,86 -14 16,50 0,907 -9,3 0,878 -12,2 17,00 0,928 -7,2 0,897 -10,3 17,50 0,951 -4,9 0,917 -8,3 18,00 0,974 -2,6 0,938 -6,2 19,00 1,025 2,5 0,982 -1,8
  • 26. 24 19,50 1,052 5,2 1,006 0,6 20,00 1,081 8,1 1,032 3,2 20,50 1,111 11,1 1,058 5,8 21,00 1,143 14,3 1,087 8,7 22,00 1,212 21,2 1,147 14,7 22,50 1,250 25 1,18 18 23,00 1,289 28,9 1,215 21,5 23,50 1,332 33,2 1,252 25,2 24,00 1,376 37,6 1,291 29,1 25,00 1,475 47,5 1,377 37,7 25,50 1,529 52,9 1,424 42,4 26,50 1,651 65,1 1,53 53 27,00 1,720 72 1,59 59 27,50 1,795 79,5 1,656 65,6 So với kết quả hoạt độ thực của nguồn, kết quả tính toán cho thấy khi nguồn ở gần tâm của phân đoạn hình tròn thì giá trị đo được có xu hướng bị đánh giá thấp đi, còn khi nguồn ở gần mép thùng thì giá trị đo được sẽ có xu hướng bị đánh giá cao hơn. 2.3.2 Trường hợp gieo nhiều nguồn ngẫu nhiên vào một phân đoạn Từ những giá trị trên Bảng 2.1 dẫn đến việc phải trả lời câu hỏi là nếu có nhiều nguồn phân bố ngẫu nhiên trong một phân đoạn thì kết quả sẽ như thế nào? Để trả lời câu hỏi này, các tính toán cho một lượng nguồn từ một đến 1000 được cho là phân bố đều trong một phân đoạn đã được tiến hành, kết quả thống kê được đưa ra trong Bảng 2.2. Các nguồn ở đây được coi là có hoạt độ như nhau. Kết quả sau khi đã thống kê: Bảng 2.2. Giá trị Itb và sai số khi cho nhiều nguồn giống nhau vào một phân đoạn
  • 27. 25 K = 87 cm µ = 0,03 cm-1 K = 87 cm µ = 0,0498 cm-1 K = 87 cm µ = 0,12 cm-1 Số nguồn Itb Sai số (%) Itb Sai số(%) Itb Sai số(%) 1 1,63 63 1,86 86 2,22 122 2 1,22 22 1,53 53 2,21 121 3 1,27 27 1,49 49 2,22 122 4 1,15 15 1,41 41 1,72 72 5 1,18 18 1,33 33 1,75 75 6 1,12 12 1,30 30 1,50 50 7 1,07 7 1,21 21 1,31 31 8 1,04 4 1,15 15 1,17 17 9 1,06 6 1,09 9 1,22 22 10 1,10 10 1,19 19 1,37 37 20 1,03 3 1,01 1 1,01 1 30 0,98 -2 0,93 -7 0,81 -19 40 0,99 -1 0,92 -8 0,83 -17 50 1,01 1 0,95 -5 0,87 -13 60 1,01 1 0,96 -4 0,87 -13 70 1,02 2 0,96 -4 0,90 -10 80 1,03 3 1,00 0 0,95 -5 90 1,03 3 1,01 1 0,94 -6 100 1,02 2 0,98 -2 0,93 -7 200 1,00 0 0,95 -5 0,82 -18 300 1,01 1 0,96 -4 0,84 -16 400 1,00 0 0,94 -6 0,83 -17 500 1,00 0 0,95 -5 0,83 -17 600 1,01 1 0,94 -6 0,83 -17 700 1,01 1 0,95 -5 0,85 -15 800 1,00 0 0,94 -6 0,83 -17 900 1,00 0 0,96 -4 0,81 -19
  • 28. 26 1000 1,00 0 0,96 -4 0,81 -19 Nhận xét: Trong những phép tính toán trên tôi sử dụng số lượng nguồn khác nhau và khoảng cách từ thùng đến đầu dò không đổi để khảo sát sai số của phương pháp mô phỏng theo hệ số hấp thụ tuyến tính µ và số nguồn gieo vào thùng rác thải. - Với cùng một số nguồn, khi hệ số hấp thụ tuyến tính trung bình µ tăng lên thì sai số trong phép đo sẽ tăng lên. Hệ số hấp thụ tuyến tính càng lớn thì phép đo sẽ có sai số càng lớn. - Số nguồn càng tăng lên thì sai số của phương pháp có xu hướng sẽ giảm đi. Qua đó cho thấy rằng số lượng nguồn và sự phân bố của nguồn và chất độn ảnh hưởng rất lớn đến sai số của phép đo. Số nguồn càng nhiều và phân bố đều với chất độn có hệ số hấp thụ tuyến tính thấp thì phép đo càng chính xác. 2.3.3 Trường hợp tổng quát gieo nhiều nguồn vào thùng phóng xạ Tổng quát hơn nữa: một lượng nguồn từ 10 đến 1000 được cho vào thùng với nhiều phân đoạn. Các nguồn này được giả thiết là phân bố ngẫu nhiên đều trong thùng để tính toán. Các kết quả được đưa ra trong Bảng 2.3. Nhận xét: Số nguồn cho vào thùng càng lớn thì sai số sẽ có xu hướng giảm xuống rất nhỏ. Khi ta cho 10 nguồn vào thùng, sai số của phép đo trên từng phân đoạn có thể rất lớn, có thể lớn hơn 100%. Sai số này do sự phân bố rời rạc của nguồn và nó giảm đi khi ta tăng số nguồn lên. Điều này có nghĩa là nếu nguồn nhiều và được phân bố đồng đều thì sai số của phương pháp sẽ giảm đi đáng kể so với một số ít nguồn phân bố rời rạc, không đều trong thùng. Khoảng cách K thay đổi ảnh hưởng rất nhỏ đến sai số trong các trường hợp K = 87 cm hay K = 116 cm. Hệ số hấp thụ tuyến tính càng lớn dẫn đến sai số của phép đo càng lớn, sai số lớn nhất khi µ = 0,12 cm-1 .
