Lp simplex method example in construction managment
This document presents a linear programming problem to determine the optimal number and type of buildings to construct on a plot of land based on budget, area, and population constraints. There are two types of buildings that can be built: five-story buildings or two-story buildings. The objective is to maximize the total population housed while staying within budget and area limits. The problem is solved using the simplex method, with the optimal solution being 20 five-story buildings and 40 two-story buildings, housing a total population of 1080.
2
On a particulararea with 60900 m2 (detail in
fig.1) we would like to build several buildings and we
would like some of the floors of these buildings are
five- stores and some two-stores , how it should be
the number of the first type of these buildings and
how many should be number of other type to
accommodate the largest number of populations ,
knowing that the data set out table follow
:
2
7
By simplex method
Whenx1= no. of five stores building
When x2= no. of two stores building
max Z = 30X1 + 12X2
when :
800X1 + 600X2 ≤ 60900
120X1 + 60X2 ≤ 4800
600000X1 + 200000X2 ≤ 20000000
X1 , X2 > 0
7
12
total area =60900m2
total building area=800*40+600*20=40000m2
The remaining area=60900-40000=20900m2
how to distribute the buildings
and the remaining area ?
12