  • 29. 27 Bảng 2.3. Giá trị sai số khi cho nhiều nguồn vào thùng với 10 phân đoạn, với µ = 0,03; 0,06; và 0,12 cm-1 và K = 87 cm; K = 116 cm • Cho 10 nguồn vào thùng Phân đoạn Số nguồn/ phân đoạn µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116 Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) 1 1 0,8108 -18,92 0,5703 -42,97 0,5703 -42,97 0,5674 -43,26 0,2138 -78,62 0,2121 -78,79 2 0 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 3 1 0,7917 -20,83 0,5414 -45,86 0,5414 -45,86 0,5406 -45,94 0,1875 -81,25 0,1870 -81,3 4 1 0,8796 -12,04 0,6886 -31,14 0,6886 -31,14 0,6757 -32,43 0,3464 -65,36 0,3376 -66,24 5 0 -0,0000 -100 -0,0000 -100 -0,0000 -100 -0,0000 -100 -0,0000 -100 -0,000 -100 6 0 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 0,0000 -100 7 2 1,2858 28,58 1,5065 50,65 1,5065 50,65 1,4025 40,25 1,7911 79,11 1,6523 65,23 8 1 0,8005 -19,95 0,5545 -44,55 0,5545 -44,55 0,5527 -44,73 0,1992 -80,08 0,1982 -80,18 9 2 0,7836 -21,64 0,5277 -47,23 0,5277 -47,23 0,5280 -47,2 0,1740 -82,6 0,1741 -82,59 10 2 1,0656 6,56 1,0762 7,62 1,0762 7,62 1,0198 1,98 1,0740 7,4 0,9987 -0,13 • Cho 50 nguồn vào thùng: Phân đoạn Số nguồn / phân đoạn µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116 Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%)
  • 30. 28 1 5 0,9508 -4,92 0,9281 -7,19 0,8242 -17,58 0,5300 -47 0,5500 -45 0,5257 -47,43 2 4 1,2113 21,13 1,1482 14,82 1,3868 38,68 1,4050 40,5 1,5070 50,7 1,5714 57,14 3 2 1,2729 27,29 1,2007 20,07 1,2301 23,01 1,164 16,4 1,2684 26,84 1,6960 69,6 4 3 0,9302 -6,98 0,9102 -8,98 0,7881 -21,19 0,6068 -39,32 0,5068 -49,32 0,4852 -51,48 5 3 1,0031 0,31 0,9724 -2,76 0,9361 -6,39 0,8625 -14,75 0,7725 -22,75 0,7270 -27,3 6 6 0,9445 -5,55 0,9224 -7,76 0,8150 -18,5 0,6540 -34,6 0,5490 -45,1 0,5239 -47,61 7 11 0,9719 -2,81 0,9451 -5,49 0,8842 -11,58 0,842 -15,8 0,7246 -27,54 0,6805 -31,95 8 6 1,1375 13,75 1,0863 8,63 1,2010 20,1 1,2211 22,11 1,2211 22,11 1,1366 13,66 9 6 0,9337 -6,63 0,9130 -8,7 0,8021 -19,79 0,756 -24,4 0,5556 -44,44 0,5281 -47,19 10 4 1,1024 10,24 1,0560 5,6 1,1578 15,78 1,213 21,3 1,2583 25,83 1,1641 16,41 • Cho 200 nguồn vào thùng Phân đoạn Số nguồn /phân đoạn µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116 Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) 1 19 1,0309 3,09 0,9954 -0,46 0,9976 -0,24 0,9504 -4,96 0,9078 -9,22 0,8485 -15,15 2 20 0,9168 -8,32 0,8983 -10,17 0,7774 -22,26 0,7532 -24,68 0,6511 -34,89 0,6217 -37,83 3 27 0,9948 -0,52 0,9649 -3,51 0,9271 -7,29 0,8875 -11,25 0,7871 -21,29 0,7385 -26,15 4 19 1,0695 6,95 1,0285 2,85 1,0729 7,29 1,0180 1,8 1,0312 3,12 0,9617 -3,83 5 25 0,9666 -3,34 0,9411 -5,89 0,8622 -13,78 0,8304 -16,96 0,6412 -35,88 0,6072 -39,28 6 20 0,9708 -2,92 0,9444 -5,56 0,8798 -12,02 0,8451 -15,49 0,7090 -29,1 0,6669 -33,31
  • 31. 29 7 18 0,9633 -3,67 0,9381 -6,19 0,8634 -13,66 0,8307 -16,93 0,6735 -32,65 0,6350 -36,5 8 17 0,9654 -3,46 0,9399 -6,01 0,8620 -13,8 0,8300 -17 0,6484 -35,16 0,6135 -38,65 9 20 1,0495 4,95 1,0112 1,12 1,0387 3,87 0,9867 -1,33 0,9907 -0,93 0,9235 -7,65 10 15 0,9904 -0,96 0,9609 -3,91 0,9206 -7,94 0,8812 -11,88 0,7910 -20,9 0,7408 -25,92 • Cho 1000 nguồn vào thùng Phân đoạn Số nguồn/ phân đoạn µ =0,03; K= 87 µ =0,03; K=116 µ =0,06; K= 87 µ =0,06; K=116 µ =0,12; K= 87 µ =0,12; K= 116 Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) Itb Sai số (%) 1 106 0,9752 -2,48 0,9594 -4,06 0,8951 -10,49 0,8739 -12,61 0,7271 -27,29 0,7042 -29,58 2 109 0,9951 -0,49 0,9652 -3,48 0,9228 -7,72 0,8841 -11,59 0,7602 -23,98 0,7151 -28,49 3 110 0,9685 -3,15 0,9425 -5,75 0,8742 -12,58 0,8402 -15,98 0,6953 -30,47 0,6546 -34,54 4 84 0,9981 -0,19 0,9677 -3,23 0,9331 -6,69 0,8930 -10,7 0,7955 -20,45 0,7463 -25,37 5 99 1,0060 0,6 0,9743 -2,57 0,9506 -4,94 0,9083 -9,17 0,8364 -16,36 0,7829 -21,71 6 108 0,9729 -2,71 0,9463 -5,37 0,8789 -12,11 0,8449 -15,51 0,6868 -31,32 0,6480 -35,2 7 106 1,0024 0,24 0,9714 -2,86 0,9379 -6,21 0,8975 -10,25 0,7880 -21,2 0,7402 -25,98 8 106 0,9932 -0,68 0,9637 -3,63 0,9195 -8,05 0,8813 -11,87 0,7581 -24,19 0,7130 -28,7 9 102 0,9807 -1,93 0,9531 -4,69 0,8930 -10,7 0,8578 -14,22 0,7037 -29,63 0,6639 -33,61 10 70 0,9764 -2,36 0,9492 -5,08 0,8900 -11 0,8543 -14,57 0,7231 -27,69 0,6799 -29,58
  • 32. 30 Chương 3: Xây dựng hệ đo thực nghiệm 3.1 Cơ sở thực nghiệm Các kết quả tính toán ở Chương 2 cho thấy nếu nguồn phóng xạ trong một phân đoạn tập trung vào một vùng hẹp ở tâm hoặc mép thùng sẽ dẫn đến sai số rất lớn. Để chứng minh điều này bằng thực nghiệm, một hệ đo dựa trên cơ sở nguyên lý của phép đo SGS đã được nghiên cứu và thiết lập. Hệ đo này cũng có thể là cơ sở để xây dựng một hệ đo SGS nếu được tiếp tục hoàn thiện. Hệ đo sử dụng một đầu dò NaI có gắn ống chuẩn trực (colimator) hình trụ để phân tích một phân đoạn đã cho trước của thùng rác thải. Nhiều đoạn có thể được đo nếu ta đồng thời sử dụng nhiều máy dò để giảm thời gian đo lường. Số phân đoạn được chia ra phân tích càng nhiều thì độ chính xác của phép đo càng cao, tuy nhiên điều này khó có thể thực hiện được trong thực nghiệm do hạn chế về mặt kỹ thuật. Hệ đo được thiết kế sao cho thoả mãn các yêu cầu đo đạc mà vẫn có thể chiếm một thể tích nhỏ nhất và có thể dễ dàng lắp đặt và di chuyển nhất. Bởi vì hệ SGS sử dụng một nguồn ngoài để tính hệ số hấp thụ cho sự suy giảm tia gam-ma nên sai số của phép đo có thể nhỏ nếu các nguồn là đồng nhất giống như nguồn ngoài mà ta đã sử dụng. Đối với những mẫu tương đối đồng nhất kể cả nguồn và chất độn, với sự suy giảm tương đối thấp do chất độn hấp thụ, sai số nằm trong khoảng từ 10% đến 30% (sai số trong trường hợp lý tưởng với chất độn và nguồn đồng nhất). Sai số thực nghiệm rất lớn, có thể lớn hơn 500% xảy ra nếu thùng chất thải thể hiện tính không đồng nhất về nguồn và chất độn [10].
  • 33. 31  Phương pháp tính hệ số hấp thụ tuyến tính trung bình của chất độn Ta sử dụng nguồn ngoài để tính hệ số truyền qua: Hình 3.1. Sử dụng nguồn ngoài để tính hệ số hấp thụ tuyến tính trung bình [7] Xác định hệ số hấp thụ tuyến tính trung bình bằng một nguồn truyền dẫn gắn ngoài 0 t IT I = (3.1) Với : I0: là cường độ nguồn ngoài khi không có chất độn ở giữa. I: là cường độ khi có chất độn đặt giữa đầu dò và nguồn. Tt: là hệ số truyền qua, nói lên cường độ của bức xạ xác định được sau khi đi qua bề dày chất độn của thùng rác thải. T: là năng lượng phân tích, là phần năng lượng của bức xạ được xác định khi năng lượng từ nguồn được truyền trực tiếp đến thiết bị đo mà không phải đi qua lớp vật chất hấp thụ nào trừ không khí. Mối quan hệ giữa hệ số truyền qua trong năng lượng truyền qua và năng lượng phân tích cho bởi: t tT T µ µ = (3.2) Trong đó µ và µt là hệ số hấp thụ tuyến tính tương ứng với năng lượng truyền qua và năng lượng phân tích. Cách này được sử dụng rộng rãi để xác định CFi ở phân đoạn thứ i trong
  • 34. 32 phương pháp SGS, vì hệ số hấp thụ tuyến tính có thể thay đổi giữa các vùng trên một phân đoạn hoặc từ phân đoạn này sang phân đoạn khác. Từ đó ta tính được hệ số suy giảm do chất độn CFi [15]: 0,823 1 0.823.lni T CF T − = − (3.3) 3.2 Cấu tạo của thiết bị thí nghiệm: 3.2.1 Máy đơn kênh Ludlum thế hệ 2200 Máy đơn kênh Ludlum thế hệ 2200 là thiết bị được dùng cho việc phân tích năng lượng gam-ma cùng với đầu dò nhấp nháy, ống đếm Geiger Muller và ống đếm tỷ lệ. Số đếm được hiển thị trên đèn Led và máy có thể kết nối với máy vi tính thông qua cổng RS-232 và có phần mềm xử lý kết quả đo. - Đèn đếm (Count Lamp): số đếm hiện thị bằng đèn Led gồm có 6 số. - Công tắc đếm (Count Switch): để xóa và khởi động đếm, quá trình đếm sẽ tự động tắt khi kết thúc thời gian đã đặt trước. - Thời gian đếm (Count Time): thời gian sử dụng để đo với đơn vị là phút từ 0-999 với công tắc chỉnh X0.1 và X1. - Số phút (Minutes): cài đặt thời gian có thể điều chỉnh bằng tay có núm 3 số thập phân dùng để đặt trước thời gian đếm. - Công tắc chọn chức năng (Ratemeter Function Selector): có 3 vị trí được cài đặt sẵn Rate, HV, Bat. Chức năng của công tắc này (Rate) là cho phép điều khiển tốc độ đếm của đồng hồ, HV là cài đặt điện thế và Bat là kiểm tra tình trạng làm việc của pin trên đồng hồ.
  • 35. 33 Hình 3.2. Máy đơn kênh Ludlum thế hệ 2200 - Ngưỡng (Threshold): Là một nút được chia ra làm 10 vạch nhỏ với 10 vòng dùng đề lựa chọn xung phù hợp với thang đo. Thiết bị điều khiển này thì có giá trị tăng từ thế từ 1.00 đến 10.00. Nếu dưới 1.00 thì sẽ bị ảnh hưởng của tiếng ồn hay nhiễu do đó sẽ không ghi nhận được xung một cách chính xác. - Cửa sổ (Window): là một nút gồm có 10 vạch giống như Threshold được sử dụng để điều chỉnh độ rộng cửa sổ. Nó được điều chỉnh ngưỡng sao cho một vòng quay của việc điều chỉnh cửa sổ tương đương với một vòng quay điều chỉnh ngưỡng. - Tắt mở (On-Off): là công tắc bằng nút, mở hoặc đóng cửa sổ. - Đầu nối vào đầu dò: đầu nối đồng trục nối tiếp “C”. Nó là đầu điều chỉnh không có chỉ số chỉ thị, cho phép chọn điểm làm việc mà không vượt ra khỏi mạch tuyến tính của mạch Threshold/ Window. - Công tắc chọn khoảng (Range Selector Switch): có 4 vị trí công tắc sắp xếp theo hệ số nhân của 10 là X1, X10, X100, X1K ứng với thang đo của số đếm từ 0-500 counts-per-minute (cpm); 0-5000; 0-50000; 0-500.000 cpm. - Công tắc Zero: khi ấn vào nút công tắc thì tụ điện tích hợp phóng điện để đưa đồng hồ đo về mức 0.
  • 36. 34 - Nút Fast- Slow: công tắc với 2 vị trí chỉ thị để điều chỉnh ở mức độ nhanh ở vị trí “F” đồng hồ sẽ chỉ từ 0 đến 90% toàn bộ thang đo trong 4 giây, còn ở vị trí “S” đồng hồ thang đo sẽ chỉ từ 0 đến 90% toàn bộ thang đo trong 22 giây. - HV (Cao thế): nút chỉnh gồm có 10 vòng được chia làm 10 vạch điều chỉnh cao thế từ 200 V đến 2500 V. Việc tiến hành đo của đầu dò và thiết bị được quyết định bởi cao thế HV và ngưỡng cài đặt Threshold, ta phải điều chỉnh ngưỡng đo sao cho thích hợp để sự ảnh hưởng có phông tự nhiên và nhiễu là nhỏ nhất. • Đặc trưng kỹ thuật - Nguồn nuôi: 85-265V sử dụng dòng điện xoay chiều, tần số 50-60 Hz. - Pin: 4 pin với thời gian làm việc là 120 giờ được đặt trong thiết bị. - Độ nhạy của thiết bị: độ nhạy điện thế cho các đầu dò . - Cao thế: điều chỉnh bằng núm xoay 10 vòng từ 0V đến 1400 V. - Bộ tốc độ đo: máy đếm với 4 tốc độ đếm là: 0-500 cpm, 0-5000 cpm, 0-50000 cpm, 0-500000 cpm (cpm: số đếm trên phút). - Thời gian đếm là từ 0 đến 999 phút với các thang nhân X0.1 và X1. - Độ chính xác thời gian: được quyết định bằng tinh thể với độ chính xác là: 0.2 % số đếm đọc trên núm điều chỉnh. - Độ chính xác của tốc độ đếm: 10 % giá trị tham chiếu. • Cách vận hành - Nguồn nuôi: Có thể sử dụng nguồn nuôi bằng cách sử dụng lưới điện hoặc dùng pin bằng công tắc nguồn. - Vận hành bằng nguồn điện lưới (line operation): nối thiết bị với nguồn lưới 85- 265 V, 50-60 Hz, bật công tắc về Line. - Vận hành bằng nguồn pin: các ổ pin nằm ở mặt sau của thiết bị. Đặt 4 pin loại “D” vào với cực dương hướng ra ngoài. Bật công tắc về Bat, kiểm tra tình trạng pin bằng cách chọn Bat trên đồng hồ Rate-HV-Bat. - Kiểm tra hoạt động của thiết bị bằng cách ấn vào nút Count lúc này đèn đếm sẽ phát sáng, máy bắt đầu đếm.
  • 37. 35 3.2.2 Đầu dò nhấp nháy thế hệ 44-10 Đầu dò là thành phần quan trọng nhất trong các thiết bị bức xạ. Nguyên tắc hoạt động chung của đầu dò ghi đo bức xạ là khi bức xạ đi qua môi trường vật chất của nó, chúng tương tác với các nguyên tử và gây nên ion hoá và kích thích nguyên tử. Đầu dò NaI nhấp nháy thế hệ 44-10 sử dụng cho việc đo bức xạ gam-ma có năng lượng trong khoảng 60 KeV - 2 MeV. Đầu dò bao gồm: tinh thể NaI đường kính 2 inch (5,1cm); bề dày 2 inch (5,1cm) được nối với ống nhân quang điện và được bao bọc bằng một lớp nhôm mỏng 0,062 inch. Hình 3.3. Đầu dò nhấp nháy NaI thế hệ 44-10 và giá đỡ  Đặc trưng kỹ thuật - Chất nhấp nháy: tinh thể NaI. - Độ nhạy : 900 cpm ( đối với nguồn 137 Cs ). - Dụng cụ tương thích với mọi thiết bị. - Điện thế hoạt động : 500-1200 V. - Kết nối cổng “C”. - Nhiệt độ là từ 200 C-500 C. - Kích thước: đường kính 2,6 inch (6,6 cm); chiều dài là 11 inch (27,94 cm).  Cách vận hành và bảo quản đầu dò - Kết nối đầu dò với máy đếm bằng cáp. - Kiểm tra đầu dò.
  • 38. 36 - Bảo đảm cao thế (HV) phù hợp với đầu dò . - Sau khi kiểm tra an toàn thì có thể tiến hành đo - Đặt nơi khô ráo. - Nhiệt độ trong khoảng từ 200 C đến 500 C. Do chỉ giới hạn mục đích kiểm nghiệm kết quả tính toán với kết quả từ mô phỏng lý thuyết, nên luận văn này tôi chỉ quan tâm đến số đếm và sử dụng đầu dò NaI. Trong trường hợp chúng ta quan tâm nhiều hơn đến các đồng vị trong thùng rác thải ta phải sử dụng đầu dò HPGe cùng với hệ phân tích đa kênh để thu được phổ năng lượng ứng với gam-ma đặc trưng của các đồng vị phóng xạ. 3.2.3 Giá đỡ và ống chuẩn trực chì Hình 3.4. Ống chuẩn trực được chế tạo riêng cho đầu dò nhấp nháy NaI Ống chuẩn trực được đúc và tiện bằng chì theo đúng kích cỡ cần thiết ứng với kích cỡ của giá đỡ, đầu dò và bề dày của một phân đoạn. Sử dụng hai ống ghép lại với nhau: ống lớn có đường kính trong là 7 cm, đường kính ngoài là 9 cm, chiều dài 7 cm ôm trọn lấy đầu tinh thể NaI, ống nhỏ có chiều dài là 5 cm, đường kính trong 0,5 cm ứng với góc nhìn (độ mở tầm nhìn) trên từng phân đoạn của đầu dò. Các ống chuẩn trực được gắn đồng trục trên cùng một giá đỡ với đầu dò. Khi gắn ống chuẩn trực vào đầu dò thì nó làm cho góc nhìn của đầu dò bị hạn chế lại, góc nhìn của đầu dò bây giờ sẽ tương ứng với bề dày của mỗi phân đoạn đã phân chia trên thùng rác thải. Ứng với khoảng cách từ tâm thùng đến đầu dò là K = 87 cm thì đường kính của ống chuẩn trực sẽ là:
  • 39. 37 Hình 3.5. Tỉ lệ đường kính ống chuẩn trực và bề dày phân đoạn . 8,6.5 0,5 87 d L z L d z K K = ⇒ = = ≈ Với: d: là đường kính trong của ống chuẩn trực z: là chiều cao của một phân đoạn L: là chiều dài của ống chuẩn trực K: là khoảng cách từ tâm thùng đến đầu dò. Hình 3.6. Ống chuẩn trực gắn với đầu dò trên giá đỡ + máy LUDLUM 2200 3.2.4 Hệ nâng thùng rác thải phóng xạ gồm có: - Giá đỡ: được làm bằng bốn trục kim loại gắn lại với nhau, thước dây được gắn liền với các trục này để ta có thể biết được chính xác vị trí của từng phân đoạn của thùng rác thải. - Một mô tơ có công suất lớn, có thể nâng được 200 kg, được gắn hệ giảm tốc và hệ phanh để có thể nâng thùng lên hoặc hạ thùng xuống theo đúng độ cao ta cần có. Hệ phanh có thể giúp giữ thùng tại một độ cao nào đó để ta có thể thực hiện các phép đo.
  • 40. 38 - Hệ trượt cho thùng: gồm dây và trục ròng rọc truyền động. Các bánh răng được gắn thêm vào giữa mô tơ quay và ròng rọc trong hệ truyền động để giảm tốc độ nâng lên hoặc trượt xuống, giúp chúng ta có thể điều chỉnh chính xác chuyển động của thùng rác thải. Hình 3.7. Mô tơ quay và hệ nâng Hình 3.8. Mô tơ, bánh đà và dây xích truyền động - Cáp trượt: làm bằng dây chắc chắn, có thể thay thế được một cách dễ dàng. Cáp
  • 41. 39 trượt gắn với hai ròng rọc, một ở mô tơ nâng và một ở giá đỡ thùng rác thải phóng xạ. Khi mô tơ hoạt động thì cáp trượt sẽ nâng thùng lên hoặc hạ thùng xuống theo ý muốn thực nghiệm. Hình 3.9. Cáp trượt, thanh trượt và thước đo của hệ nâng Hệ nâng có thể nâng thùng lên hoặc hạ thùng xuống trong một phạm vi là 0,6 m theo phương thẳng đứng. Trong mô hình thí nghiệm này, hệ nâng sẽ nâng hoặc hạ thùng lên xuống từng đoạn là 8,6 cm tương ứng với chiều cao của mỗi phân đoạn trên thùng mà ta đã chia ứng với góc quét của đầu dò. Toàn bộ hệ được thiết kế chắc chắn nhưng tương đối gọn nhẹ, chiếm diện tích sàn khoảng 0,64 m2 , thuận lợi cho việc lắp ráp, thay thế linh kiện và di chuyển. 3.2.5 Hệ quay và thùng rác thải: • Hệ quay Hệ quay gồm một mô tơ quay đã gắn hệ giảm tốc, quay với tốc độc chậm để đầu dò có thể quét được toàn bộ thùng rác thải phóng xạ một cách chi tiết nhất, mô tơ được gắn hệ truyền động gồm các bánh răng gắn liền với trục quay của giá đỡ thùng rác thải phóng xạ.
  • 42. 40 Hình 3.10. Mô tơ được gắn với giá đỡ của hệ quay • Thùng rác thải: Thùng chất thải được đặt trên đĩa quay của giá đỡ và có thể thay thế được, khi thùng quay có thể được quét lần lượt từng phân đoạn trên cùng một trục. Kích thước:  Đường kính : 58 cm  Chiều cao: 51 cm  Thùng có thể tích là: 130 lít Do vấn đề tải trọng quá lớn cộng với việc sẽ thiếu nguồn làm thí nghiệm nếu thiết kế đúng theo thùng rác thải thường sử dụng nên thùng rác ở đây đã được cắt đi một nửa, với chiều cao 51 cm. Thùng được chia làm năm phân đoạn trong quá trình làm thí nghiệm, mỗi phân đoạn có chiều cao là 8,6 cm.
  • 43. 41 Hình 3.11. Thùng rác thải trên giá đỡ và hệ quay Thùng rác thải này được chế tạo lại tương tự thùng rác thải hạt nhân thật sự với chất độn được sử dụng là cát, vải vụn, giấy vụn… để có thể cho nguồn vào hoặc lấy nguồn ra mà không làm ảnh hưởng đến nguồn thay vì sử dụng xi măng và các chất độn khác như thùng rác thải thật. Trong thí nghiệm định tính để kiểm tra số đếm thô của đầu dò tôi đã sử dụng hỗn hợp chất độn gồm cát và vải vụn với khối lượng riêng hỗn hợp là khoảng 1-1,5 g/cm3 . Hình 3.12. Chất độn là cát và vải vụn được cho vào thùng với nguồn.
  • 44. 42 3.2.6 Bộ nguồn sử dụng trong quá trình đo đạc: Bảng 3.1. Thông tin bộ nguồn sử dụng trong quá trình đo Nguồn Hoạt độ ban đầu Chu kì bán rã Hoạt độ hiện tại Năng lượng (MeV) 133 Ba 1 µCi 10,8 năm 0,741 µCi 0,081; 0,276; 0,303; 0,365; 0,384 109 Cd 1 µCi 463 ngày 0,0078 µCi 0,022; 0,025; 0,088 57 Co 1 µCi 272 ngày 0,013µCi 0,122; 0,136 60 Co 1 µCi 5,27 năm 0,541µCi 1,173; 1,332 137 Cs 1 µCi 30,2 năm 0,898 µCi 0,662 54 Mn 1 µCi 313 ngày 0,023 µCi 0,835 22 Na 1 µCi 2,6 năm 0,288µCi 0,511; 1,275 65 Zn 1 µCi 244 ngày 0,0079 µCi 1,115 152 Eu KHTN 12,4 năm 1 µCi 133 Ba 10,8 năm 1 µCi 0,081; 0,276; 0,303; 0,365; 0,384 137 Cs 30,2 năm 10 µCi 0,662 Hình 3.13. Bộ nguồn phóng xạ sử dụng trong thí nghiệm
  • 45. 43 Hình 3.14. Lắp đặt hệ thí nghiệm
  • 46. 44 Chương 4: Đánh giá kết quả đo đạc, sai số trong các thí nghiệm với hệ đo SGS bằng phương pháp ngẫu nhiên và bình luận 4.1 Khảo sát định tính khả năng quét gam-ma của hệ đo SGS với nguồn và chất độn không đồng nhất 4.1.1 Các bước tiến hành Bước 1: - Cài đặt đầu dò. - Cài đặt thời gian tại nút công tắc “X1” và khi đó thời gian đo (Minutes) ở công tắc “030” để tiến hành đo đạc trong khoảng thời gian 30 phút. - Đặt ngưỡng 1.0 và lên cao thế phù hợp ở 800 V. Bước 2: - Đo khoảng cách từ tâm thùng đến đầu dò là K = 87 cm. - Đặt ống chuẩn trực lên giá đỡ đồng trục với đầu dò sao cho ống chuẩn trực ôm trọn lấy tinh thể NaI. Lắp đặt hệ thí nghiệm như hình: Hình 4.1. Lắp đặt đầu dò, ống chuẩn trực và thước đo khoảng cách K - Đo phông phóng xạ của môi trường trong khoảng thời gian 30 phút. Ghi lấy số
  • 47. 45 đếm phông. Bước 3: - Cho các nguồn mẫu vào thùng một cách ngẫu nhiên đồng thời với việc cho chất độn cát và vải vào thùng. - Gạt công tắc của mô tơ nâng để nâng thùng lên hoặc hạ thùng xuống các đoạn 8,6 (cm) theo đúng phân đoạn cần đo. - Gạt công tắc mô tơ quay để quay thùng rác thải phóng xạ. - Nhấn nút Count để ghi lại số đếm trong mỗi trường hợp đo. - Khoảng 6-7,5 phút lại thay đổi phân đoạn đo một lần sao cho toàn bộ các phân đoạn trên thùng rác thải đều được quét với thời gian như nhau. Đo trong thời gian 30 phút, ghi lại số đếm tổng của phông và nguồn. Hoặc ghi lại số đếm trên từng phân đoạn rồi cộng lại hoặc so sánh chúng với nhau, dựa vào số đếm này chúng ta có thể biết được phân đoạn nào chứa nhiều nguồn hoặc có hoạt độ cao hơn các phân đoạn còn lại. 4.1.2 Kết quả thí nghiệm:  N1 là số đếm phông, N2 là số đếm tổng phông và nguồn.  N = N2 - N1 : số đếm thô được ghi nhận bởi đầu dò • Sử dụng bộ nguồn chuẩn của trường ĐH Sư Phạm TP.HCM cho vào thùng với bốn phân đoạn được chia. Bảng 4.1. Số đếm thô khi cho 8 nguồn chuẩn vào bốn phân đoạn của thùng với các lần cho ngẫu nhiên khác nhau. Số lần đo N1 N2 N 1 182076 188328 6736 2 181153 187992 6400 3 181547 188828 7236 TB 181592 6790,667
  • 48. 46 Số lần đo N1 N2 N 1 154241 161083 6876,333 2 154385 162079 7872,333 3 153994 161480 7273,333 TB 154206,7 7340,667 Số lần đo N1 N2 N 1 154241 161352 6989,333 2 153874 160635 6272,333 3 154973 161380 7017,333 TB 154362,7 6759,667 Số lần đo N1 N2 N 1 138285 144265 6718,333 2 137135 143252 5705,333 3 137220 143482 5935,333 TB 137546,7 6119,667 Số lần đo N1 N2 N 1 138285 144417 6870,333 2 137135 144713 7166,333 3 137220 144985 7438,333
  • 49. 47 TB 137546,7 7158,333 Số lần đo N1 N2 N 1 159927 166032 6692 2 158061 166267 6927 3 160032 166334 6994 TB 159340 6871 • Sử dụng 11 nguồn gồm 8 nguồn chuẩn của ĐH Sư Phạm TP.HCM và 3 nguồn của ĐH KH-TN TP.HCM cho vào thùng với năm phân đoạn được chia. Bảng 4.2. Số đếm thô khi cho 11 nguồn vào năm phân đoạn của thùng với các lần cho ngẫu nhiên khác nhau. Số lần đo N1 N2 N 1 144157 154644 10607,67 2 143865 154998 10961,67 3 144087 154340 10303,67 TB 144036,3 10624,33 Số lần đo N1 N2 N 1 139696 153488 13099,33 2 140803 154331 13942,33 3 140667 154237 13848,33 TB 140388,7 13630
  • 50. 48 Số lần đo N1 N2 N 1 139696 153586 13197,33 2 140803 153869 13480,33 3 140667 154088 13699,33 TB 140388,7 13459 Số lần đo N1 N2 N 1 140525 151632 11198 2 140448 152033 11599 3 140329 152348 11914 TB 140434 11570,33 Số lần đo N1 N2 N 1 140525 153402 12968 2 140448 151930 11496 3 140329 151935 11501 TB 140434 11988,33 • Sử dụng 10 nguồn gồm 8 nguồn chuẩn của ĐH Sư Phạm TP.HCM và 2 nguồn 152 Eu, 133 Ba của ĐH KH-TN TP.HCM cho vào thùng với 5 phân đoạn được chia Bảng 4.3. Số đếm thô khi cho 10 nguồn vào năm phân đoạn của thùng với các lần cho ngẫu nhiên khác nhau. Số lần đo N1 N2 N 1 139696 148879 8490,333
  • 51. 49 2 140803 149959 9570,333 3 140667 151273 10884,33 TB 140388,7 9648,333 Số lần đo N1 N2 N 1 139696 150476 10087,33 2 140803 148994 8605,333 3 140667 148902 8513,333 TB 140388,7 9068,667 Số lần đo N1 N2 N 1 140525 151147 10713 2 140448 149090 8656 3 140329 150806 10372 TB 140434 9913,667 4.1.3 Đánh giá và bình luận: Trong thí nghiệm này ta đã ghi nhận được số đếm trên từng phân đoạn và số đếm tổng của thùng, nhưng lại chưa thể xử lý được số đếm này và so sánh với hoạt độ thực của thùng. Lý do: khi làm thí nghiệm với cả thùng rác thải phóng xạ lớn ta cần phải có một lượng nguồn tương đối để cho vào thùng. Do đó trong thí nghiệm này tôi đã huy động tất cả các nguồn trong phòng thí nghiệm và mượn thêm nguồn ở Tổ bộ môn VLHN trường ĐH KHTN TP.HCM. Tuy nhiên các nguồn này khác nhau nhiều về hoạt độ (có nguồn hoạt độ rất lớn, nhưng có nhiều nguồn hoạt độ rất nhỏ), về thành phần cũng như là năng lượng gam-ma do các nguồn phát ra, dẫn đến các hệ số hấp thụ tuyến tính và hiệu suất ghi của đầu dò theo năng lượng gam-ma sẽ không tính toán chính xác được. Do đó thí nghiệm chỉ mang tính chất định tính để
  • 52. 50 kiểm tra tính năng hoạt động của đầu dò cùng ống chuẩn trực, chứ chưa có thể tính toán được hoạt độ của thùng bằng phương pháp SGS và so sánh với hoạt độ thực tế của bộ nguồn sử dụng từ đó rút ra sai số của phép đo SGS. So sánh số liệu giữa các thí nghiệm ta đo được, ta thấy:  Với cùng một số lượng nguồn cho ngẫu nhiên vào thùng, ta có được số đếm không sai khác nhau quá nhiều, sai số tương đối giữa các phép đo không vượt quá 50%.  Khi số lượng nguồn tăng lên, ta thấy số đếm thô mà đầu dò ghi nhận cũng tăng lên rõ rệt. Kết quả đo này là phù hợp với thực tế, chứng tỏ được hệ đo ổn định, và về mặt định tính nó cho ta thấy được rằng những phân đoạn nào có chứa nguồn hay những thùng nào có nhiều nguồn phóng xạ hay hoạt độ lớn hơn thì sẽ cho số đếm lớn hơn. Đề nghị cải tiến: Nếu ta sử dụng bộ nguồn đồng nhất với các nguồn giống nhau hoàn toàn, ta có thể tính được hoạt độ và đưa ra kết luận về sai số của phép đo. Để tính toán chính xác hơn đối với lượng nguồn không đồng nhất này ta phải sử dụng đầu dò HPGe và hệ phổ kế đa kênh để thu được phổ năng lượng và xử lý số đếm trên từng đỉnh năng lượng. 4.2 Khảo sát sai số của phương pháp SGS do phân bố của nguồn Trong thí nghiệm này, tôi sẽ khảo sát sai số của phương pháp SGS do sự phân bố của nguồn theo r (cm) với khoảng cách K, sử dụng chất độn đồng nhất là cát. Sử dụng nguồn Cs137 có hoạt độ I = 3,3 mCi = 12,21 MBq mượn tại Trung Tâm Hạt nhân TP. HCM
  • 53. 51 Hình 4.2. Nguồn Cs137 với hoạt độ I = 12,21 (MBq), dạng ống với hộp chì đựng 4.2.1 Các bước tiến hành: Bước 1: - Cài đặt đầu dò - Cài đặt thời gian tại nút công tắc “X1” và khi đó thời gian đo (Minutes) ở công tắc “001” để tiến hành mỗi phép đo trong khoảng thời gian 1 phút. - Đặt ngưỡng 1.0 và lên cao thế phù hợp 800V với đầu dò NaI. Bước 2: - Đo khoảng cách từ tâm thùng đến đầu dò tương ứng với K = 87 cm và K = 116cm. - Đo phông phóng xạ của môi trường. Ghi lấy số đếm phông trung bình. Bước3: - Cho nguồn mẫu vào thùng một cách ngẫu nhiên. Ghi lại vị trí của nguồn, từ đó xác định khoảng cách từ nguồn tới tâm thùng bằng thước đo. Thí nghiệm này sử dụng chỉ 1 nguồn và chất độn là đồng nhất (cát).
  • 54. 52 Hình 4.3. Các vị trí của nguồn có thể có khi cho vào thùng một cách ngẫu nhiên - Gạt công tắc của mô tơ để nâng thùng lên hoặc hạ thùng xuống đúng vị trí phân đoạn cần đo. - Gạt công tắc mô tơ quay để làm quay thùng rác thải phóng xạ. - Nhấn nút Count để ghi lại số đếm trong mỗi trường hợp đo. Mỗi phép đo tiến hành 10 lần, ghi lại số đếm tổng của phông và nguồn. Số đếm thu được trong các lần đo bằng kỹ thuật SGS chính là Cs, từ (2.10) ta có
  • 55. 53 2 s s i s i2 C .K I = .CF I . C = .CF Ks α α ⇒ (4.1) 4.2.2 Xác định hệ số hấp thụ tuyến tính µ của cát sử dụng với nguồn Cs137 Đặt nguồn ở khoảng cách K = 87 cm so với đầu dò, ghi lại số đếm N0. Giữ nguyên khoảng cách K, cho chất độn là cát vào giữa nguồn và đầu dò với bề dày của lớp cát là x. Ghi lại số đếm N. Ta có: . 0. x N N e µ− = (4.2) Lấy ln hai vế: 0 ln . N x N µ= 0 ln N N x µ⇒ = (4.3) Kết quả: Bảng 4.4. Hệ số hấp thụ tuyến tính trung bình N0 Bề dày x N µ (cm-1 ) Hệ số hấp thụ trung bình (cm-1 ) 1469854 27 375013 0,0506 0,049871469854 56 100760 0,0478 1469854 14 719760 0,0512 4.2.3 Xác định hệ số α và công thức tính sai số Có được hệ số hấp thụ tuyến tính, ta tiếp tục tính α và sai số của phương pháp SGS với thực tế. Giả thiết có một nguồn điểm hoạt độ thực là Id trong một phân đoạn, thì số đếm thực của nguồn đó sẽ được tính theo công thức (2.5) : j- .Ln d 2 j=1 j I . e C = n H µ α ∑ Đặt nguồn ở trung tâm thùng với các khoảng cách K=87; 116 cm.
  • 56. 54 Lúc này ta có: r =0 Lj =R=28cm Hj = K 2 2 I . . I C = C R d R d e K K e µ µ α α − − ⇒ = ⇒ (4.3) Thế α vào biểu thức (4.1): 2 s s i C .K I = .CFα . R s s d i I e I CF C C µ− ⇒ = (4.4) Từ công thức (4.4) ta có thể tính toán được sai số giữa Is và Id dựa vào số đếm Cs thu được từ các phép đo SGS với các khoảng cách r khác nhau. Kết quả đánh giá thô sai số hệ thống bằng thực nghiệm được đưa ra trong Bảng 4.5 và 4.6 dưới đây. Các kết quả này được thống kê từ Phụ lục 1 và 2. 4.2.4 Kết quả thực nghiệm với K = 87 cm Bảng 4.5. Số đếm và sai số theo phân bố khoảng cách r (cm), với K = 87 cm và µ = 0,04987 cm-1 r (cm) Số đếm trung bình Cs Sai số (%) 0 374369,6 -36,9 3 378324,2 -35,244 6 390958,6 -34,1039 7 394979,4 -33,4262 8 437971 -26,18 11 454528,2 -23,3893 13 550786,9 -7,16486 17 619452,2 4,4088
  • 57. 55 20 717512,5 20,93674 23 773208,7 30,32433 24 851996,3 43,60399 27 922887,2 55,55265  Phân bố xác suất khi cho một nguồn vào khoảng các vị trí r từ 0 – 28 cm trong tiết diện của một phân đoạn. Thí nghiệm sử dụng nguồn phóng xạ với hoạt độ tương đối lớn, nên ta phải có kế hoạch đo rõ ràng, tránh tiếp xúc quá lâu với nguồn sẽ rất nguy hiểm. Để hạn chế thời gian tiếp xúc với nguồn, ta có thể xem việc cho nguồn vào thùng giống như cách nhắm mắt lại rồi ném một viên bi vào thùng một cách ngẫu nhiên, ghi lại vị trí của viên bi trong thùng. Thực hiện điều này nhiều lần để lấy được nhiều vị trí khác nhau, tiến hành thống kê và tính toán tần suất mà nguồn có thể rơi vào trong một khoảng cách r (cm) nào đó. Sau đó ta mới cho nguồn vào đúng vào khoảng các vị trí mà ta đã thống kê rồi tiến hành đo đạc. Xác suất nguồn rơi vào trong đoạn từ r1 – r2 sẽ là tỉ lệ giữa diện tích hình vành khăn được bôi đen với tiết diện của thùng (diện tích của một phân đoạn) Hình 4.4: 2 2 a 2 1 2 .( ) w .100% .100% . v nhkhan phandoan S r r d S R π π − = = (4.5)
  • 58. 56 Hình 4.4. Xác suất nguồn rơi vào hình vành khăn Hình 4.5. Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách r (cm) khi cho nguồn ngẫu nhiên vào thùng, K = 87 cm.
  • 59. 57  Biểu đồ sai số theo phân bố khoảng cách Hình 4.6. Biểu đồ sai số thực nghiệm theo khoảng cách r (cm), với K = 87 cm Hình 4.7. Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 87 cm và µ = 0,04987 cm-1 với số liệu tính toán mô phỏng.
  • 60. 58 4.2.5 Kết quả thực nghiệm với K = 116 cm Bảng 4.6. Số đếm và sai số theo phân bố khoảng cách r (cm), với K = 116 cm và µ = 0,04987 cm-1 . r (cm) Số đếm trung bình Cs Sai số (%) 0 230295,1 -36,9 5 260159,4 -28,7173 6 262902,2 -27,9658 8 280212,5 -23,2228 9 294685,4 -19,2573 10 297543,7 -18,4741 12 308591,6 -15,4471 16 388728,1 6,510052 18 410684,5 12,52602 20 466461,8 27,8088 25 603697,4 46,42295 26 639806,1 53,56191 Hình 4.8. Biểu đồ phân bố xác suất nguồn rơi vào các khoảng cách r (cm) khi cho nguồn ngẫu nhiên vào thùng, với K = 116 cm.
  • 61. 59  Biểu đồ sai số theo phân bố khoảng cách Hình 4.9. Biểu đồ sai số thực nghiệm theo khoảng cách r (cm), với K = 116 cm Hình 4.10. Biểu đồ sai số của hệ SGS theo khoảng cách r (cm) với K = 116 cm và µ = 0,04987 cm-1 với số liệu tính toán mô phỏng
  • 62. 60 4.2.6 Đánh giá và bình luận: Mặc dù các kết quả thí nghiệm vẫn còn thô, mang tính chất định tính để kiểm tra kết quả và dự đoán bằng lý thuyết về sự ảnh hưởng của sự phân bố nguồn trong một phân đoạn đến sai số hệ thống của phép đo SGS, nhưng có thể khẳng định kết quả thực nghiệm là phù hợp với kết quả tính toán bằng lý thuyết trong trường hợp một nguồn điểm phóng xạ nằm trong một phân đoạn. Ta thấy đồ thị đường thực nghiệm có dạng gần giống như đường mô phỏng, cộng với kết quả tính toán sai số trong khoảng từ -36,9 % đến 55,55 %. Số liệu sai số này do mô phỏng bằng phương pháp ngẫu nhiên trong khoảng sai số -38,3 % đến 79,5 % (Bảng 2.1). Sai số lớn nhất là khi nguồn phân bố ở tâm thùng (r = 0 cm): -36,9% và phân bố ở gần vành thùng (r = 26; 28 cm): 55,55265%; 53,56191%. Trong khoảng r từ 10-20 cm thì sai số của phương pháp SGS là nhỏ nhất. Các biểu đồ về phân bố ngẫu nhiên của một nguồn điểm theo bán kính cho thấy xác suất ngùôn rơi vào các vị trí gây sai số lớn (tại tâm và mép thùng) là nhỏ hơn so với xác suất nguồn rơi vào các vị trí r từ 10-20 cm, đây là khoảng vị trí cho sai số nhỏ hơn. Với sai số này, hệ đo có khả năng áp dụng vào thực tế để đo đạc với số lượng nguồn đồng nhất nhiều hơn.
  • 63. 61 KẾT LUẬN Với mục tiêu ban đầu là tính toán sai số của kỹ thuật SGS bằng phương pháp ngẫu nhiên, kết hợp giữa thực nghiệm và tính toán mô phỏng, luận văn đã đạt được những kết quả cụ thể sau đây: - Tính toán lại sai số của SGS bằng phương pháp ngẫu nhiên trong các trường hợp cho nguồn vào một phân đoạn của thùng rác thải và trường hợp cho nguồn vào cả thùng rác thải. Rút ra được kết luận về sai số này, và từ đó tiến hành việc chế tạo và đo đạc thực nghiệm. - Xây dựng được hệ đo SGS để đo đạc và tính toán thực nghiệm bằng phương pháp cho các nguồn phóng xạ vào thùng ngẫu nhiên. Hệ đo này có thể dùng để nghiên cứu các đề tài tiếp theo, liên quan đến đo hoạt độ phóng xạ của thùng rác thải. - Tiến hành đo đạc thực nghiệm với nguồn và chất độn không đồng nhất cho vào thùng, ghi đo lại số đếm và so sánh. Từ đó khảo sát định tính khả năng quét của hệ đo SGS với nguồn và chất độn không đồng nhất. - Tiến hành đo đạc thực nghiệm với nguồn Cs137 cho vào một phân đoạn, và khảo sát định lượng sai số của kỹ thuật SGS do sự phân bố của nguồn và khoảng cách K với chất độn là cát đồng nhất. Kết quả thực nghiệm thu được khá phù hợp với kết quả tính toán lý thuyết.
  • 64. 62 KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU TIẾP THEO Đề tài có những kiến nghị sau: - Có thể tiến hành thí nghiệm với chất độn là giấy, hoặc vải vụn, hoặc pha trộn nhiều hợp chất khác nhau để làm rõ hơn sai số phụ thuộc vào chất độn như thế nào. - Tính toán hệ số liên hệ giữa năng lượng gam-ma và hiệu suất của đầu dò NaI với các nguồn phát ra gam-ma năng lượng khác nhau, từ đây ta có thể làm thí nghiệm với nhiều nguồn có hoạt độ và thành phần khác nhau và có thể mở rộng mô hình cho việc đo và tính toán hoạt độ của thùng rác thải chứa các nguồn không đồng nhất. Chế tạo thêm các ống chuẩn trực ứng với kích thước của các đầu dò trong phòng thí nghiệm, để có thể tiến hành đo với các đầu dò ở nhiều khoảng cách và các kích thước phân đoạn khác nhau. - Cải tiến lại hệ đo với đầu dò bán dẫn HPGe siêu tinh khiết cùng với hệ phổ kế đa kênh trong phương pháp đo nhận diện các đồng vị phóng xạ, phân bố và hoạt độ của chúng theo phổ thu được. - Chế tạo thêm hệ che chắn cho hệ đo SGS bằng chì, nâng cao khả năng tự động của hệ máy để người vận hành chịu ít ảnh hưởng nhất khi tiến hành đo đạc với nguồn phóng xạ. - Kết hợp hai hay nhiều đầu dò trở lên trong kỹ thuật SGS để phép đo nhanh hơn và thu được kết quả chính xác hơn – đây chính là kỹ thuật phân tích kép.
  • 65. 63 DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ Tran Quoc Dung, Phan Trong Phuc, Truong Truong Son, Le Anh Duc (2012), “Evaluation of combination of different methods for determination of activity of radioactive waste in sealed drum”, Tạp chí khoa học ĐHSP TPHCM, số 36 năm 2012.
  • 66. 64 TÀI LIỆU THAM KHẢO Tài liệu tham khảo Tiếng Việt: 1. Trần Phong Dũng, Châu Văn Tạo, Nguyễn Hải Dương (2005), “Phương pháp ghi bức xạ ion hóa”, NXB ĐH Quốc Gia TP.HCM. 2. Đỗ Văn Duyệt (2010), “Sử dụng phương pháp xác suất để đánh giá sai số hệ thống của phương pháp gamma không phá hủy trong kiểm tra chất thải phóng xạ ”, Luận văn tốt nghiệp đại học, Trường ĐH Khoa Học Tự Nhiên TP.HCM, 11-15. 3. Lê Hồng Khiêm (2008), “Phân tích số liệu trong ghi nhận bức xạ”, NXB Đại học Quốc Gia Hà Nội. Tài liệu tham khảo Tiếng Anh: 4. D. J. Decman, H. E. Martz, G. P. Roberson, and E. Johansson (1996), “NDA Via Gamma-Ray Active And Passive Computed Tomography”, Lawrence Liverrnore National Laboratory, USA. 5. D. Nakazawa, M. Field, B. Gillespie, R. Mowry, S. Philips, A. Radomski, and H. Yang (2011), “A New Segmented Gamma Scanner System – 11366”, WM2011 Conference, Canberra Industries Inc, 800 Research Parkway, Meriden, 06450, USA, 1-3. 6. G. P. Roberson, H. E. Martz, D. J. Deckman, D. C. Camp, S. G. Azevedo and E. R. Keto (1994), “Characterization of Waste Drums Using Nonintrusive Active and Passive Computed Tomography”, Lawrence Livermore National Laboratory, CA 94551, USA. 7. G. W. Eccleston (1991), “Segmented gam-ma-ray scanner”, Los Alamos National Laboratory, 1-2. 8. H. E. Martz, G. P. Roberson, D. J. Decman, and D. C. Camp (1997), “Gamma- Ray Scanner Systems for Nondestructive Assay of Heterogeneous Waste Barrels”, Lawrence Livermore National Laboratory &Technical University of Budapest, H-1521, Hungary. 9. J. Steven Hansen (2010), “Tomographic gamma-ray scanning of uranium and
  • 67. 65 plutonium”, LA-UR-07-5150, 4, 1-27. 10. ORTEC®ANTECH (2009), “Comparison of Gam-ma-Ray Nondestructive Assay Measurement Techniques”, www.ortec-online.com 11. ORTEC®ANTECH (2009), “Series 3800— Tomographic Gamma Scanner”, www.ortec-online.com 12. R.Venkataraman, S.Croft, M.Villani, R.McElroy, B.M. Young, G. Geurkov, R.J. Huckins, P. McClay, D.L. Petroka, C. Spanakos (2005), “The Next Generation Tomographic Gamma Scanner”, Canberra Industries, and Advanced Nuclear Technology Group (N2), Los Alamos National Laboratory, USA. 13. S. Croft and R.D. McElroy, “The calibration of segmented gamma scanners using rod sources”, Canberra Industries, Research Parkway, Meriden, Connecticut, 06450, USA. 14. T. E. Sampson, T. A. Kelley, D. T. Vo (2003), “Application Guide to Gamma- Ray Isotopic Analysis Using the FRAM Software”, Los Alamos National Lab. 15. Trần Quốc Dũng (1996), “Non-destructive techniques for assay of radioactive waste”, Doctor of Philosophy Dissertation, Technical University of Budapest,57-72. 16. Trần Quốc Dũng (2006), “Investigation of the systematic inaccuracies and improvement of the measuring technique in segmented gamma scanner”, Tạp chí khoa học và công nghệ, tập 44, số 1, năm 2006. 17. Trần Quốc Dũng, Trương Trường Sơn(2012), “Limitation of the segmented gamma scanning technique and an additonal method for assay of radwaste drums”, Tạp chí khoa học ĐHSP TPHCM, số 33 năm 2012. 18. Westinghouse Electric Company (2011), “ Qualification of Packaged Nuclear Waste”, Cranberry Township. Các website: 19. https://www.llnl.gov/str/Roberson.html 20.http://www.antech-
  • 69. 67 PHỤ LỤC Phụ lục 1. Số đếm trong các lần đo với nguồn cho ngẫu nhiên vào thùng với K=87cm, và µ= 0,04987cm-1 Lần đo r 0 3 6 7 8 11 13 17 20 23 24 27 1 385022 391599 407716 402522 449615 458940 573004 621948 734685 800917 850529 951393 2 384157 381696 400091 403538 448802 469746 546634 631058 729933 776573 846319 928062 3 385226 381642 399389 407726 443371 459532 572166 610056 697795 770304 890121 910184 4 384656 380710 395259 400629 454325 469924 553344 625734 734169 805424 839928 963652 5 383865 382227 402072 409906 441884 463882 563757 633264 704586 763564 875262 912069 6 383767 380253 395220 402158 454557 463981 558011 604925 707171 802877 863030 929741 7 384204 381815 399604 406132 443520 469507 555526 648280 731309 771132 843104 950147 8 384640 381669 400173 405708 450650 459494 564686 621459 696088 780380 889261 907221 9 384701 380428 397426 403210 447222 473365 552104 610989 730294 797123 838507 958794 10 383708 381453 402886 408515 446014 457161 568887 639038 709345 764043 884152 917859 Số đếm phông trung bình: 10025 Ntb 374369,6 372324,2 390958,6 394979,4 437971 454528,2 550786,9 619452,2 717512,5 773208,7 851996,3 922887,2 Sai số -36,9 -35,244 -34,1039 -33,4262 -26,18 -23,3893 -7,16486 4,4088 20,9367 30,3243 43,6039 55,55265
  • 70. 68 Phụ lục 2. Số đếm trong các lần đo với nguồn cho ngẫu nhiên vào thùng với K=116cm, và µ= 0,04987cm-1 Lần đo r 0 5 6 8 9 10 12 16 18 20 25 26 1 240323 268125 273126 290672 301455 303119 314929 391410 425546 463777 628743 641697 2 239663 272259 273959 291356 305980 312221 323204 407917 420553 490516 603808 665657 3 239960 269760 270672 286813 306184 303483 315149 392875 415512 466973 610412 633365 4 241096 270928 274960 293064 301374 310930 317553 397863 428309 485806 622912 661308 5 240987 271110 272213 288331 308809 304299 323249 404855 411364 472433 598382 649617 6 239875 268810 271831 289018 304053 312138 314509 390545 431475 475916 632526 634367 7 240819 271070 274376 292805 303110 302907 319815 406149 412586 482088 599693 671049 8 239790 269806 271488 286915 308975 312834 319492 396058 424374 468026 621898 633371 9 240596 269080 273882 294156 301380 306708 315222 394670 421083 490559 612753 658690 10 240092 270896 272765 289245 305784 307048 323044 405189 416293 468774 606097 649190 Số đếm phông trung bình: 10025 Ntb 230295,1 260159,4 262902,2 280212,5 294685,4 297543,7 308591,6 388728,1 410684,5 466461,8 603697,4 639806,1 Sai số -36,9 -28,7173 -27,9658 -23,2228 -19,2573 -18,4741 -15,4471 6,510052 12,52602 27,8088 46,42295 53,56191
  • 71. 69 Phụ lục3. Biểu đồ so sánh kết quả giữa thực nghiệm và lý thuyết ( K = 87 cm) Phụ lục4. Biểu đồ so sánh kết quả giữa thực nghiệm và lý thuyết ( K = 116 cm)
  • 72. 70